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Abstract

In disaster relief efforts, delivering aid to areas with no com-
munication poses a significant challenge. Unmanned aerial
vehicles (UAVs) can be utilized to deliver aid kits to survivors
in hard-to-reach areas; unfortunately, in some areas, lack of
communication and infrastructure presents a key problem.
In this paper, we address a stochastic planning problem of
planning for a set of UAVs that deliver aid kits to areas
that lack communications, where we do not know in ad-
vance the locations where aid kits need to be delivered, but
rather have probabilistic information about the locations of
aid targets. Our main insight is that, despite the stochastic
nature of this problem, we can solve it through determinis-
tic search by monitoring the expected reward for each partial
solution. This insight enables the application of determinis-
tic planning techniques, empirically demonstrating a notable
improvement in efficiency and response speed. Our approach
presents a promising solution to addressing the challenge of
delivering aid in regions with limited radio infrastructure, as
well as similar planning problems.

Introduction
In disaster relief scenarios, delivering aid to areas with sev-
ered communications is an important challenge (Carlson
and Murphy 2005). Unmanned Aerial Vehicles (UAVs) can
reach otherwise inaccessible locations to assist in such ef-
forts. Drones have been extensively used in the aftermath
of floods (Boccardo et al. 2015; Jiménez-Jiménez et al.
2020; Andreadakis et al. 2020; Rottondi et al. 2021), land-
slides (Watson, Kargel, and Tiruwa 2019; Chang et al.
2020), rockfalls (Giordan et al. 2015), forest fires (Tran
et al. 2020), hurricanes (Schaefer et al. 2020), tsunami (Mar-
fai, Fatchurohman, and Cahyadi 2019), volcanic erup-
tions (Tarı́gan et al. 2017), earthquakes (Lei et al. 2018)
and even the Chernobyl radiological disaster (Connor et al.
2020). UAVs provide significant value in disaster manage-
ment and offer an avenue for delivering aid kits to survivors
in remote and hard-to-reach zones (Yakushiji et al. 2020;
Aggarwal et al. 2023; Alawad, Halima, and Aziz 2023).

In this paper, we tackle the planning problem inherent in
disaster relief with UAVs in communication-deprived envi-
ronments. A key challenge in these settings is the absence of
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precise information about target locations for aid kit deliv-
ery. Rather than assuming exact knowledge of these targets,
we work with partial knowledge about their potential loca-
tions. This stochsticity make the problem more challenging
than its deterministic counterpart.

The main insight in this paper is that although the plan-
ning problem we are trying to solve is stochastic, we can still
use deterministic planning techniques, with some modifica-
tions, to solve it. This is possible because without communi-
cation during plan execution, the drones can not coordinate
among themselves, and thus the choice of actions can not be
conditioned on any information that is obtained during ex-
ecution. We explain more about the planning and execution
setup in the next section.

However, even understanding that we want non-
conditional plans is not enough, as actions have uncertain
outcomes, and thus the result of such a plan is not a single
state but rather a distribution on possible states. Thus, we
also developed a technique for efficiently tracking these dis-
tributions, so instead of solving a stochastic planning prob-
lem on world states, we can solve a deterministic planning
problem on distributions of world states.

As we show later, this transformation does not increase
the size of our search space, as each partial plan leads to
a unique distribution on states. Furthermore, we show how
this insight can be used to (a) obtain provably optimal solu-
tions using deterministic algorithms like Branch and Bound
(BnB), and (b) speed up sampling-based search algorithms
like Monte Carlo Tree Search (MCTS).

We emphasize that the abovementioned insight is not lim-
ited to planning for disaster recovery using UAVs, but can
be used to solve similar stochastic planning problems where
a non-conditional plan is sought. In a way, this is similar
to conformant planning (Cimatti and Roveri 1999). How-
ever, our approach also deals with rewards and probabilities,
while conformant planning is limited to achieving a goal
without specifying exact probabilities or rewards.

Problem Definition
We begin by formally defining the problem and explaining
our planning and execution paradigm. Consider a scenario
involving teams of rescue drones dispatched to search for
survivors in the aftermath of a catastrophe. Operating with-
out communication due to destroyed infrastructure or chal-
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lenging terrain, each drone is equipped with an aid kit to
be dispensed to located survivors. Before the mission, teams
receive crucial information about the target area, including
the likelihood of encountering survivors at each location and
an estimate of potential survivor counts. Our objective is to
formulate a plan guiding the teams to optimize the delivery
of aid kits to survivors, maximizing their impact within a
specified timeframe.

Centralized Planning with Decentralized Execution
In the planning and execution paradigm we consider,
the planning algorithm runs offline before the drones are
launched. After the planning phase ends, each drone gets
its own part of the plan to execute. Thus, our planning is
centralized. However, once the drones are launched and exe-
cution begins, there is no communication – not between the
drones, and not with some ground control station. Specifi-
cally, the drones operate in teams, where each team is given
a sequence of locations to scan for survivors. As there is
no communication between the teams, there is no branching
based on whether other teams have discovered targets or not.

