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Abstract
In real-world multi-agent applications, unexpected conditions
can break the assumptions made in path planning and degrade
the effectiveness of path execution. This paper studies robust
and effective execution of multi-agent path plans under uncer-
tainty. To guarantee conflict-freeness and deadlock-freeness,
we define a feasibility problem to check whether the remain-
ing portion of a path plan can be successfully executed. We
prove that the problem is NP-complete and propose a feasi-
bility test algorithm. We further develop algorithms to coor-
dinate the agents online and have as many of them as possible
moving concurrently to maximize the effectiveness of execu-
tion. We experimentally demonstrate the path execution ef-
fectiveness and computational efficiency of our algorithms.

Introduction
In many multi-agent applications such as automated ware-
house management and security patrolling, agents carry out
tasks by moving from one location to another concurrently.
To avoid collisions, we need to carefully plan the paths for
the agents and coordinate the execution of the plan. While
path planning (often known as Multi-Agent Path Finding)
has been extensively studied (Felner et al. 2017), designing
execution policies for planned paths has received less atten-
tion. Robust and effective execution is not only critical but
also challenging because plan execution is often accompa-
nied by uncertainties due to unforeseen circumstances.

For example, when a robot breaks down, it may stay at its
current location indefinitely; when there are humans ahead, a
robot may have to stop to prevent colliding with them. These
unexpected events are generally difficult to model or predict.
Thus, it is hard to cater for them in the path planning before
execution. On the other hand, if these events are not han-
dled properly, they may adversely affect the plan execution
of many agents in a cascading manner. When such events
occur, one possible solution is to replan the paths for the
agents. However, replanning is usually costly and may not
even be possible for certain applications.

In this paper, we design an execution framework to deal
with uncertainties in the form of unexpected delays in agent
movements. We make two main contributions. First, we for-
mulate a feasibility problem to check whether all agents can
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reach their goal locations following their respective paths
and prove that this problem is NP-complete. Second, we
develop algorithms to coordinate agent movements in an
online fashion and enable as many agents as possible to
move concurrently while guaranteeing conflict-freeness and
deadlock-freeness. Experimental results demonstrate the ef-
fectiveness and efficiency of our algorithms.

Related Work
Multi-Agent Path Finding (MAPF) is a classical problem to
find a conflict-free plan for a group of agents to move from
their start locations to goal locations with cost objectives to
be optimized (Stern et al. 2019). Some recent MAPF works
have attempted to consider uncertainty in plan execution.

The k-robust MAPF problem (Atzmon et al. 2020b) al-
lows each agent to be delayed for up to k timesteps. The
MAPF with Time Uncertainty problem (Shahar et al. 2021)
assumes upper and lower bounds on the timesteps taken to
move between adjacent locations. The limitations of these
works are that the plan may become invalid when the as-
sumed delay bounds are violated and may be far from opti-
mal in the cost objective if the bounds are loose. The MAPF
with Uncertainty problem (Wagner and Choset 2017) and
the p-robust MAPF problem (Atzmon et al. 2020a) pursue
plans that can be executed without conflicts with probabilis-
tic guarantees. They rely on the knowledge of the proba-
bility that an agent will be delayed when moving between
adjacent locations, which is often hard to obtain in practice.
The MAPF with Delay Probabilities problem (Ma, Kumar,
and Koenig 2017) assumes the same knowledge and aims
to find a plan to minimize the expected makespan. In this
work, a plan execution policy called MCP is designed to
avoid conflicts by using a directed graph to capture prece-
dence dependencies among agents, which originates from
the Temporal Plan Graph (TPG) proposed by (Hönig et al.
2016). These graph concepts are extended to the Action De-
pendency Graph (ADG) by (Hönig et al. 2019). Sticking to a
static ADG/TPG, however, can lead to ineffective execution
when facing unexpected delays. Some recent studies (Berndt
et al. 2020; Coskun, O’Kane, and Valtorta 2021; Paul, Feng,
and Li 2023) optimize the ADG/TPG by switching prece-
dence dependencies during plan execution via mixed-integer
programming or A* search etc. These approaches generally
have high computational overheads because they strive for
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a new plan optimizing the cost assuming no further delay,
which may not be necessary if further delays may occur
in the future. Our study is motivated by the above works.
We develop efficient heuristics to keep plan execution ef-
fective online without assuming any prior knowledge on the
delays that may arise in the execution. Recently, the Bidirec-
tional Temporal Plan Graph (BTPG) was introduced by (Su,
Veerapaneni, and Li 2024) to facilitate switching precedence
dependencies during plan execution. We shall contrast and
compare our solution with BTPG in the experiment section.

We also note that our multi-agent path execution prob-
lem has similarity to the job-shop scheduling problem (Mas-
cis and Pacciarelli 2002) and the flow control problem in
store-and-forward networks (Arbib, Italiano, and Panconesi
1990). We shall discuss the differences in relevant sections.

Problem Statement
Consider an undirected graph G = (V, E) where the nodes
in V correspond to the locations in which agents can stay and
the edges in E corresponds to the connections between nodes
along which agents can move. There are a set of M agents
{a1, a2, . . . , aM}. Each agent ai has a start location si ∈ V ,
a goal location gi ∈ V , and a predefined path pi from si to
gi expressed by a sequence of nodes vi,1 → vi,2 → · · · →
vi,ni where each {vi,j , vi,j+1} ∈ E , vi,1 = si, vi,ni = gi
and ni is the length of the path. To execute a path plan P =
{p1, . . . , pM}, each agent ai moves from its start location si
to its goal location gi through the path pi.

