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Abstract

The complexity of modeling planning domains is a major ob-
stacle for making automated planning techniques more ac-
cessible, raising the demand of tools for providing modeling
assistance. In particular, tools that can automatically correct
errors in a planning domain are of great importance. Previous
works have devoted efforts to developing such approaches for
correcting classical (non-hierarchical) domains. However, no
approaches exist for hierarchical planning, which is what we
offer here. More specifically, our approach takes as input a
flawed hierarchical domain together with a plan known to be
a solution but actually contradicting the domain (due to errors
in the domain) and outputs corrections to the domain that add
missing actions to the domain which turn the plan into a solu-
tion. The approach achieves this by compiling the problem of
finding corrections to another hierarchical planning problem.

Introduction
In the last few decades, a significant development of Au-
tomated Planning has been witnessed. Many techniques are
developed for both hierarchical (Bercher, Alford, and Höller
2019) and non-hierarchical (Ghallab, Nau, and Traverso
2004) planning, e.g., see the work by Bonet and Geffner
(2001), Hoffmann and Nebel (2001), Helmert (2006), and
Höller et al. (2020). Along the way, some application sce-
narios of automated planning like greenhouse logistic man-
agement (Helmert and Lasinger 2010) and Robotics (Karpas
and Magazzeni 2020) have also been explored.

In spite of those developments, we did not see a wide de-
ployment of planning techniques in areas outside academia.
One major reason for this is arguably the complexity of the
task of modeling planning domains. This task is error-prone
and hence requires domain modelers to spend immense ef-
forts on correcting domains crafted by them.

For the purpose of making planning techniques more ac-
cessible, it is thus vital to have tools which provide modeling
support to domain modelers. Many techniques in this direc-
tion have been developed that provide not only basic syntax-
level support (Vaquero et al. 2013; Muise 2016; Strobel
and Kirsch 2020) but advanced assistance (Hoffmann 2011;
Sreedharan et al. 2020; Lin, Grastien, and Bercher 2023;
Gragera et al. 2023) that requires reasoning on the structure
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of the domain. Those approaches are for non-hierarchical
planning. Only few (McCluskey, Richardson, and Simpson
2002) exist for hierarchical planning where a sequence of
primitive actions (i.e., a plan) can only be obtained by de-
composing so-called compound tasks using methods. Hier-
archical planning has received increasing attention in the last
decade. It is strictly more expressive than non-hierarchical
planning (Höller et al. 2014, 2016; Lin and Bercher 2022)
and hence can model a broader range of problems.

As a contribution toward providing modeling assistance
for hierarchical planning, we revisit the scenario where we
correct a flawed domain by turning an action sequence that
is known to be valid but actually contradicts the domain
into a solution. A practical approach (Lin, Grastien, and
Bercher 2023) solving this problem has been developed for
non-hierarchical planning whereas only theoretical investi-
gations (Lin and Bercher 2021, 2023) have been done for the
hierarchical setting. It was shown that the problem is NP-
complete in hierarchical planning. In this paper, we propose
an approach which solves this problem in hierarchical plan-
ning. Our approach takes as input a (flawed) hierarchical do-
main and a plan and outputs an optimal set of corrections to
the domain which turns the plan into a solution.

Our approach is developed based on the Hierarchical Task
Network (HTN) formalism, which is the most broadly used
hierarchical planning formalism and on which most theoret-
ical investigations and practical implementations were done.
We further make the following two assumptions: 1) The in-
put domain is totally ordered, that is, every compound task
is decomposed into a sequence of subtasks, and 2) flaws in
the domain are due to missing primitive actions in methods.
Although these two assumptions restrict the application of
the proposed approach, we argue that our approach is still
of value. One reason is that total order (TO) HTN planning
is used more broadly. E.g., in the IPC 2020 and 2023 on
HTN Planning, TOHTN benchmarks far outnumbered par-
tial order (PO) ones (in POHTN planning, compound tasks
are decomposed into partially ordered subtasks). Addition-
ally, adding missing actions to a domain is the most compu-
tationally expensive operation (Lin and Bercher 2023) and a
basic operation for correcting hierarchical domains on top of
which advanced corrections can be built. We will discuss the
strength and weakness of our approach in more detail in the
discussion section. One remark is that these two assumptions
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do not reduce the complexity of the problem because NP-
completeness holds in TOHTN planning with only adding
actions being allowed (Lin and Bercher 2021).

Our approach solves the problem of finding a minimal set
of corrections to a domain by transforming it into another
(total order) HTN planning problem such that a cost opti-
mal solution to the transformed problem indicates the cor-
rections. We will present how the encoding is done in the
following sections. Along the way, we will also introduce
some encoding techniques which can be used in broader sce-
narios, e.g., how to encode a counter in HTN planning.