Furthermore, there is no communication between the
drones within the same team. Instead, we assume the drones
in each team see each other, can recognize other drones,
and scan the location with potential survivors, implement-
ing team behavior using swarming algorithms (Dovrat and
Bruckstein 2017). When a team of drones flies over a lo-
cation, the drone that spots the survivors first will fly down
towards them to dispense its aid kit – and remain there (as a
power bank, for example). For each of the remaining drones
in the team, one of several things may happen: (a) the drone
might observe the first-to-land drone on its route to the sur-
vivors (as it will be at a lower altitude and heading towards
the target), (b) the drone might observe the survivors with
the drone that has already landed, or (c) the drone might not
detect the survivors at all. This behavior allows each team
to send one drone to each group of survivors it discovers.
However, because not all drones have seen all targets, there
is no common knowledge about this, and our plan cannot
even branch on whether survivors were discovered or not.

It is worth noting that our work is part of a larger project,
in collaboration with industrial and other academic partners.
Other research groups will implement the lower-level lay-
ers, including object recognition, localization and naviga-
tion, and swarming behavior algorithms. In this paper, we
focus on the offline mission planning algorithm only, keep-
ing in mind that the plan will be executed by a set of drone
teams in a decentralized manner. Having explained our plan-
ning and execution paradigm, we can now formalize our
planning problem.

Problem Formalization
To formalize our problem (denoted DRONDEL), we assume
the map is given as a weighted graph G = ⟨V,E, cost⟩,
and we must plan a path through the graph for each team of
drones. Therefore, we treat each team of drones as an agent.
Furthermore, we assume that the survivors in each location
(node in the graph) cluster together, and thus we need to de-
liver at most one aid kit to each location.

Before we specify this formally, we define some notation
we will use. Let Rmax ≥ 0, and let P be the space of all
discrete probability spaces with maximal reward bounded
by Rmax, i.e., P = {{(pj , xj)}nj=0 | n ∈ N, ∀0 ≤ j ≤
n : 0 ≤ xj ≤ Rmax,

∑n
j=0 pj = 1}. For each X ∈ P it

holds that E[X] :=
∑n

j=0 pjxj ≤ Rmax. The probability of
drawing zero, x0 = 0, is p0.

The input elements of a DRONDEL problem are:

• a set A = [k] := {1, 2, . . . , k} of k agents, each repre-
senting one team of drones;

• a function u0 : A → N+, where u0(a) is the number of
drones in a at the start. u0 is referred to as the utilities.
We assume u0(a) ≤ |V |, since each location requires at
most one drop-off;

• a weighted digraph G = (V,E, cost) that represents the
map, where V is the node set, E is the edge set, and cost
is the non-negative weight function. The nodes represent
the possible locations of the agents, while the edges are
the connections between such positions;

• a function l0 : A → V associating each agent with its
starting point;

• the reward function R : V → P is a given distribution
on the number of survivors at each location;

• and tmax : A → R0+ is the agents’ time-limit, i.e., the
amount of fuel or energy each agent has (which translates
to the amount of time it can spend in the air).

• δD ∈ R0+ is the time required for an aid kit drop off.

Recall that we perform our planning offline, given only
stochastic information about the reward R(v) at each node
v. Once planning concludes, nature draws the realization
rv ∼ R(v). With this in mind, we can define the possible
states of the world in our problem.
Problem states To characterize the state of the world dur-
ing execution, we need to maintain information about both
the agents and the rewards, including whether the rewards
have been collected. Let s be a function representing a state
encompassing both agents and map locations, with the do-
main A ∪ V . The state of an agent a is described by a tu-
ple s(a) = ⟨l(a), u(a), t(a)⟩, where l(a) ∈ V is its loca-
tion on the graph, u(a) ≤ u0(a) denotes its current util-
ity (number of remaining drones), and t(a) ∈ [0, tmax(a)]
signifies the personal time of the agent in the air, corre-
sponding to the fuel it consumes. For location v, the state
s(v) represents the current reward realization. It is either
rv , randomly drawn according to the distribution R(v) or
0 if at least one agent with a positive utility budget made
a drop-off in v. For simplicity, we use the shorthand nota-
tions sloc(a) := l(a), sutl(a) := u(a) and sT(a) := t(a)
for a ∈ A, and srew(v) := s(v) for v ∈ V . The ini-
tial state of the problem is: s0(a) = ⟨l0(a), u0(a), 0⟩, and
s0(v) = rv ∼ R(v).

The agents can end their individual plan at any point.
Thus, we assume that every map graph G has a terminal ver-
tex. This vertex is reachable at zero cost with zero reward.
While it is a convenient shortcut, its inclusion is optional
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and aims to prevent aimless traversal. For brevity, we ex-
clude this vertex in our theoretical discussion, assuming the
search can terminate at any reachable state s.
Actions of the problem When navigating a map, agents
have two types of actions:

move(a, v, v′) moves the agent a along a specific edge
(v, v′) ∈ E, incurring a time cost (fuel budget) of
cost(v, v′). It is applicable at state s if sloc(a) = v, (v, v′) ∈
E, and sT(a) + cost(v, v′) ≤ tmax(a), i.e., the agent is in v,
there is an edge connecting v to v′ and the agent has enough
time (fuel) to travel to v′. It then results in a state s′, where
s′(a) = ⟨v′, u(a), t(a)+cost(v, v′)⟩ for a, and s′(x) = s(x)
for any x ∈ A∪V \{a}. The reward of applying this action is
0. To represent hovering at a given location, we assume that
the graph G includes a self-loop for every vertex v ∈ V with
cost(v, v) = δW, where δW is the minimal step in the dis-
cretization of action costs, i.e., each cost can be represented
as an integer multiple of δW. We refer to this as waiting, and
denote it by wait(a, v).