Assume time is discretized. In each timestep, an agent ex-
ecutes either a wait action or a move action. In a wait action,
the agent stays at its current node until the next timestep.
In a move action, the agent goes towards an adjacent node,
but whether it can arrive at the adjacent node successfully
before the next timestep is not guaranteed, which results in
the uncertainty that we aim to deal with. If the agent fails to
reach the adjacent node, it must continue executing the move
action in the next timestep, i.e., the move action cannot be
canceled before the agent arrives at the adjacent node.

We consider two classical types of conflicts: node con-
flicts where two agents stay at the same node at the same
timestep; edge conflicts where two agents move along the
same edge in opposite directions at the same timestep. In ad-
dition, we also consider following conflicts where an agent
goes towards a node occupied by another agent in the pre-
vious timestep (Stern et al. 2019), because owing to uncer-
tainty, if the latter agent fails to move and the former agent
succeeds in moving, they may collide at the node. When an
agent executes a wait action, it occupies the current node
where it stays. When an agent executes a move action, we
consider it occupying both the current node and the adjacent
node it is moving to, until the agent arrives at the adjacent
node. In path execution, we impose the constraint that any
two agents cannot occupy the same node concurrently. Such
a constraint addresses all the aforesaid node, edge and fol-
lowing conflicts. We assume no violation of the constraint
in the initial (resp. final) state, i.e., the start (resp. goal) lo-
cations of all agents are distinct. But it is possible for a start
location si to be the same as a goal location gj .

Given a path plan P , we would like to coordinate the move
and wait actions taken by agents during the execution to en-
sure that all agents eventually arrive at their goal locations.
We use the number of agents taking move actions as a mea-
sure of path execution effectiveness and aim to maximize
this number at any time, which intuitively would help opti-
mize cost objectives such as makespan or sum-of-costs.

Path Plan Feasibility Problem
Not all path plans can be successfully executed. A path plan
P is said to be feasible if all agents can arrive at their goal
locations following the paths; otherwise, it is infeasible. We
start by investigating the feasibility of a given path plan. As
shall be seen later, this is a building block for constructing
an effective solution to our path execution problem.

Feasibility and Location Dependency Graph
If there exist common nodes among different paths, to exe-
cute the path plan, we need to decide the order for the agents
to occupy common nodes, which can be modeled by a loca-
tion dependency graph.

We refer to each node vi,j on an agent ai’s path pi as a
location state.1 The location dependency graph (LDG) is a
directed graph GLDG = (VLDG, ELDG), where VLDG = {vi,j |
1 ⩽ i ⩽ M, 1 ⩽ j ⩽ ni} is the set of all possible loca-
tion states of the agents, and ELDG specifies the precedence
constraints for the agents to achieve their location states.
ELDG consists of four parts. The first part of ELDG is based
on the path of each individual agent and includes the edges
{⟨vi,j , vi,j+1⟩ | 1 ⩽ i ⩽ M, 1 ⩽ j < ni}, meaning that
agent ai cannot achieve the location state vi,j+1 before vi,j .

The second part of ELDG is based on the initial location
states of the agents: for each agent ai, if its initial loca-
tion state vi,1 shares the same node in the graph G with a
non-initial location state vi′,j of another agent ai′ , we add
an edge ⟨vi,2, vi′,j⟩ because ai′ cannot achieve the location
state vi′,j before ai moves away from its start location.2

The third part of ELDG is based on the final location states
of the agents: for each agent ai, if its final location state
vi,ni

shares the same node in the graph G with a non-final
location state vi′,j of another agent ai′ , we add an edge
⟨vi′,j+1, vi,ni

⟩ because ai′ must pass the location state vi′,j
before ai moves to its goal location. Otherwise, once ai
moves to its goal location and stays there infinitely, it will
be impossible for ai′ to achieve the location state vi′,j .

The above three parts of ELDG are called predetermined
edges because these orders are fixed in any path execution.

The last part of ELDG is to resolve the order of two non-
initial and non-final location states from different agents that
share the same node in the graph G. Recall that any two
agents cannot occupy the same node simultaneously. Thus,

1If the path of an agent contains a cycle, the agent has multiple
location states referring to the same node in the graph G. With node
repetitions allowed, a path is usually called a walk in graph theory.

2We assume that the path of ai includes at least two location
states. If ai’s path has only one location state, it has the same start
and goal locations and does not move. It is impossible for ai′ to
pass through ai’s location and the path plan is definitely infeasible.
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Figure 1: A feasible path plan and its LDG.
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Figure 2: An infeasible path plan and its LDG.

for each pair of location states vi,j and vi′,j′ from two re-
spective agents ai and ai′ sharing a common node, an edge
⟨vi,j+1, vi′,j′⟩ can be formed if ai achieves vi,j before ai′
achieves vi′,j′ , or an edge ⟨vi′,j′+1, vi,j⟩ can be formed if
ai′ achieves vi′,j′ before ai achieves vi,j . We refer to these
two edges as a pair of unsettled edges. To ensure conflict-
free path execution, one of them must be chosen and added
to the LDG. Note that by definition, different pairs of loca-
tion states must have distinct unsettled edges. We refer to the
LDG with predetermined edges only as a partial LDG, and
refer to the LDG after choosing one edge from each pair of
unsettled edges as a complete LDG. The following property
is similar to what was stated in (Berndt et al. 2020; Coskun,
O’Kane, and Valtorta 2021).