Related Works
Significant effort has been devoted to developing tools for
modeling support for non-hierarchical (classical) planning.
Muise (2016) developed the successful online planning ed-
ucation platform, Planning.Domains, which supports a wide
range of editing features such as syntax highlighting, auto-
completion, and tuning an online planner. It provides inter-
faces for developing customized plugins for advanced fea-
tures. Strobel and Kirsch (2020) developed a similar tool
which provides more advanced features for supporting edit-
ing domain files such as stronger capability of syntax high-
lighting and automatic indentation. itSIMPLE by Vaquero
et al. (2013) is another widely used tool which eases mod-
eling domains whose main purpose is to translate a domain
described as a UML diagram to a PDDL file. PDDL is the
most commonly used language which describes a classical
planning domain. See the work done by Haslum et al. (2019)
for more details about PDDL. Further, Magnaguagno et al.
(2020) developed Web Planner supporting testing like veri-
fying whether a plan is executable.

Apart from those tools providing assistance restricted to
supporting creating and editing domain files (i.e., on the syn-
tax level), techniques have also been developed which pro-
vide advanced support (i.e., on the semantic level). Sreed-
haran et al. (2020) adopted the approach for explainable AI
planning to correct a domain. This approach however works
specifically for dialogue domains. Gragera et al. (2023) pro-
posed an approach which fixes a domain by finding missing
positive effects in actions. More concretely, they consider er-
rors in a domain which cause a solvable problem becoming
unsolvable. Hence, their approach takes as input an unsolv-
able planning problem and outputs corrections to the domain
which add missing positive effects to actions so as to turn the
problem into a solvable one. An earlier approach developed
by Göbelbecker et al. (2010) also turns an unsolvable plan-
ning problem into a solvable one. The difference is that this
approach only modifies the initial state of the problem. Lin,
Grastien, and Bercher (2023) were concerned with another
type of error in a domain which results in the situation that a
set of plans which are supposed to be solutions now become
infeasible. They thus developed an approach which corrects
the domain by turning all those plans into solutions.

Approaches for learning planning domains also coincide
with modeling assistance. Cresswell, McCluskey, and West
(2009), Cresswell and Gregory (2011), Celorrio, Fernández,
and Borrajo (2008), Bachor and Behnke (2024), and Li et al.

(2024) have developed various approaches which can gener-
ate domains automatically from different sources, e.g., state
traces and narrative texts.

All the works discussed above work only for classical do-
mains. For hierarchical ones, most works related to model-
ing assistance are restricted to investigations into computa-
tional complexity (Lin and Bercher 2021, 2023). One prac-
tical realization which was not initially developed for mod-
eling assistance for hierarchical planning but can be adapted
for this purpose is by Xiao et al. (2020). The approach aims
at adding missing actions to methods, which is also what our
approach does. Their goal of doing so is to turn an unsolv-
able planning problem into a solvable one whereas our ap-
proach is to turn an infeasible plan into a solution. Their ap-
proach relies on preferences given by a human. Thus, the in-
puts to the approach by Xiao et al. (2020) are an unsolvable
hierarchical planning problem and a certain preference pro-
vided by a human, similar to the approach by Göbelbecker
et al. (2010) for classical planning. Contrastively, our ap-
proach takes as input a hierarchical problem and a plan. The
approach by McCluskey, Richardson, and Simpson (2002)
works for both hierarchical and non-hierarchical planning. It
acquires a domain from an action trace. It is however based
on a formalism which is rarely used.

Since Höller et al. (2014) have shown that a TOHTN plan-
ning problem is basically equivalent to a context-free gram-
mar, any work which is to support constructing context-free
grammars can also be adapted to support modeling TOHTN
domains, and vice versa. However, to our best knowledge,
there exist only few works in this direction, and none of them
can do so in a fully automated way. One such example is the
work done by Leung, Sarracino, and Lerner (2015), which is
to synthesize the syntax of a programming language (which
is a context-free grammar) based on human instructions. Our
approach can thus also be adapted to fix an incorrect context-
free grammar, expanding the applications of our approach.

Preliminary
We first reproduce the TOHTN planning formalism based on
the one used by Behnke, Höller, and Biundo (2018). A TO-
HTN planning problem is a tuple Π = (D, sI , cI , g) where
D = (P,A, C,M, α) is the domain of Π. More specifically,
P is a finite set of propositions, A a set of primitive tasks
(i.e., actions), C a set of compound tasks, M a set of meth-
ods, and α : A → 2P × 2P × 2P a function mapping each
action a ∈ A to its preconditions, positive effects, and nega-
tive effects, written α(a) = (prec(a), eff+(a), eff−(a)).
sI ∈ 2P and g ⊆ P are the initial state and the goal of
Π, respectively, and cI ∈ C is called the initial task. Since
we restrict ourselves to the total order setting, we simply use
HTN to replace TOHTN unless otherwise specified.