drop-off(a, v) agent a scans the location v for survivors to
deliver them an aid kit. Recall that the first drone that finds
a survivor lands and delivers its aid kit – that drone does not
rejoin the team, other drones that find the survivor notice the
landed drone and do not land. If there are no survivors in
the location v, the agent refrains from making a drop-off.
Consequently, if agent a has executed a drop-off action v,
it implies that either it either depleted their budget or the
survivors got their aid kit, or both. Therefore, it is unneces-
sary for an agent to execute a drop-off in the same location
twice. However, since agents are unaware of each other’s
utility budgets, multiple agents can independently perform a
drop-off action at the same location, as the current budget of
the agent is unknown to its peers.
The key assumption in this problem is that the agents are
not allowed to leave survivors unattended. Specifically, if an
agent decides to perform a drop-off action in a chosen loca-
tion and realizes that the reward is greater than zero (one of
the drones in the team finds a survivor), that drone is ob-
ligated to proceed with landing and delivering an aid kit.
However, if the reward is zero, signifying the absence of sur-
vivors, then no aid kits are delivered.
This action requires a specified time duration denoted as δD.
drop-off(a, v) requires only sloc(a) = v to be applicable,
that is, that the agent is at v. However, the result of applying
drop-off(a, v) in state s depends on whether there are drones
left in a (sutl(a) > 0) and survivors in v (srew(v) > 0).
Specifically, if sutl(a) > 0 and srew(v) > 0 the resulting
state s′ has s′(a) := ⟨v, u(a)− 1, t(a)+ δD) and s′rew(v) :=
0. In this case, the agent collects utility srew(v). Otherwise,
s′(a) := ⟨v, u(a), t(a) + δD) and s′rew(v) := srew(v), and
the reward is 0. Note that the states of all other agents and
locations remains unchanged.

Synchronized and individual plans Above we have de-
fined the actions in our problem and their effects. However,
because our plan consists of actions for different agents, and
different actions have different durations, we must define the
action dynamics more precisely. Specifically, let s be a state

and π be a plan (a sequence of actions). We want to define
the state which is reached by applying π at state s.

Assume that π is a sequence of consecutively applicable
actions in the DRONDEL instance. The sub-sequence of ac-
tions in π associated with an agent a is called an individual
plan for that agent and denoted by π(a). Note that while the
agents do not interact with each other, as we will see later
on, the order of the deliveries is important. Thus, we com-
pute the starting time of each action as follows.

Assume π(a) = ⟨o1, o2, . . . , om⟩. We denote the starting
time of action oi by t(oi) :=

∑i−1
j=1 cost(oj). In other words,

the sum of costs (durations) of the actions of agent a before
oi, where the starting time of the first action is 0. We can
now define the result of applying a sequence of actions π of
all the agents (a joint plan) by computing the starting time
for each action in π, and applying the action effects in order
of starting time (breaking ties using some predefined rule).
Optimization function The quality measure of the plan π
can be seen as the expectation of the sum of rewards col-
lected by all agents. Since we can compute the expectation
of all rewards on the map, the reward collected by the agents
corresponds 1-1 to the expectation of the sum of rewards
that have not been collected. Thus, we can minimize the ex-
pected rewards that are left on the map, i.e., we maximize
the expected number of survivors that got an aid kit.

Since the rewards for the vertices in v ∈ V are gen-
erated independently, we can say that the initial rewards
s0rew : V → R0+ are generated according to distribu-
tion

Ś

v∈V R(v). Note also that each plan π can be exe-
cuted regardless of the generated rewards. Thus, our goal is
to find a plan π from s0 to s that maximizes the function
z(π) := Rtot −

∑
v∈V E[srew(v) | π], where the expectation

of srew(v) is computed with respect to π over all possible
realisations of

Ś

v∈V R(v), and Rtot :=
∑

v∈V E[s0rew(v) |
π]. Thus, our goal is to find a plan π from s0 to s that maxi-
mizes the function z(π).
Modeling as MDP Each DRONDEL instance can be eas-
ily represented as a POMDP, where the initial belief state
is based on R. Thus, it is a simple exercise to represent it
as a finite horizon MDP over belief states. One simplifica-
tion we can make is to transform our random variables R
to Bernoulli distributed variables. This is possible because
under the assumption of no unattended survivors, each dis-
tribution R(v) = (pvj , r

v
j )

n

j=0
impacts agents’ utility bud-

gets only when u0(v) := s0rew(v) drawn from R(v) is
strictly greater than zero. Using the linearity of expectation,
in terms of the optimization function E[

∑
v∈V srew(v) | π],

we replace the discrete probability R(v) with the Bernoulli
distribution Bp,r(v) = (0, q), (p, r), where q + p = 1,
q = p0 is the probability of drawing zero from R(v), and
r = 1

p

∑n
j=1 p

v
j r

v
j . Both distributions have the same expec-

tation. Subsequently, Bp,r denotes the Bernoulli distribution
of obtaining r with probability p, where 0 denotes the distri-
bution where the value 0 is achieved with probability 1.