Theorem 1. A path plan is feasible if and only if there exists
an acyclic complete LDG.

Figure 1 shows a path plan for two agents, where a1’s
path is marked in solid lines and a2’s path is marked in
dashed lines. In the LDG, predetermined edges are illus-
trated by solid lines, and unsettled edges are illustrated by
dashed lines. As can be seen, there is only one pair of unset-
tled edges for the common node V3 between the two paths. If
the edge ⟨v2,3, v1,3⟩ is chosen, there is no cycle in the com-
plete LDG. Thus, the path plan is feasible. To execute the
path plan, the complete LDG indicates that a1 should follow
a2 and be at least one node away from a2.

Figure 2 shows another path plan. In the LDG, if the edge
⟨v2,3, v1,3⟩ is chosen, a cycle v2,3 → v1,3 → v1,4 → v1,5 →
v2,3 is formed. If the edge ⟨v1,4, v2,2⟩ is chosen, a cycle v1,4
→ v2,2 → v1,2 → v1,3 → v1,4 is formed. Since the com-
plete LDG always has a cycle, the path plan is infeasible.

We remark that our LDG is conceptually similar to the
alternative graph introduced for job-shop scheduling with
blocking constraints (Mascis and Pacciarelli 2002). In job-
shop scheduling, different jobs may have operations that

must be processed on the same machine, but each machine
can process only one operation at a time. In the alternative
graph, fixed arcs (similar to our predetermined edges) are
created to model the specified order of operations in each
job, and alternative arcs (similar to our unsettled edges) are
created to model possible precedence relations between op-
erations of different jobs sharing the same machine. How-
ever, a job initially does not occupy any machine and after
a job finishes, it releases the machine of the last operation.
Thus, the alternative graph does not include arcs correspond-
ing to the second and third parts of ELDG in our LDG.

Hardness of Path Plan Feasibility
Determining the feasibility of a path plan (named as the path
plan feasibility problem) is computationally difficult.
Theorem 2. The path plan feasibility problem is NP-
complete.

Obviously, the path plan feasibility problem is in NP.
We reduce the LSAT (linear SAT) problem to the path plan
feasibility problem to prove Theorem 2. The classical SAT
(Boolean satisfiability) problem is to determine whether a
formula can be made true by assigning appropriate logi-
cal values (true, false) to its variables. If there are at most
three variables in each clause, it is called a 3-SAT problem,
which is known to be NP-complete (Karp 1972). The LSAT
problem is a subclass of the 3-SAT problem, where each
clause intersects at most one other clause. Moreover, if two
clauses intersect, they have exactly one literal in common.
Recently, it has been shown that the LSAT problem is also
NP-complete (Arkin et al. 2018).

We reduce the LSAT problem to the path plan feasibility
problem by constructing a path plan P from the variables
and clauses of the LSAT formula, and show that determin-
ing whether it is possible to transform the partial LDG of P
into an acyclic complete LDG is equivalent to evaluating the
satisfiability of the LSAT formula.

For each variable xi in the LSAT formula, we construct
two primary agents ai and aī, with paths Si → Vi → Gi and
Sī → Vi → Gī respectively. The location states of ai and aī
are shown in the left dashed frame in the middle of Figure 3,
where predetermined edges are marked by solid lines and
unsettled edges are marked by dashed lines. Due to the com-
mon node Vi, there is a pair of unsettled edges ⟨vi,3, vī,2⟩ and
⟨vī,3, vi,2⟩. The choice between these two unsettled edges
will be mapped to the assignment of the variable xi’s value.
If the edge ⟨vi,3, vī,2⟩ is chosen, xi is assigned true; if the
edge ⟨vī,3, vi,2⟩ is chosen, xi is assigned false.

For each pair of variables xi and xj in the LSAT problem,
we construct eight possible auxiliary agents aij , aij̄ , aīj , aīj̄ ,
aji, ajī, aj̄i, aj̄ī, and each agent is assigned a path of four
nodes. The location states of these agents are shown in the
upper and lower parts of Figure 3. The start and goal loca-
tions of the agents are all different. The pair of the second
and third nodes in each path is one of the four combinations
of a start location from ai/aī and a goal location from aj/aj̄
or the four combinations of a start location from aj/aj̄ and a
goal location from ai/aī. Since the paths of auxiliary agents
include only the start and goal locations of primary agents,
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Gī
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aīj

ajī
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Figure 3: LDG of variables xi and xj .

only predetermined edges (solid lines) will be added to the
LDG as shown in Figure 3.