An action a ∈ A is said to be applicable in a state s ∈ 2P

iff prec(a) ⊆ s. Applying an action a in a state s results in
a new state s′ with s′ = (s \ eff−(a)) ∪ eff+(a), written
s →a s′. Further, given two states s and s′ and a sequence
of actions π = ⟨a1 · · · an⟩, we use s →∗

π s′ to denote that
there exists a sequence of states ⟨s0 · · · sn⟩ such that s0 = s,
s′ = sn, and for each 1 ≤ i ≤ n, ai is applicable in si−1

and si−1 →ai si. That is, s′ is obtained by applying π in s.
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A method m = (c, tn) decomposes a compound task c ∈
C into a task network tn which is a sequence of primitive and
compound tasks (i.e., tn ∈ (A ∪ C)∗ where ∗ is the Kleene
star), written as c →m tn. The notion of decomposition can
be extended from a single compound task to a task network.
Concretely, let tn = ⟨t1 · · · tn⟩ be a task network in which
n ∈ N and tk ∈ A∪C for each 1 ≤ k ≤ n and m = (ti, tn

∗)
a method with tn∗ = ⟨t∗i1 · · · t∗ij ⟩ that decomposes a task ti
(1 ≤ i ≤ n) in tn into the task network tn∗, we say that tn
is decomposed into another task network tn′ by m iff

tn′ = ⟨t1 · · · ti−1 t∗i1 · · · t∗ij ti+1 · · · tn⟩
That is, ti in tn is replaced by tn∗. For any compound task c
or task network tn, we write c →∗

m tn′ (resp. tn →∗
m tn′) to

denote that c (resp. tn) is decomposed into the task network
tn′ by a sequence of methods m.

A solution to an HTN planning problem is a primitive task
network (i.e., an action sequence) π = ⟨a1 · · · an⟩ such that
there is a method sequence m with cI →∗

m π, and sI →∗
π s

for some s with g ⊆ s (i.e., the goal is satisfied in s). In many
scenarios, an action a in a planning problem has certain cost.
The total cost of an action sequence π is the summation of
the cost of every action in it. A cost-optimal solution to a
planning problem is a solution of the minimal cost, i.e., there
exist no other solutions of cost smaller than it.

Fig. 1 shows an example about an HTN planning problem.
Each white box is a compound task while each blue box rep-
resents a primitive one. The problem has four propositions,
{p, q, f, r} and four actions, {a1, · · · , a4}. The precondi-
tions and effects of each action are depicted in the figure.
The initial task cI can be decomposed by solely one method
mI into a sequence of two compound tasks, ⟨c1 c2⟩. c1
can be decomposed into an action sequence ⟨a1 a2⟩ by the
method m1 while c2 can be decomposed into either ⟨a3⟩ or
⟨a4⟩ by the method m2 or m3, respectively. The initial state
sI is {p}. The goal g is {r}. The action sequence ⟨a1 a2 a3⟩
is a solution as it can be obtained by decomposing cI using
the method sequence ⟨mI m1 m2⟩, and the action sequence
is executable and achieves the goal. Note that ⟨a1 a2 a4⟩ is
not a solution despite that it can also be obtained by decom-
posing cI . It is not executable because the precondition of
a4 is not satisfied (p is removed by a1).

One remark regarding the example is that the method se-
quence ⟨mI m2 m1⟩ can also decompose the initial task cI
into ⟨a1 a2 a3⟩. In fact, both two method sequences which
results in the solution are captured by the same decomposi-
tion hierarchy shown in Fig. 1. Such a hierarchy is called a
decomposition tree (Geier and Bercher 2011), which shows
how a solution is obtained by decomposing the initial task.
One may further notice that for TOHTN planning, a decom-
position tree shares a lot of similarities with a parsing tree
in the context of context-free grammars (CFGs). Höller et al.
(2014) have shown that a TOHTN planning problem in fact
is identical to a CFG in the sense that we could view a prim-
itive task as a terminal symbol, a compound task as a non-
terminal symbol, and a method as a production rule.