However, our goal is not just to simplify the MDP formu-
lation, but to convert DRONDEL into a deterministic prob-
lem DRONDELDP which can be solved by deterministic
tools. Later, we demonstrate that the rewards on the map are
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Figure 1: Constructing a graph of the DRONDEL problem
based on a KNAPSACK problem. We omitted the terminal
vertex v∗ since it is reachable from every vertex. n+1 is the
utility budget of the agent.

just some of the random variables (r.v.) we need to track. The
r.v.’s we need to monitor are the utility budgets of the agents.
Given a plan π for a DRONDEL instance, the utility budgets
of agents in the states along the execution of π can be seen
as r.v.’s dependent on the realization of the rewards. Before
this, we show that the problem DRONDEL is not simple even
for one agent, and cannot be easily decomposed into a non-
synchronized set of individual agent solutions.

Hardness of DRONDEL

We start with formulating DRONDEL as a decision problem:
PROBLEM. Drone Delivery (DRONDEL)
INSTANCE. An instance of DRONDEL and a number K.
QUESTION. Is there a π s.t. z(π) ≥ K?

NP-hardness of the Deterministic Problem
To obtain the NP-hardness result for DRONDEL we show a
reduction to the well-known KNAPSACK decision problem.
PROBLEM. KNAPSACK
INSTANCE. Items [n] with weights {wi}ni=1 and values
{νi}ni=1, weight limit W , and a number K.
QUESTION. Is there A ⊆ [n] s.t.

∑
i∈A wi ≤ W and∑

i∈A νi ≥ K?

Theorem 1. DRONDEL decision problem is NP-hard.

Proof. Given a KNAPSACK problem we construct a deter-
ministic single agent DRONDEL problem. Assume that we
have weights {wi}ni=1, values {νi}ni=1, weight limit W , and
some max value K (all values here are positive). Since we
construct a single agent problem, we have A = {a}. Con-
struct the directed graph1 G = (V,E, cost) as follows:

• V := {vi | i ∈ [n]} ∪ {v0, vF }, where l0(a) = v0 is the
initial location of the agent, vi locations that correspond
to items in the KNAPSACK problem, and vF is the final
point where a should terminate.

• The edges E constitute a star graph that contain edges
(vi, v0) and (v0, vi) for each i, and {v0, vF }.

• The cost function over E is given by cost(vi, v0) =
cost(v0, vi) := wi/2 for each i, cost(v0, vF ) := W , and
zero for all other edges (see Figure 1).

1While we formulate this result for a directed graph, the same
proof with minor changes holds also for an undirected graph.

v0

0

v1

3

v4

1

v2

0

v3

0

a2
1

a1
1

Figure 2: Depiction of graph G in Example 1. The red num-
bers are the rewards in the realisation where the optimisation
results for πno-wt and πwt differ.

We set the time required for drop-off, δD = 0. The rewards
of the vertices are given by rvi = νi for each i, rv0 = 0, and
rvF = νsum, where νsum :=

∑n
i=1 νi. All rewards appear

with probability 1. The fuel is set to be tmax(a) = 2W and
the utility budget of the agent is given by u0(a) = n + 1,
since it is the sum of rewards of all vertices. Lastly, the max-
imisation constant for the decision is K ′ := νsum +K.

It is left to show that any plan π that results in∑
v∈V s0r(v)−

∑
v∈V sr(v) ≥ K ′ corresponds to a solution

of the KNAPSACK problem where the sum of picked item
exceeds or is equal to K. Note that each such π should make
a drop-off in vF , since the initial sum of all initial rewards is
2νsum. Thus, a terminates at vF , since vF is reachable only
from v0, and any optimal solution requires a to visit vF .

Prior to visiting vF , the agent a can visit other vertices.
There is no point in visiting the same vertex vi twice, and
due to the star shape of the graph, the agent visits vertex vi
via the path v0 → vi → v0, the cost of this path is wi. a
can not terminate from vi since it terminates from vF , i.e.,
in every optimal solution the agent arrives to vF .

Thus, to clear the reward νi from the map, we need to use
wi fuel. Therefore, the optimal solution for the KNAPSACK
problem, can be derived from π. Pick item i for the knap-
sack, if a makes a drop-off at vertex vi.

The Importance of Patience
While the agents on the map cannot collide and may occupy
the same location (vertex), the problem DRONDEL is not
trivially decomposable. The agents not only need to decide
on the locations of drop-offs but also require synchroniza-
tion of their actions, because the order in which agents col-
lect the rewards can make a difference. To illustrate this, we
present an instance of the problem where one agent has to
deliberately wait for the other to collect the maximum ex-
pected reward (minimize the rewards left on the map).

Example 1. Let A = {a1, a2} be a two-agent DRON-
DEL problem. Let G be a unit-cost graph (see Figure 2).
We assume that agent a1 starts at l0(a1) = v2 and agent a2
starts at l0(a2) = v0. The fuel budgets are tmax(a1) = 2 and
tmax(a1) = 3, and each agent consists of a single drone, i.e.,
u0(a1) = u0(a2) = 1. The reward probabilities on the maps
are R(v0) = R(v2) = 0, R(v3) = B1/2,4, R(v1) = B1/2,3,
and R(v4) = B1,1. For simplicity we assume here a zero
drop-off time, i.e., δD = 0. Assume also that a1 acts before
a2 in the tie-breaking.
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Figure 3: The graph G and the rewards in Example 2.