Each auxiliary agent represents a possible clause of vari-
ables xi and xj . For example, the agent aij represents the
clause xi ∨ xj , since its path includes the start location Si

of ai and the goal location Gj̄ of aj̄ . Note that aij’s path
is created in this way because the clause xi ∨ xj evaluates
to false if both xi and xj are assigned false. Based on the
mapping described above, assigning false to xi and xj im-
plies that the unsettled edges ⟨vī,3, vi,2⟩ and ⟨vj̄,3, vj,2⟩ are
chosen. Thus, aij’s path shares common nodes with location
states vi,1 and vj̄,3, so that the predetermined edges form a
path vi,2 → vij,2 → vij,3 → vij,4 → vj̄,3 (bold solid lines
in Figure 3) to link the aforesaid unsettled edges in the LDG.
Similarly, the agent aji represents the clause xj ∨ xi (which
is equivalent to xi ∨ xj). Hence, aji’s path shares common
nodes with location states vj,1 and vī,3, so that the prede-
termined edges form another path vj,2 → vji,2 → vji,3 →
vji,4 → vī,3 (bold solid lines in Figure 3) to link the afore-
said unsettled edges in the reverse direction.

If there are m boolean variables in the LSAT problem, 2m
agents are constructed to represent the variables, and at most
4m(m − 1) agents are constructed to represent the clauses.
Thus, the path plan is constructed in polynomial time.

Given an LSAT formula, the two primary agents ai and aī
for each variable xi are always included in constructing the

path plan. The auxiliary agents for each pair of variables are
selectively added to the path plan according to the clauses
in the LSAT formula. In an LSAT formula, the clauses can
be 2-literal or 3-literal. We consider them separately. For
a 2-literal clause involving variables xi and xj , we include
the two auxiliary agents corresponding to the literals in the
clause. For example, if the clause is xi ∨ xj , we include the
agents aij and aji. If both xi and xj are assigned false, the
clause xi∨xj evaluates to false and hence the LSAT formula
also evaluates to false. Accordingly, in the path plan feasibil-
ity problem, if the unsettled edges ⟨vī,3, vi,2⟩ and ⟨vj̄,3, vj,2⟩
are both chosen, a cycle (vī,3 → vi,2 → vij,2 → vij,3 →
vij,4 → vj̄,3 → vj,2 → vji,2 → vji,3 → vji,4 → vī,3) is
formed in the LDG.

For a 3-literal clause involving variables xi, xj and xk

(i < j < k), we include the three auxiliary agents corre-
sponding to the literals in the clause. For example, if the
clause is xi ∨ xj ∨ xk, we include the agents aij , ajk, aki.
Similarly, if all of xi, xj and xk are assigned false, the clause
xi ∨ xj ∨ xk evaluates to false and hence the LSAT formula
also evaluates to false. Accordingly, in the path plan feasi-
bility problem, if the unsettled edges ⟨vī,3, vi,2⟩, ⟨vj̄,3, vj,2⟩
and ⟨vk̄,3, vk,2⟩ are all chosen, a cycle (vī,3 → vi,2 →
vij,2 → vij,3 → vij,4 → vj̄,3 → vj,2 → vjk,2 → vjk,3 →
vjk,4 → vk̄,3 → vk,2 → vki,2 → vki,3 → vki,4 → vī,3) is
formed in the LDG.

What remains is to establish the equivalence between a
satisfying assignment of the LSAT formula and an acyclic
complete LDG of the path plan, or alternatively, the equiva-
lence between an unsatisfying assignment and a cyclic com-
plete LDG. First, the following property is quite obvious by
the above construction.

Lemma 1. If a variable assignment makes the LSAT for-
mula evaluate to false, choosing the unsettled edges accord-
ing to the assignments would give rise to a cycle in the com-
plete LDG.

Proof. If the LSAT formula evaluates to false, at least one
clause evaluates to false. For each 2-literal or 3-literal clause
in the LSAT formula, by the construction of the path plan
(and the resulting LDG), if the clause evaluates to false, a
cycle is formed in the complete LDG. Thus, if any clause
evaluates to false, there must exist a cycle in the correspond-
ing complete LDG. Hence, the lemma is proven.

Next, we prove that the reverse of the above property also
holds based on the characteristics of the LSAT formula.

Lemma 2. If the choices of the unsettled edges lead to a
cycle in the complete LDG, assigning the values to the vari-
ables according to the edge choices would make the LSAT
formula evaluate to false.

Proof. We examine the characteristics of a cycle in the com-
plete LDG. By the construction of the path plan, from the
path of any auxiliary agent, we can only go to the goal lo-
cation state vi,3 (or vī,3) of a primary agent. If the unsettled
edge incident to vi,3 (or vī,3) is not chosen in the complete
LDG, we cannot go to any other location state and thus a
cycle cannot be formed. If the unsettled edge incident to vi,3
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(or vī,3) is chosen, we can go to the middle location state
vī,2 (or vi,2) of the other primary agent for the same variable
in LSAT. From vī,2 (or vi,2), if we go to the goal location
state vī,3 (or vi,3) of the same agent, we cannot further go
to any other location state because the unsettled edge inci-
dent to vī,3 (or vi,3) must not be chosen (since only one edge
from each pair of unsettled edges is chosen to form a com-
plete LDG). Thus, to form a cycle, from vī,2 (or vi,2), we
can only go to the path of an auxiliary agent. Hence, if a cy-
cle is formed in a complete LDG, the cycle must involve the
paths of the agents sequentially in the pattern of (an auxiliary
agent, two primary agents for the same variable, an auxiliary
agent, two primary agents for the same variable, . . . ).