Having presented the planning formalism, we now formu-
late the problem of correcting an HTN planning domain. For
this purpose, we first define atomic corrections with respect

cI

c1 c2

(cI , ⟨c1 c2⟩)

a1
p q

¬p
a2

q f

(c1, ⟨a1 a2⟩)

a3
f r

(c2, ⟨a3⟩)

a4
p r

(c2, ⟨a4⟩)

Figure 1: An example of HTN planning. The initial state is
sI = {p}. The goal is g = {r}.

to a domain. Since we make the assumption that flaws in a
domain stem from missing actions in methods, we thus only
consider corrections that add actions to methods. Formally,
let D be a domain and m ∈ M an arbitrary method with
m = (c, tn) and tn = ⟨t1 · · · tn⟩ for some n ∈ N, we define
I[a,m, i] with a ∈ A and 0 ≤ i ≤ n as a correction which
inserts the action a into the position between ti and ti+1 in
m. As two special cases, when i = 0 or n, the action a will
simply be inserted into the position before a1 or after an. As
an example, applying the correction I[a,m, i] will modify
the method m to a new one which decomposes the com-
pound task c into the task network ⟨t1 · · · ti a ti+1 · · · tn⟩.
Let o be an atomic correction with respect to a domain D,
we use the notation D ⇒o D′ to indicate that D′ is a new
domain obtained by applying o to D. The problem of cor-
recting an HTN domain is then defined as follows.
Definition 1. Let Π = (D, sI , cI , g) be an HTN planning
problem and π = ⟨a1 · · · an⟩ an action sequence, the domain
correction problem is a tuple (Π, π) which is to find an op-
timal sequence of corrections ⟨o1 · · · oj⟩ such that D ⇒o1
D1 ⇒o2 · · · ⇒oj−1 Dj−1 ⇒oj Dj and π is a solution to the
planning problem Π′ with Π′ = (Dj , sI , cI , g). In partic-
ular, by a correction sequence being optimal, we mean that
there exists no other correction sequences of smaller length
which can turn the action sequence into a solution.

Note that in this paper, we do not consider corrections to
actions’ preconditions and effects (flaws in actions’ precon-
ditions and effects might cause an action sequence not be-
ing executable and hence not being a solution). This is how-
ever equivalent to correcting a non-hierarchical domain (one
could identify that correcting actions’ preconditions and ef-
fects is orthogonal to correcting methods) and has been ad-
dressed properly (Lin, Grastien, and Bercher 2023).

Encoding
Now we shift our attention to solving the problem of cor-
recting an HTN domain. We do so by transforming this prob-
lem into an HTN planning problem. Intuitively speaking, the
transformed problem completes two tasks: 1) It decides what
corrections should be made to the domain, and 2) it verifies
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whether the given action sequence is a solution to the plan-
ning problem with the new domain. Note that the latter one is
the plan verification problem for HTN planning from which
a reduction to an HTN planning problem (Höller et al. 2022)
exists. Hence, our encoding is built on top of theirs while in-
corporating corrections to the domain. For clarity, we start
by reproducing the transformation from the plan verification
problem to an HTN problem, and then we introduce how to
incorporate corrections into it.

Encoding the Plan Verification Problem
Consider an HTN planning problem Π = (D, sI , cI , g) and
an action sequence π = ⟨a1 · · · an⟩. Note that π could have
duplicate actions, i.e., there exist some 1 ≤ i, j ≤ n with
i ̸= j and ai = aj . For simplicity, since we do not consider
correcting actions’ preconditions and effects, we assume that
for any action a ∈ A, prec(a) = eff+(a) = eff−(a) = ∅,
and g = sI = P = ∅. The goal of the encoding is to con-
struct a new HTN planning problem Π′ = (D′, s′I , c

′
I , g

′)
such that Π′ has a solution iff π is a solution to Π.

By consulting the solution criteria for HTN planning, one
can observe that the core of deciding whether π is a solution
to Π is searching for a decomposition hierarchy (a method
sequence) decomposing cI to π. To simulate this search pro-
cedure, the constructed problem Π′ should preserve the fol-
lowing two properties: 1) Π′ has solely one solution π′, en-
coding π, and 2) the decomposition hierarchy decomposing
c′I into π′ simulates the one that decomposes cI into π.

To ensure the former, consider an action a in Π with
a = ai for some ai in π. A primitive task a′i is constructed
for Π′, encoding that a appears at the ith position of π. For
convenience, we use AJa, iK to denote a′i. One could think
of AJa, iK as a function which takes as input a primitive task
a in Π and a position i in π and outputs the respective action
constructed for Π′. For convenience, throughout the paper,
we will use AJ·K, CJ·K, MJ·K, and PJ·K to represent the ac-
tion, the compound task, the method, and the proposition
constructed according to certain parameters, respectively. In
other words, for each action a in Π, a set AJaK of primitive
tasks is constructed for Π′ such that