We set δW = 1. Let us look at the optimal solu-
tion of this problem with and without the waiting ac-
tion. One may check that an optimal plan with wait is
πwt=⟨move(a1, v2, v3),wait(a2, v0), drop-off(a1, v3),
move(a1, v3, v1),move(a2, v0, v1), drop-off(a1, v1),
drop-off(a2, v1),move(a2, v1, v4), drop-off(a2, v4)⟩. The
plan with no waits πno-wt is the same as πwt, but with the
action wait(a2, v0) removed. There are four equiprobable
realizations of the map, we evaluate z(πno-wt) and z(πwt)
for all realisations:

P s0rew(v1) s0rew(v3) z(πno-wt) z(πwt)
1/4 0 0 0 0
1/4 3 0 1 0
1/4 0 4 0 0
1/4 3 4 1 1
E 1/2 1/4

In Figure 2 we can see that a2 has to wait for a1 to make
a drop-off to obtain a better solution for the problem. Thus,
the wait action is required to synchronise the agents.

Determinization of the Problem
So far, we have defined a stochastic planning problem. Thus,
the techniques that come to mind naturally to address it are
stochastic planning techniques like value iteration (Bellman
1957), policy iteration (Howard 1960), or Monte Carlo Tree
Search (Kocsis and Szepesvári 2006; Keller and Helmert
2013). Instead, we introduce a method for representing the
DRONDEL problem as a deterministic search problem. This
allows us to use techniques like Breadth First Search and
Branch and Bound (Land and Doig 1960) to tackle this prob-
lem. As we see in the empirical evaluation, this pays off.

For each agent and reward location, we maintain a sepa-
rate factored probabilistic space and use dynamic program-
ming to compute updates for these distributions. Before we
explain this technique, we present an example.

Example 2. Let A = {a} be a single agent in the DRON-
DEL problem. Let G be a unit-cost four vertex line graph
(see Figure 3). We assume that the agent starts at l0(a) = v0,
has a fuel budget of tmax(a) = 3, and has u0(a) = 2 drones.
Let R(v1) = R(v2) = R(v3) = B1/2,1 and R(v0) = 0
be the initial reward distributions. For simplicity we assume
here drop-off and wait times of 0.

There are 8 equiprobable map realisations. Intuitively,
finding an optimal solution for the problem is simple: go
to v1, make a drop-off, go to v2, make a drop-off, go to v3
and make a drop-off (that is, if there are still drones left).
Note that the plan is non-conditional (it does not branch) –
the drop-off action is included in the plan anyway, but the
effects of the drop-off are stochastic.

More rigorously, we are interested in the updated util-
ity distribution after the first two drop-offs. After the

first drop-off, we know for sure that the updated re-
ward of v1 is zero with probability 1. However, the util-
ity budget of a (number of drones) can be seen as a
distribution {(0.5, 1), (0.5, 2)}. After the second drop-off
the updated reward of v2 is zero with probability 1,
and the number of drones remaining is distributed as
{(0.25, 0), (0.5, 1), (0.25, 2)}. Lastly, in v3 the reward dis-
tribution after the drop-off is {(0.875, 0), (0.125, 1)} (the
only realisation where there is still a reward is when all v1,
v2, and v3 vertices have the reward 1), and the remaining
drones distribution is {(0.5, 0), (0.375, 1), (0.125, 2)}.

Thus, the optimal solution is z(π) =
∑

v∈V (E[s0rew(v)]−
E[srew(v) | π]) = 1.5− E[srew(v3)] = 1.375.

Note that there are two r.v. types: rewards at vertices and
the remaining utility budget (number of drones) for each
agent. Thus, to transform the problem into its deterministic
variant, we should track these two nondeterministic aspects
of the states on the level of distributions. In the representa-
tion we discussed so far, sutl(a) and srew(v) are responsible
for keeping track of the utility budget of an agent and the
current reward of the state, respectively.

The key point here is that since we are concerned with
non-conditional plans – the action to execute at any given
moment depends only on the current time, we can com-
pute the distribution on each such state variable, follow-
ing any such plan from the initial state. Consequently, to
transition to the dynamic programming paradigm (DRON-
DELDP), the necessary steps involve substituting the instan-
tiation of sutl(a) and srew(v) with their respective probabil-
ity distributions, as well as revising the mechanics under-
lying the drop-off action. We denote the states of the aug-
mented problem by s̄ and the respective probability spaces
by s̄utl(a) and s̄rew(v). The deterministic parts of the states
in the original problem remains the same, i.e., s̄loc = sloc and
s̄T = sT. The action mechanics associated with this part of
the state remains the same – the agents fly to locations and
expend their fuel exactly as they did in the original problem.

To represent the stochastic components of the states as
distributions, we first need to define the event spaces for the
respective distributions. For the rewards on the map, this is
straightforward; for a state v with the Bernoulli reward dis-
tribution R(v1) = Bp,r, the event space is 0, r. Representing
the distribution of the utility budget is slightly more intricate.
Let u0(a) be the initial budget, and assume u0(a) < |V |.
Otherwise, the agent can make a drop-off in any location
on the graph. Given that each time an agent a collects a re-
ward, its utility budget decreases by one, and it cannot go
below zero, the event space for the distributions represent-
ing the utility budget of a is {0, . . . , u0(a)}. We note that
the event spaces of sutl(a) and srew(v) never change in every
state reachable from s0, though some of these event spaces
may degenerate with respect to the probability function.

Note that the stochastic parts of the state are affected only
by the drop-off action. Thus, it remains to initialize the dis-
tributions on these event spaces, and then track the changes
introduced by the drop-off action.