Recall that each auxiliary agent involved corresponds to
a 2-literal clause. By the construction of the path plan, ei-
ther (i) the 2-literal clause appears as a standalone clause in
the LSAT formula, or (ii) together with the 2-literal clause
of an adjacent auxiliary agent involved in the cycle, they
form a 3-literal clause in the LSAT formula. We refer to
this standalone 2-literal clause or this 3-literal clause as an
LSAT clause involved. Note that an auxiliary agent cannot be
mapped to two or more LSAT clauses (otherwise, these LSAT
clauses have two literals in common, which contradicts the
definition of the LSAT problem). Thus, each auxiliary agent
involved in the cycle is mapped to exactly one LSAT clause.

By the aforesaid pattern of the cycle, the 2-literal clauses
of two adjacent auxiliary agents involved must share a literal
(of the variable represented by the two primary agents in be-
tween). This implies that if the LSAT clauses of two adjacent
auxiliary agents are different, they must share a literal. As a
result, if there are at least two LSAT clauses involved, every
clause must share a literal with another clause at each end. If
there are exactly two LSAT clauses involved, they must share
two literals (such as x1∨x2∨x3 and x3∨x4∨x1), which con-
tradicts the definition of the LSAT problem because two in-
tersecting clauses must have exactly one literal in common.
If there are three or more LSAT clauses involved, each of
them must intersect two other clauses (such as x1 ∨x2 ∨x3,
x3 ∨ x4 ∨ x5 and x5 ∨ x6 ∨ x1), which also contradicts the
definition of the LSAT problem because each clause can in-
tersect at most one other clause. Therefore, there can only
be one LSAT clause involved.

If the LSAT clause involved is a 2-literal clause (such as
xi ∨ xj), the cycle involves two auxiliary agents (such as
aij , aji) and the primary agents for the two variables in the
2-literal clause (such as ai, aī, aj , aj̄). By the variable as-
signment corresponding to the unsettled edges chosen in the
complete LDG, the 2-literal clause must evaluate to false.

Similarly, if the LSAT clause involved is a 3-literal clause
(such as xi ∨ xj ∨ xk), the cycle involves three auxiliary
agents (such as aij , ajk, aki) and the primary agents for the
three variables in the 3-literal clause (such as ai, aī, aj , aj̄ ,
ak, ak̄). By the variable assignment corresponding to the
unsettled edges chosen in the complete LDG, the 3-literal
clause must evaluate to false.

Finally, if one clause evaluates to false, the LSAT formula
evaluates to false. Hence, the lemma is proven.

Note that there is a one-to-one correspondence between

the variable assignments and the complete LDGs. In addi-
tion, an LSAT formula is satisfiable if and only if there ex-
ists a satisfying assignment. By Theorem 1, a path plan is
feasible if and only if there exists an acyclic complete LDG.
Therefore, by Lemmas 1 and 2, the LSAT problem and the
path plan feasibility problem constructed are equivalent.

We note that the NP-completeness result of our path plan
feasibility problem is similar to that of the flow control prob-
lem in store-and-forward packet switching networks (Arbib,
Italiano, and Panconesi 1990). However, there is an impor-
tant difference. In the store-and-forward network, packets
are removed from the network after reaching their destina-
tions. This allows different packets to share the same desti-
nation. Indeed, the problem instances used for reductions in
the NP-completeness proofs have packets sharing the same
destination (Arbib, Italiano, and Panconesi 1990). In con-
trast, we assume that the goal locations of all agents are
distinct because agents will stay at their goal locations af-
ter reaching them. Hence, the proofs of (Arbib, Italiano, and
Panconesi 1990) are not directly applicable to our problem.

Feasibility Test
Based on Theorem 1, we design a feasibility test (Algorithm
1). Suppose that the partial LDG is acyclic. The algorithm
repeatedly scans through the unsettled edge pairs (E0, line
1) and incrementally selects edges from them to produce
complete LDGs. The edges selected, called settled edges, are
recorded in the set Esettled. The test involves a recursive func-
tion FeasibilityTest that checks whether there exists
an acyclic complete LDG based on an input Esettled (line 5).
The feasibility of a path plan is derived by a function call
with an empty Esettled (line 3). The initial LDG in a func-
tion call is generated by adding the input Esettled to the partial
LDG (line 6). Then, the function attempts to further select
edges from the remaining unsettled edge pairs.

When examining an unsettled edge pair, there are three
possible cases: (1) adding either unsettled edge will form a
cycle in the LDG; (2) adding one unsettled edge will form a
cycle in the LDG, but adding the other edge will not; (3)
adding either unsettled edge will not form a cycle in the
LDG. In case (1), the function concludes that no acyclic
complete LDG exists based on the input Esettled (lines 19-
20). In case (2), the function adds the edge not forming a
cycle to Esettled and the LDG (lines 21-23). Both cases (1)
and (2) cut the search space substantially and hence should
be prioritized. Thus, in the first function call (by line 3), we
skip lines 11-17 (due to line 10) and scan all unsettled edge
pairs to find cases (1) and (2) (lines 18-23). After that, a re-
cursive function call is made (line 24), in which we select
an arbitrary unsettled edge pair ⟨e, e′⟩ and check if it falls
in case (3) (lines 11-12).3 If so, we first add e to Esettled and
make a recursive call to see if an acyclic complete LDG can
be produced (lines 13-14). If this is so, the function returns
a positive result (line 15). Otherwise, we remove e, add e′ to
Esettled and make another recursive call (lines 16-17). Only