AJaK = {AJa, iK | a = ai for some ai in π}
Here we abuse the notation to let AJaK denote the action set.
Furthermore, in order to make the semantics of AJa, iK hold,
additional propositions shall be constructed as AJa, iK’s pre-
condition and effects. More specifically, the action AJa, iK
has solely one precondition PJi−1K, one positive effect PJiK,
and one negative effect PJi−1K where the parameters refer to
the respective positions in π. The positive effect PJiK asserts
that AJa, iK occupies the ith position of π while the precon-
dition PJi− 1K ensures that the (i− 1)th position of π must
already be occupied. The negative effect PJi−1K ensures that
the (i + 1)th position must be the next one to be occupied.
By letting s′I = {PJ0K} and g′ = {PJnK}, we ensure that the
sole solution π′ to Π′ is that π′ = ⟨AJa1, 1K · · ·AJan, nK⟩.

To ensure the second property, Π′ preserves all compound
tasks and methods in Π except that for each existing method
m, every action a in m is replaced with a newly constructed
compound task. That is, for each a ∈ A in Π, a compound

CJaK

m′ = MJmK

AJa, iK

MJa, iK

AJa, jK

MJa, jK

ai aja1 an

Figure 2: An example about how to transform a plan verifi-
cation problem to an HTN planning problem.

task denoted as CJaK is constructed for Π′. One could again
view CJaK as a function which maps the action a in Π to the
respective compound task in Π′. For convenience, we also
define CJcK = c for each c ∈ C in Π, meaning that c is pre-
served in Π′. Furthermore, each CJaK can be decomposed
by |AJaK| methods each of which decomposes CJaK into an
action AJa, iK ∈ AJaK. Similarly, we use MJmK to denote
the method in Π′ which adheres to the method m in Π and
MJa, iK to denote the one decomposing CJaK into AJa, iK.

By construction, if a sequence of methods ⟨m1 · · ·mj⟩ for
Π decomposes cI into π, the sequence ⟨MJm1K · · ·MJmjK⟩
then decomposes CJcIK into ⟨CJa1K · · ·CJanK⟩, which can
further be decomposed into ⟨AJa1, 1K · · ·AJan, nK⟩, mean-
ing that Π′ has a solution iff π is a solution to Π. For the de-
tailed proof for this fact, see the work by Höller et al. (2022).

In summary, the problem Π′ = (D′, s′I , c
′
I , g

′) with D′ =
(P ′,A′, C′,M′, α′) is constructed as follows:
• P ′ = {PJ0K, · · · ,PJnK}, and A′ =

⋃
a∈A AJaK.

• C′ = {CJtK | t ∈ A ∪ C}.
• M′ = {MJmK | m ∈ M} ∪M† with M† being the set
{MJa, iK | a = ai for some ai in π}.

• s′I = {PJ0K}, g′ = {PJnK}, and c′I = CJcIK.
Fig. 2 shows an example about how to revive a method m

in the original given HTN problem, assuming that m initially
has three tasks where the second one is an action a. It is thus
replaced with the compound task CJaK. Further, we assume
that the ith and the jth action in π are a, that is, ai = aj = a.
As a result, CJaK can be decomposed by two methods. The
first one decomposes it into the action AJa, iK while the other
decomposes it into AJa, jK. AJa, iK and AJa, jK can match
ai and aj , respectively, meaning that the original action a in
the method m can be either ai or aj .

Incorporating Corrections
Having presented how to encode the plan verification as an
HTN problem, we now move on to incorporate domain cor-
rections into the encoding, which is our main contribution.
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CJm′, 1KCJm′, 0K CJm′, 2K

m′ = MJmK

CJm′, 1, jKCJm′, 1, 1K CJm′, 1, nK

MJm′, 1K

Figure 3: An example about how to revive a method to con-
trol action insertions.

Let Π′ = (D′, s′I , c
′
I , g

′) with D′ = (P ′,A′, C′,M′, α′)
be the HTN problem which encodes the problem of decid-
ing whether a plan π = ⟨a1 · · · an⟩ is a solution to an HTN
problem Π = (D, sI , cI , g) with D = (P,A, C,M, α). Our
goal is to make some further constructions to Π′ to simu-
late making corrections to Π. Since we only consider adding
missing actions, our new constructions are thus restricted to
methods MJmK ∈ M′ with m ∈ M. This is because MJmK
is basically a copy of m, and hence, adding actions to MJmK
already simulates adding actions to m.

Consider a method MJmK decomposing a compound task
into a task network ⟨t1 · · · tk⟩. We first observe that there are
k+1 blocks to which we can add actions, namely, any block
between the tasks ti−1 and ti for some 1 < i ≤ k together
with the two that are before t1 and after tk. The fundamen-
tal idea of simulating action insertions is constructing one
compound task for each such blocks, controlling which ac-
tions should be added to the respective block. We use b[m′, i]
with m′ = MJmK to denote a block (i.e., the ith block in the
method m′) and CJm′, iK to denote the compound task con-
structed for the respective block.