The distributions in the initial state are initialized
to s̄0rew(v) = R(v) and s̄0utl(a) = {(1, u0(a))} ∪
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{(0, i)}u0(a)−1
i=0 . Here {(1, u0(a))} represents the fact that

the agent a has u0(a) drones with probability one.
The update made by the drop-off action relies on the dis-

tributions in the parent state. Let s̄ be a state of the prob-
lem, where agent a executes the drop-off action in loca-
tion v, and let s̄′ be the resulting state. As previously men-
tioned, this action affects only s̄′utl(a), s̄

′
rew(v), and s̄′T(a),

where the fuel amount left to the agent to fly is updated as
in the original problem, s̄′T(a) = s̄T(a) + δD. Thus, as-
sume that s̄rew(v) = Bp,r and s̄utl(a) stores the distribu-
tion {(pi, i)}u0(a)

i=0 , where
∑u0(a)

i=0 pi = 1. Then, to compute
s̄′utl(a) = Bp′,r and s̄′utl(a) = {(p′i, i)}

u0(a)
i=0 all we need is

compute the respective probabilities p′ and {p′i}
u0(a)
i=0 .

Let s̄′rew(v) = Bp′,r be the Bernoulli distribution of the
reward in vertex v in the resulting state s′. Then, p′ := pp0,
where p′ is the probability to encounter the reward r at ver-
tex v after the action drop-off(a, v). Similarly, the probabil-
ities of the utility budget {p′i}

u0(a)
i=0 can be represented as

p′i :=


p0 + p1p if i = 0

pu0(a)(1− p) if i = u0(a)

pi(1− p) + pi+1p otherwise,

where p′i is the probability of the agent a having i drones
left after a makes a drop-off at v. Recall that a can make a
drop-off at v at most once, thus the multiplied probabilities
are mutualy independent.

It is quite obvious that the state spaces of DRONDEL and
DRONDELDP problems are different. Yet, since we are in-
terested in planning over the state spaces we will compare
only the states that are reachable in both problems from the
initial state s0. By s̄0 we denote the initial state of DRON-
DELDP that differs from s0 only syntactically, cf. u0(a) and
{(1, u0(a))} ∪ {(0, i)}u0(a)−1

i=0 . Given this initial state, we
aim to show that the distribution of the realizations of state
s in DRONDEL given a path π that leads from s0 to s coin-
cides with the distributions in s̄ – the state we achieved in
DRONDELDP by applying π to s̄0.

Theorem 2. Let π be a path from the initial state s0 to some
state s in DRONDEL. Let s̄0 be the determinized counterpart
of s0. Then, π is applicable from s̄0 and leads to s̄ s.t.

1. sT(a) = s̄T(a) and sloc(a) = s̄loc(a) for each a ∈ A;
2. for each v ∈ V and s̄rew(v) = Bp,r it holds: P(srew(v) =

r | π) = p and P(srew(v) = 0 | π) = 1− p;

3. for each a ∈ A, s̄utl(a) = {(pi, i)}u0(a)
i=0 , and each i:

P(sutl(a) = i | π) = pi.

Proof. Let π be a sequence of actions leading from s0 to s.
Since by definition s0T = s̄0T and sloc = s̄loc, and the actions
in both settings act the same on these parts of the states, we
have 1. by induction. Using the same induction we want to
prove that conditions 2. and 3. hold after any step of π.

Base: Recognize that rewards and budget utilities are al-
tered solely by the drop-off action. Let adf be the first agent
to execute a drop-off, located at vdf . Let π0 be the prefix of
π that ends with the first drop-off action and R(vdf) = Bp,r.

Examine the distributions of utilities and rewards at s after
this drop-off action.

s̄utl(adf) = {(u0(adf), 1− p), (u0(adf)− 1, p), . . . , (0, 0)},
s̄rew(vdf) = B0,r = 0. And at the same time.
P(sutl(adf) = u0(adf) | π0) = 1− p,

P(sutl(adf) = u0(adf)− 1 | π0) = p, and
P(srew(v) = 0 | π0) = 1.

Step. We assume that for each prefix πi where i < n our
theorem holds. Let πn−1 be the actions executed so far by
the agents, and let sn−1 and s̄n−1 be the resulting states of
the execution of πn−1 in the DRONDEL and DRONDELDP
problems respectively. If the n-th action in the plan is either
wait or move for the resulting states sn and s̄n, assume that
agent a executes the action, then since the action is deter-
ministic it holds that snT(a) = s̄nT(a) and snloc(a) = s̄nloc(a),
and all other elements of the states coincide since they are
the same as in the states sn−1 and s̄n−1, for which the in-
ductive assumption holds.

Assume then that the nth action is drop-off(a, v). By
the inductive assumption it holds that s̄n−1

rew (v) = Bp,r

P(sn−1
rew (v) = r | πn−1) = p and P(sn−1

rew (v) = 0 | πn−1) =

1 − p, and s̄n−1
utl (a) = {(pi, i)}u0(a)

i=0 , and for each i it holds
P(sn−1

utl (a) = i | πn−1) = pi.
Note that each agent a makes a drop-off at each location v

at most once. Thus, by mutual independence of variables we
have s̄nrew(v) = Bp′,r, where p′ = pp0, since p0 is the prob-
ability that agent a has no aid kits. By the same argument
P(snrew(v) = r | πn) = pp0 and P(sn−1

rew (v) = 0 | πn) =

1− pp0. Similarly, for s̄n−1
utl (a) = {(p′i, i)}

u0(a)
i=0 we have

p′i :=


p0 + p1p if i = 0

pu0(a)(1− p) if i = u0(a)

pi(1− p) + pi+1p otherwise,

and P(snutl(a) = i | πn) = p′i for each i.