3In our implementation, unsettled edge pairs are ordered by
the 4-tuple of agent identifiers and node indexes involved on their
paths. We choose the first edge pair in line 11.
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Algorithm 1: Feasibility test of path plan P
1 E0 ← unsettled edge pairs in P ;
2 LDG0 ← the initial partial LDG of P ;
3 return FeasibilityTest(∅);
4

5 Function FeasibilityTest(Esettled):
6 LDG← add settled edges in Esettled to LDG0;
7 if |Esettled| = |E0| then
8 return feasible (with complete LDG);

9 Eunsettled ← remove unsettled edge pairs that contain
settled edges in Esettled from E0;

10 if this is not the first FeasibilityTest call then
11 Select a pair of edges ⟨e, e′⟩ from Eunsettled;
12 if neither of e and e′ forms a cycle in LDG then
13 Add e to Esettled;
14 if FeasibilityTest(Esettled) is feasible

then
15 return feasible (with complete LDG);

16 Remove e from Esettled and add e′ to Esettled;
17 return FeasibilityTest(Esettled);

18 foreach pair of unsettled edges ⟨e, e′⟩ in Eunsettled do
19 if e and e′ both form a cycle in LDG then
20 return infeasible (together with the two

agents that e and e′ involve);

21 else if one of e and e′ forms a cycle in LDG then
22 ē← the edge not forming a cycle in LDG;
23 Add ē to LDG and ē to Esettled;

24 return FeasibilityTest(Esettled);

when both calls return negative results, the function con-
cludes that no acyclic complete LDG exists. If the unsettled
edge pair ⟨e, e′⟩ selected falls in case (1) or (2), we scan all
unsettled edge pairs again to find cases (1) and (2) (lines 18-
23), and then make another recursive call (line 24).
Theorem 3. Algorithm 1 is sound and complete.

Proof. Each recursive function call by lines 14 and 17 in-
creases the number of settled edges |Esettled| by at least one.
This is also true for each recursive function call by line 24
(except that in the first function call), because in order for
lines 18-23 to be executed, the unsettled edge pair selected
by line 11 must fall in case (1) or (2). The recursion termi-
nates when |Esettled| reaches |E0| (lines 7-8). Thus, the func-
tion always returns a result, so Algorithm 1 is complete.

We prove that Algorithm 1 is sound by backward induc-
tion on the function call. Note that the initial LDG generated
by the input Esettled (line 6) is guaranteed to be acyclic in any
function call.

1) Base case: when |Esettled| = |E0| (line 6), it means that
there is no unsettled edge pair left. A positive result (feasi-
ble) is returned because the LDG is complete and acyclic.

2) Induction: we show that the function result is correct
for an input Esettled, given the hypothesis that the result is cor-
rect for any input E ′

settled such that |Esettled| < |E ′
settled|. We ex-

amine all return clauses in the function except line 8, which
is covered in the base case. In line 20, selecting either edge
from an unsettled edge pair forms a cycle in the LDG, so a

negative result is returned. In line 24, all newly added settled
edges by lines 21-23 have to be selected to avoid cycles, so
the problems before and after adding these settled edges are
equivalent. Since the recursive call is correct by the induc-
tion hypothesis, the returned result in line 24 is correct. In
lines 13-17, the function joins the results of two recursive
calls (correct by the induction hypothesis) with different se-
lections of settled edges from the same unsettled edge pair.
If both results are negative, a negative result is returned be-
cause selecting either edge cannot lead to an acyclic com-
plete LDG. Otherwise, at least one acyclic complete LDG is
returned so that the path plan is feasible.

In our implementation, to check whether adding an unset-
tled edge ⟨vi,j , vi′,j′⟩ will form a cycle in the LDG, we sim-
ply run a breadth-first search to see if there is a path from
vi′,j′ to vi,j before the edge is added. The feasibility test
has an exponential time complexity in the worst case since
it may need to check complete LDGs exhaustively. In prac-
tice, however, the feasibility test normally runs fast, as shall
be demonstrated in our experiments. This is because the al-
gorithm fixes the choices for the edge pairs of cases (1) and
(2) before examining those of case (3). Moreover, the test
terminates once an acyclic complete LDG is found.

Coordinating Path Execution
Assuming that the initial path plan is feasible (which nat-
urally holds for the output of any MAPF solver), we now
present our solution to coordinate the move and wait actions
taken by agents and ensure that all agents can eventually ar-
rive at their goal locations. In this paper, we focus on a cen-
tralized solution where the agents can sense changes in their
location states and send updates to a central controller. De-
veloping distributed solutions is left for future work.

We partition all agents into two sets: unblocked agents U
(those taking move actions) and blocked agents B (those tak-
ing wait actions). Recall that a move action cannot be can-
celed before the agent arrives at the adjacent node. Thus,
an unblocked agent remains in U until it arrives at the next
node on its path. Upon its arrival, we need to decide whether
to block the agent from taking a further move action. If mul-
tiple agents in U arrive at the next nodes on their respective
paths at the same timestep, decisions need to be made for all
these agents. In addition, we need to decide whether to un-
block any agents in B and allow them to take move actions.
For simplicity, we assume that an agent arriving at the next
node on its path is moved from U to B by default. Then,
given the current partitions U and B, we focus on designing
an algorithm to determine which agents in B to unblock.