Concretely, each CJm′, iK is placed at the respective block
in the method m′. The control over action insertions is done
by decomposing CJm′, iK into a task network that consists of
n compound tasks, ⟨CJm′, i, 1K · · ·CJm′, i, nK⟩, where each
CJm′, i, jK (1 ≤ j ≤ n) is to decide whether the action aj
in π is inserted into the block b[m′, i]. We use MJm′, iK to
denote the method that decomposes CJm′, iK. Fig. 3 depicts
an example about how to revive a method m′ = MJmK with
m ∈ M for some m. m′ initially contains two tasks (rep-
resented as solid boxes), meaning that there are three blocks
into which actions can be inserted. We thus construct three
compound tasks CJm′, iK, 0 ≤ i ≤ 2, and put them into the
respective places.

In order to encode the situation that aj is added to b[m′, i],
we construct a method MJm′, i, j,+K which decomposes
CJm′, i, jK into the compound task CJajK. Intuitively speak-
ing, the reason for using CJajK here is that the action aj in Π
is represented as CJajK in Π′. We will explain this in more
detail later on. Similarly, in order to encode that aj is not
inserted, we construct another method MJm′, i, j,−K which
decomposes CJm′, i, jK into an empty task network.

Methods MJm′, i, j, {+,−}K with m′ = MJmK for some
method m in Π are however not constructed adequately. The

reason is that in the scenario of correcting the domain of Π,
if an action is inserted to the method m which occurs more
than once in decomposition, the insertion must take effects
for all occurrences of m. The analogy of this constraint for
Π′ is that the consequence of adding (or not adding) an ac-
tion to m′ must be consistent among all occurrences of m′.

To achieve such consistency, we construct one more prim-
itive task AJm′, i, j,+K for MJm′, i, j,+K and put it in front
of the task CJajK. Similarly, we construct another primi-
tive task AJm′, i, j,−K and place it into MJm′, i, j,−K. The
action AJm′, i, j,+K has one precondition, PJm′, i, j,+K,
one negative effect, PJm′, i, j,−K, and no positive effects.
In contrast, AJm′, i, j,−K has PJm′, i, j,−K as its precondi-
tion while it deletes PJm′, i, j,+K. We put these two propo-
sitions into the initial state. By construction, if for the first
occurrence of m′ in some method sequence, MJm′, i, j,+K
is applied to decompose CJm′, i, jK (which encodes adding
aj to the block b[m′, i]), then for other occurrences of m′,
MJm′, i, j,−K is not available because the precondition of
AJm′, i, j,−K has been removed, ensuring the consistency.
The construction of these actions as well as the structure of
the methods MJm′, i, j, {+,−}K is shown in Fig. 4. At this
moment, one could ignore the proposition P′, the action A′,
and the method M′ in Fig. 4. We will describe the construc-
tion and the purpose of those components shortly. The com-
pound task CJUK in the method MJm′, i, j,+K represents a
counter which can count up to a certain bound U . The pur-
pose of the counter is to make our constructed HTN problem
more easy to be solved. The detailed implementation of the
counter will be introduced in the next section.

The fact that the method m′ can be used more than once
in decomposition is another reason for why using CJajK in
MJm′, i, j,+K. The action aj inserted might also be used to
match another action ak in π with ak = aj and k > j. For
such a case, CJajK can be decomposed into AJaj , jK for the
first occurrence of m′ and AJak, kK for the other.

Taken together, the HTN problem Π∗ = (D∗, s∗I , c
∗
I , g

∗)
with D∗ = (P∗,A∗, C∗,M∗, α∗) which encodes the prob-
lem of correcting an HTN domain is as follows:
• P∗ = P ′ ∪P† where P† is the set consisting of proposi-

tions PJm′, i, j, oK with m′ = MJmK for some m ∈ M,
1 ≤ j ≤ n, o ∈ {+,−}, and 0 ≤ i ≤ |m′| + 1. Here,
|m′| is the length of the task sequence resulting from m′.

• A∗ is the union of A′ and A† where A† is the set of ac-
tions AJm′, i, j, oK whose parameters are under the same
constraints as those of PJm′, i, j, oK defined above.

• C∗ = C′ ∪ B ∪ S where B is the set of compound tasks
CJm′, iK, and S consisting of tasks CJm′, i, jK. m′, i, and
j all follow the same constraints as above.

• M∗ = M′∪M′′∪M† where M′′ is the set of methods
each of which decomposes a compound task CJm′, i, jK,
and M† contains the methods MJm′, i, j, oK with the pa-
rameters following the same constraints as above.