Corollary 1. Let π be a plan for DRONDEL that ends at s.
Then, z(π) =

∑
v∈V (E[s̄0rew(v)]− E[s̄rew(v)]).

NP-Membership of DRONDEL

We aim to leverage the determinized problem to estab-
lish NP-membership for the DRONDEL decision problem.
This involves demonstrating that its determinized version,
DRONDELDP, has a polynomial-length solution.

Start with some basic assumptions. Let n represent the
input size of the DRONDELDP problem in bits, assum-
ing standard input representation with each number as bit-
wise, and each graph vertex requiring at least one bit. Thus,
u0(a) = |V | ≤ n. The computation of the time discretiza-
tion of the problem results in the waiting time δW. This com-
putation can be done in O(n2), where n is the number of bits
in the input of the problem.

We also note that transforming DRONDELinto DRON-
DELDPincluding initial state and action application is
polynomial-time in the size of the input. Thus, we may solve
the problem in its deterministic form – DRONDELDP. To
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establish NP-membership, we employ a non-deterministic
Turing machine (NTM) that “guesses” the order of locations
for drop-offs for each agent, with the number of guesses not
exceeding the number of vertices in the graph, denoted as
|V |. The machine then computes the shortest path between
each pair of locations using Dijkstra’s algorithm, ensuring
each path is no longer than |V |. This process is repeated for
each agent in A, resulting in O(|A||V |2) actions. For the
combination of individual plans to adhere to the communal
time schedule, we need to synchronize these plans.

To complete the proof of NP-membership, we show that
achieving synchronization among agents is feasible in poly-
nomial time. This involves a slight modification to the plan
representation. Considering that waiting from time 0 to 2n

with δW = 1 requires an exponential number of wait actions,
we replace the standard wait(a, v) action with M ·wait(a, v),
where M ∈ N+. This extended wait action ensures synchro-
nization and requires a polynomial number of steps, as the
NTM “guesses” the number of times it should be applied in
at most n steps. Notably, synchronization is only needed at
drop-offs, allowing at most O(|A||V |2) extended wait ac-
tions per agent. This yields the following theorem.
Theorem 3. DRONDEL problem lies in NP.

This line of arguments leads us to the following conclu-
sion, that will help us reduce the size of the graphs we are
working with, pruning some of the unnecessary vertices.
Corollary 2. Let G = (V,E, cost) be a graph associated
with an instance of DRONDEL problem. Let W ⊆ V be
the set of vertices that are either the initial location of some
agent or constitutes a location with a positive initial re-
ward, i.e., for each v ∈ W either l0(a) for some a ∈ A
or E[u0(v)] > 0. Then, we can eliminate any vertex v′ ∈ V
that, upon removal, does not result in an increased distance
between the vertices in W .

Solving DRONDEL Using Search
Search Algorithms Having described the DRONDEL prob-
lem, and an equivalent deterministic search problem DRON-
DELDP, we describe the algorithms below.

UCT As DRONDEL is a stochastic planning problem, the
most natural baseline would be to apply MCTS to DRON-
DEL directly. Specifically, we use a variant of UCT (Up-
per Confidence Bounds for Trees) (Kocsis and Szepesvári
2006) called MaxUCT, as detailed by Helmert and Keller
(2013). The MaxUCT algorithm differs from UCT only in
its use of Max-Monte-Carlo backups, where decision nodes
are updated based on the value of their best child. The sole
modification we introduce here is that in cases where not all
children of a decision node were evaluated, we average the
values of the children expanded so far.
UCTD Although UCT and MaxUCT can solve DRONDEL,
we can also use the same algorithm to solve DRONDELDP.
In the deterministic problem, there is no need to sample an
outcome for each action, making the search much more effi-
cient, as we demonstrate in the Experimental Evaluation.
BFS Another benefit of the deterministic version of the
DRONDELDP formulation is that we can employ algorithms

which are not designed for stochastic planning. We use BFS
(Breadth First Search), and show that even this uninformed
algorithm is competitive with our baseline (UCT). Note that
since we have an optimization problem, BFS explores the
whole search space layer by later until it is exhausted. If
stopped early, it reports the best solution so far.

BnB We also employ an informed search algorithm on
DRONDELDP, i.e., Branch and Bound (Land and Doig
1960), a search algorithm that systematically explores the
state space, while maintaining upper and lower bounds on
the best possible solution. It prunes unpromising branches
that cannot improve upon the current best solution. The al-
gorithm repetitively expands states in selected branches until
it exhausts all possibilities proving that the current solution
at hand is optimal. The upper and lower bounds we use are
described below. In our implementation, we order the node
expansion according to their lower bound heuristic plus the
expectation on the reward collected so far, as in A∗ search
(Hart, Nilsson, and Raphael 1968).

Upper and Lower Bounds We describe the upper and lower
bounds used in our implementation. These provide fairly
loose bounds, and we leave improving them as future work.