If we unblock a set of agents ∆U ⊆ B, the partitions be-
come U ∪ ∆U and B \ ∆U . Recall that a blocked agent
occupies its current node only, while an unblocked agent
occupies both nodes connected by an edge. To guarantee
conflict-freeness, we require that the nodes occupied by dif-
ferent agents are all distinct. To ensure deadlock-freeness,
we require that if all agents in U ∪ ∆U arrive at their next
nodes the residual path plan is feasible. Note that owing to
uncertainty, we do not know when these agents will arrive at
their next nodes. If the above requirement is satisfied, it also
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Figure 4: A path plan (left) and the LDG of the residual path
plan if all four agents are unblocked initially (right).

guarantees that the residual path plan is feasible if any subset
of the agents in U ∪∆U arrive at their next nodes, because
we can always wait until the remaining agents in U ∪ ∆U
arrive at their next nodes before unblocking any new agent.

For example, in Figure 4 (left), if all four agents are un-
blocked initially and arrive at the next nodes on their paths,
none of them can move any further since a deadlock is
formed. As shown in Figure 4 (right), there is a cycle in the
(partial) LDG of the residual path plan, so it is infeasible.
Thus, at most three agents can be unblocked initially.

To maximize the path execution effectiveness, the objec-
tive of our algorithm is to maximize |∆U | (the number of
agents to unblock) while meeting the above requirements.
We develop a heuristic algorithm that first identifies the
agents which can definitely be unblocked or must be kept
blocked and then focuses on deciding the remaining agents
in B. Algorithm 2 shows the details.

First, for each agent ai ∈ B, if the next node v on its path
is not occupied and does not appear in the residual path of
any other agent, ai can definitely be unblocked (lines 3-6).

Second, for each agent ai ∈ B, if the next node v on its
path is currently occupied by another agent aj , ai cannot be
unblocked. This occurs when aj is waiting at node v, or aj is
moving from v to an adjacent node, or aj is moving from an
adjacent node to v. All identified agents ai to keep blocked
are recorded in the set BK (lines 7-8).

Next, for each agent ai ∈ B, if the next node v on its path
is its goal location and v also appears in the residual path of
another agent aj , ai cannot be unblocked. This is because
if ai arrives at v first, it will occupy v infinitely and prevent
aj from passing through v. All identified agents ai to keep
blocked are recorded in the set BK (lines 9-10).

Finally, we set ∆U = B \ BK and examine whether all
these remaining agents can be unblocked. We set the initial
location states of all agents in U ∪∆U to the next nodes on
their respective paths and run the feasibility test. In our im-
plementation, to improve efficiency, the feasibility test uses
the previously found acyclic complete LDG (in the last run
of Algorithm 2) as hints for choosing which edge to test
first from an unsettled edge pair (line 13 of Algorithm 1).
If the residual path plan is feasible, we can safely unblock
the agents ∆U (lines 13-15). Otherwise, the feasibility test
must return two agents involved in the cycles found in the

Algorithm 2: Heuristic approach to unblock agents
1 BK ← ∅;
2 foreach agent ai ∈ B do
3 v ← the next node on ai’s path;
4 if v is not occupied and does not appear in the residual

path of any other agent then
5 U ← U ∪ {ai};
6 B ← B \ {ai};
7 if v is occupied by another agent then
8 BK ← BK ∪ {ai};
9 if v is ai’s goal location and v appears in the residual

path of another agent then
10 BK ← BK ∪ {ai};

11 ∆U ← B \BK ;
12 while ∆U ̸= ∅ do
13 P ← the residual paths of the agents A if all agents in

U ∪∆U arrive at their next nodes;
14 if (P is feasible) then
15 break;

16 if an agent returned from feasibility test is in ∆U then
17 remove the agent from ∆U ;

18 else
19 ∆U ← ∅;

20 if U ∪∆U = ∅ then
21 foreach agent ai in B \BK do
22 P ← the residual paths of the agents A if all

agents in U ∪ {ai} arrive at their next nodes;
23 if (P is feasible) then
24 ∆U ← {ai};
25 break;

26 return ∆U ;

LDG (line 20 of Algorithm 1). Typically, between these two
agents, at least one agent a comes from ∆U , since the resid-
ual path plan before unblocking ∆U was feasible. In this
case, we remove a from ∆U to break cycles and check the
feasibility of the residual path plan again. This process is re-
peated until the residual path plan becomes feasible (lines
12-17). If both agents returned from the feasibility test are
not in ∆U , we simply set ∆U to an empty set (lines 18-19).

In the special case that both U and the resultant ∆U are
empty, we need to pick at least one agent to unblock in order
to proceed with the path execution. To do so, we examine
each agent in B\BK and check whether unblocking it alone
leaves the residual path plan feasible (lines 21-25). Since the
path plan is feasible, at least one agent can be unblocked.

Algorithm 2 ensures that (1) agents taking move actions
do not collide with each other or with agents taking wait
actions; and (2) if all or any subset of move actions being
executed are completed, the residual path plan remains fea-
sible. Thus, running Algorithm 2 repeatedly guarantees that
the path execution is conflict-free and deadlock-free.