• s∗I = s′ ∪ I with I = P†, c∗I = c′I , and g∗ = g′.
The construction ensures that the plan π can be turned into

a solution to Π by correcting the domain iff the problem
Π∗ is solvable. This relies on the fact that for any method
sequence m with respect to Π∗ that decomposes c∗I into a
solution, methods MJm′, i, j,+K and MJm′, i, j,−K for any
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CJm′, i, jK

AJm′, 1, j,+K CJajKCJUK

MJm′, 1, j,+K

AJm′, 1, j,−K

MJm′, 1, j,−K

A′Jm′, 1, j,+K CJajK

M′Jm′, 1, j,+K

AJm′, i, j,+K
PJm′, i, j,+K P′Jm′, i, j,−K

¬PJm′, i, j,−K
A′Jm′, i, j,+K

P′Jm′, i, j,+K
AJm′, i, j,−K

PJm′, i, j,−K ¬PJm′, i, j,+K

Construction of Actions

Figure 4: An example of the construction that incorporates action insertions.

m′, i, and j cannot exist simultaneously in m together with
the fact that Π′ encodes the plan verification problem.

Theorem 1. Π∗ is solvable iff π can be turned into a solu-
tion to Π by adding actions to methods in Π.

However, we are looking for an optimal sequence of cor-
rections. To this end, we want to assign cost to the actions
in Π∗ such that the cost optimal solution to Π∗ indicates
the optimal corrections. One naive attempt is letting each
AJm′, i, j,+K have cost one, representing the cost of adding
an action. The remaining actions all have zero cost. This is
however not enough. If an action is added to a method m′

while m′ is applied multiple times, AJm′, i, j,+K associated
with this insertion will occur multiple times, meaning that
the cost of this insertion is also counted more than once.

To address this problem, for each MJm′, i, j,+K, we con-
struct a new method M′Jm′, i, j,+K which is identical to the
original one except that the action AJm′, i, j,+K is replaced
by a new one A′Jm′, i, j,+K. This action has zero cost. Both
positive and negative effects of it is empty. Its sole pre-
condition is a new proposition P′Jm′, i, j,+K, which is also
added to the positive effects of AJm′, i, j,+K. As a result,
the method M′Jm′, i, j,+K can be applied iff MJm′, i, j,+K
has been used previously. Since A′Jm′, i, j,+K has zero cost,
this construction ensures that the cost of every action inser-
tion is counted only once. Consequently, the cost optimal
solution to the problem Π∗ with this new construction re-
veals the optimal correction to the domain of Π.

Counter
The construction presented previously already encodes the
domain correction problem. We could further improve it by

providing the maximal number of action insertions allowed.
If we could incorporate this bound into our construction, an
HTN problem solver (which is used to solve the constructed
problem) can exploit this information to significantly reduce
the search space by not adding any further action when the
number of insertions has reached the bound.

One could immediately observe that given a domain cor-
rection problem (Π, π) with Π = (D, sI , cI , g) and π =
⟨a1 · · · an⟩, the maximal number U of action insertions to
D is n− γ(cI) where γ(cI) represents the minimal number
of actions that can be obtained from cI . For if we add more
actions than that bound, then any primitive task network ob-
tained from the initial task has actions which outnumbers the
given plan π, meaning that π can never be obtained.

Proposition 1. Let (Π, π) be a domain correction problem.
The number of actions inserted to Π turning π into a solu-
tion cannot exceed |π| − γ(cI) where |π| is the length of π,
cI is the initial task of Π, and γ(cI) is the minimal number
of actions that can be obtained from cI .

The computation for the number γ(cI) has already been
studied by some existing work (Bercher et al. 2017). There-
fore, we will skip the detailed computation here but focus on
how to incorporate this bound U into our construction.

For this, we need a counter that can count up to U . Such a
counter is represented as a compound task CJUK. There are
U methods that can decompose CJUK, each of which decom-
poses it into an action AJi,UK (1 ≤ i ≤ U ). We use MJiK to
denote the method decomposing CJUK into AJi,UK.AJi,UK
can be interpreted as counting to the ith step. AJi,UK has one
single proposition PJi − 1,UK as its precondition, meaning
that the (i − 1)th step has been counted. Similarly, AJi,UK

60



CJUK

AJ1,UKPJ0,UK PJ1,UK

¬PJ0,UK

MJ1K

AJU ,UKPJU − 1,UK PJU ,UK

¬PJU − 1,UK

MJUK

Figure 5: The construction of a counter.

has one single positive effect PJi,UK, indicating that the step
i has been counted. AJi,UK also removes PJi−1,UK, which
ensures that the counter can only count incrementally. Fig. 5
illustrates the implementation of a counter.