Upper Bound Given a state s in DRONDELDP, we cal-
culate an upper bound on its utility as follows: for each
agent a and a state s̄, we order the vertices with positive
expected reward that the agent can visit based on the re-
maining fuel budget, tmax(a) − s̄T(a). Let (v1, . . . , vm)
be the vector containing these vertices, ordered by their
expected reward E[s̄rew(vi)]. Let s̄rew(vi) be a Bernoulli
r.v. of getting the reward r(vi) with probability p(vi).
To consider the distribution of remaining utility budget,
we either assume the best rewards are always collected
or assume the agent can collect all expected rewards.
Thus, the upper bound on the reward an agent can collect
is given by: min

{∑⌈s̄utl⌉
i=1 r(vi),

∑m
i=1 E[s̄rew(vi)]

}
, where

E[s̄rew(vi)] = r(vi) · p(vi). To obtain the overall upper
bound, we sum the individual upper bounds over all agents.

Lower Bound In the lower bound analysis, we calculate the
rewards each agent collects in a greedy fashion, ensuring
that each reward is assigned to at most one agent. Agents are
ordered based on their current fuel budget, tmax(a)− s̄T(a),
and rewards are collected starting from the agent with the
lowest fuel. Let this agent be a. Assuming the agent can
collect rewards in locations (v1, . . . , vm) in increasing or-
der of their reward expectation due to the greedy approach.
Let s̄utl(a) = (pi, i)

u0(a)
i=0 be the utility distribution of

agent a. Without loss of generality, assume m < u0(a).
Then, the lower bound on the reward a can collect is:∑m−1

i=1 pi
∑i

j=1 E[s̄rew(vi)] +
∑u0(a)

i=m pi
∑m

j=1 E[s̄rew(vi)].
Since each reward is collected at most once, the lower bound
is the sum of the individual lower bounds of all agents.

Experimental Evaluation
We evaluated the algorithms on a set of DRONDEL instances
we generated. The experimental setting is implemented in
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Figure 4: Plots (a) to (d) show results of anytime planning on different domain types; (e) shows average anytime result on all
maps; (g) and (f) show optimal results on mountain-top and anti-greedy domains; (h) shows average of all optimal results.

Python2. The experiments are run on a computer with 72
CPUs (one CPU per instance), an overall memory limit of
378 GB, and a time limit of 900 seconds per instance. The
evaluation is done for both anytime and optimal modes. To
strengthen the baseline (UCT), the rewards are modeled as
Bernoulli distributions.

Benchmarks We created several different domains. Each
domain exhibits similar characteristics, where we can scale
the size of the map. The domains are based on the maps that
appear in Moving AI Lab (Sturtevant 2012).
Mountain-Top (MT) Reward areas are dispersed across a
map, each containing rewards with greater probabilities to-
ward the center. These maps simulate a scenario where only
the approximate area of a potential survivor is known.
Full Random (FR) The reward distributions are assigned
randomly at each grid cell.
Sanity Check (SC) Square maps with deterministic rewards
along the edges. Agents start at a corner, and in an optimal
solution traverse the borders meeting in an opposite corner.
Anti-Greedy (AG) From a starting point, two paths diverge –
one laden with deterministic rewards, and the other empty,
except for the final square with a low probability of a high
reward. On average, the second path is superior. This domain
was constructed to hinder random greedy exploration.
Anytime In anytime mode, we evaluate the quality of the re-
sulting plan as a function of the search algorithm’s runtime.
Here we use all of the abovementioned algorithms.
Optimal In optimal mode, we evaluate how quickly we can
find a provably optimal solution. Since pure Monte Carlo
Tree Search can never guarantee optimality without addi-
tional constraints that we are not applying to the problem, we
evaluate only BFS and BnB (note that without the DRON-

2The code is available at https://github.com/
TechnionCognitiveRoboticsLab/DronDelExperimentation

DELDP formulation, guaranteeing optimality would not be
feasible). Thus, we evaluate how many problems are solved
optimally for different planning times.

The instances for Anytime and Optimal differ. Anytime
comprises 135 maps with sizes ranging from 30 to 345 ver-
tices, accommodating 1 to 9 agents, and horizons ranging
from 5 to 59. In turn, Optimal includes 72 maps with sizes
ranging from 4 to 139, 1 to 3 agents, and horizons from 5
to 25, with exceptions in anti-greedy maps. In both sets of
instances, rewards for each vertex range from 0 to 7.

Results Figure 4 (a–e) shows results for anytime plan-
ning. For simplicity the algorithms maximize the rewards
collected by the agents along the plan π that ends in the
state s, i.e., maxπ

∑
v∈V E[s0rew(v)] − E[srew(v) | π]. For

each DRONDEL instance, we compute a score similarly to
the IPC score: q∗ denotes the utility of the best known solu-
tion. The normalized utility of an algorithm yielding a plan
with utility q is q/q∗. Each plot shows the average normal-
ized utility in the domain as a function of the time limit.

The results show a significant contrast, with the base-
line UCT performing much worse than its application to the
deterministic problem (UCTD). Surprisingly, deterministic
search algorithms like BFS and BnB outperform plain UCT,
and BnB even surpasses UCTD. Figure 4(f–h) shows results
for optimal planning. Unsurprisingly, using the heuristics in
BnB improved over the uniformed BFS.

Conclusion
We presented a realistic stochastic planning problem called
DRONDEL, which we need to solve as part of a larger
project. We showed how to address this problem using de-
terministic search techniques, by reformulating it as DRON-
DELDP. Our empirical evaluation demonstrates the benefits
of this approach. In future work, we will explore how to ap-
ply our approach to other stochastic planning problems.
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