Experimental Evaluation
We perform experiments on three types of maps: (1) 30 ×
30 grid maps where 30% nodes are marked as obstacles at
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random; (2) the room-32-32-4 map and (3) the warehouse-
10-20-10-2-1 map from the Moving AI MAPF benchmark
(Stern et al. 2019). The start and goal locations of the
agents are randomly positioned. For each instance gener-
ated, we run Explicit Estimation CBS (EECBS) (Li, Ruml,
and Koenig 2021) with the suboptimality factor set to 1.1
to obtain a near-optimal MAPF solution under the standard
assumption that each move action takes one timestep to com-
plete. EECBS is a state-of-the-art variant of Conflict-Based
Search (CBS) (Sharon et al. 2015) that incorporates many
techniques for speeding up CBS.

We compare our proposed method with four methods. The
first method is a baseline method that follows the prece-
dence dependencies among agents derived from the EECBS
solution by applying the MCP execution policy (Ma, Ku-
mar, and Koenig 2017). The second method is a replanning
method that replans the paths of agents whenever any agent
not yet reaching its goal location is delayed (by the pause
described below). We again run EECBS with the subop-
timality factor set to 1.1 for replanning. For fair compari-
son with our method, replanning does not know the length
of the pause and it assumes that the pause will finish in
the current timestep. Thus, if the pause lasts for multiple
timesteps, replanning is carried out repeatedly. The third
method is Causal-PIBT+ (Okumura, Tamura, and Défago
2021), which is a state-of-the-art online progressive plan-
ning method looking one step ahead to avoid conflicts and
guarantee reachability (all agents will reach their goal lo-
cations but not necessarily be there at the same time).
Causal-PIBT+ uses an offline plan as hints to compensate
for short-sightedness. We use the aforesaid EECBS solution
as hints for Causal-PIBT+. The fourth method is BTPG-
optimized (Su, Veerapaneni, and Li 2024). BTPG identifies
the precedence dependencies (unsettled edge pairs) that can
be switched in any manner without introducing cycles in
the dependency graph (LDG). That is, if there are n edge
pairs identified, up to 2n possible dependency graphs (com-
plete LDGs) are required to be acyclic. The advantage is
low overhead to switch dependencies during the execution
as there is no need to check for cycles. But this approach
may significantly restrict the set of switchable dependencies.
In contrast, all dependencies can possibly be switched in our
method (as long as one acyclic complete LDG is identified,
even if switching dependencies in other ways create cycles).

We emulate uncertainty by pausing 10% randomly chosen
agents every k timesteps. Each pause lasts for k timesteps.
If an agent is executing a wait action when paused, it will
stay at its current node for k + 1 timesteps; if an agent is
executing a move action when paused, it will arrive at the
adjacent node after k + 1 timesteps. For fair comparison,
we pause the same subset of agents at the same timestep
for all the algorithms. We measure the sum-of-costs, i.e., the
total timesteps taken by all agents to arrive at their goal lo-
cations. Given a k setting, we run the path execution for 10
times with different random subsets of agents paused. Over-
all, there are 1000 runs for random grid maps (10 maps ×
10 agent placements × 10 uncertainty emulations) and 500
runs for the room or warehouse map (50 agent placements
× 10 uncertainty emulations). We present the average result
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Figure 5: Comparison of proposed and other methods

for these runs together with the 95% confidence interval. We
implement the algorithms in C++ and run the experiments
on a machine with Intel Core i9-9820X 3.30GHz CPU and
64GB memory.

Figure 5 shows the results for 40 agents. As seen from
the upper row of Figure 5, when k = 0 (no pause in path
execution), the methods except Causal-PIBT+ have similar
sum-of-costs. When k > 0, our method substantially re-
duces the sum-of-costs compared to the baseline method.
The improvement generally increases with the length of each
pause. The replanning method often produces lower sum-
of-costs than our method. This is because replanning can
also change the paths for agents to travel, while our method
keeps the paths of agents unchanged. It can be seen that
the sum-of-costs difference between our method and replan-
ning is much smaller than that between our method and the
baseline method. This implies that simply adjusting the or-
der for agents to occupy common nodes can attain most of
the benefits by replanning in optimization. The sum-of-costs
of BTPG is usually between the baseline method and our
method. This is because our method allows more switchable
dependencies than BTPG. Causal-PIBT+ performs worse
than the baseline method in many cases. Causal-PIBT+ is
less successful in optimizing the sum-of-costs because it
looks only a single step ahead in path planning.

The lower row of Figure 5 compares the average com-
putational time per timestep in path execution. The baseline,
BTPG and Causal-PIBT+ methods have fairly low computa-
tional times. The replanning method takes much higher com-
putational time than our method. For our method, we ob-
serve that running Algorithm 2 on average requires less than
2 feasibility tests and running a feasibility test is much faster
than replanning. From our experiments, the average compu-
tational time of our method is about 0.25s for 50 agents, 0.7s
for 60 agents, and 2.5s for 70 agents on random grid maps.

Conclusion
We have developed a generic framework for coping with ar-
bitrary delays in the execution of a multi-agent path plan.
The framework takes planned paths of agents as input and
coordinates agent movements in an online fashion accord-
ing to the evolving status to avoid conflicts and deadlocks.
Experimental results show the advantages of our algorithms.
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