To incorporate the bound U into the construction, we sim-
ply place the counter CJUK at the beginning of every method
MJm′, i, j,+K. This thus ensures that when an action is in-
serted, the counter will increase by 1, and when the counter
reaches U , no further methods MJm′, i, j,+K can be applied,
i.e., no further actions can be inserted. Note that the counter
CJUK is not added to methods M′Jm′, i, j,+K, ensuring that
one action insertion will not be counted multiple times.

Empirical Evaluation
In this section, we present the experimental results with re-
spect to our approach. The two metrics we used to evaluate
the performance of the approach are the runtime for correct-
ing a domain and the coverage on the benchmark set (i.e., the
percentage of the instances that can be solved in the bench-
mark set). The reason for using these two is that in the real
scenario of modeling support, the time required for finding
corrections is the most critical factor because when deploy-
ing our approach into practice, it can be called iteratively and
interactively. In every iteration, the user can decide whether
the found corrections address the errors successfully. If that
is not the case, the user can rule out those unsatisfactory cor-
rections and instruct our approach to block them in the next
iteration. This continues until all errors are addressed. Note
that we did not compare our approach with the one by Xiao
et al. (2020) because, as mentioned in the related work sec-
tion, the inputs to these two approaches are different.

Configuration
The experiments ran on an Intel Cascade Lake CPU, with
20-minutes timeout. However, there existed no benchmark
sets of flawed hierarchical domains at the time when we
conducted the empirical evaluation, and hence, we had to
construct a novel benchmark set.

The procedure for constructing the benchmark set is as
follows. We drew 200 TOHTN planning problem instances
together with the respective solutions from 11 domains from
the IPC 2020 on HTN Planning benchmark set. We empha-
size that the meaning of the term “domain” here is different
from a domain D defined in the TOHTN planning formal-
ism. The term “domain” here refers to the name of a class
of HTN planning problems that model problems in the same
scenario. For instance, the domain Rover refers to the class

Total Solved Plan Length
Min Max

Hiking 20 0 26 45
Transport 20 0 16 50
Entertainment 10 10 24 50
Rover 20 13 16 49
Monroe (FO) 20 9 3 48
Depots 20 4 15 50
Woodworking 9 7 4 24
Satellite 13 10 12 50
Blocksworld 5 1 21 40
Monroe (PO) 20 5 11 48
Childsnack 10 3 50 50

167 62

Table 1: The experimental results for correcting flawed do-
mains.

of planning problems in the scenario of Mars exploration.
To distinguish these two concepts, we will use the term “do-
main name” to refer to the name of a class of planning prob-
lems. Note that the instances drawn in this step are unflawed.
Next, for each drawn problem instance Π = (D, sI , cI , g)
with D = (P,A, C,M, α), we let every action in every
method m ∈ M have a 30% chance of being removed. This
thus randomly introduced errors to the domain D. Lastly,
we discarded those instances to which no errors were intro-
duced. This left 167 instances with flawed domains in total.

Experimental Results
The experimental results (Lin, Höller, and Bercher 2024) are
summarized in Tab. 1. The left-most column lists the domain
names. The columns labeled with “total” and “solved” show
the total number of instances and of solved instances. The
two columns under the name “plan length” report the mini-
mum and the maximal length of provided plans. As can be
seen from the table, our approach solved around 37.12% in-
stances, i.e., it can provide optimal corrections to 37.12%
flawed domains. Our approach performed badly on the do-
mains Hiking and Transport. For the former, the reason is
that the domain already contains numerous methods. Our ap-
proach thus creates an HTN problem of large size which is
hard to be solved by an HTN planner. For the Transport do-
main, it is not clear what causes the bad performance. We
hypothesize that it is due to some specific structure, e.g.,
cyclic structure, within the domain.

Fig. 6 shows the runtime for solving each instance against
the plan length, including those unsolved instances whose
runtime exceeded the timeout, i.e., each point in the plot rep-
resents a domain correction problem instance.

Discussions and Future Work
In this paper we assume that errors in a domain only attribute
to missing actions, causing the limitation of our approach
that corrections are restricted to inserting actions. In prac-
tice, there are more types of corrections that could be consid-
ered, e.g., adding methods/compound tasks and deleting ac-
tions/methods/compound tasks. One remark is that inserting

61



Figure 6: Runtime for correcting flawed domains.

actions can serve as a basis for many of those corrections.
E.g., the treatment for inserting compound tasks is similar
to inserting actions while adding methods can be viewed as
a two-step process: We first create an empty method and then
insert actions and compound tasks into it. Consequently, we
plan in our future work to implement all those corrections so
that our approach can be deployed more broadly.

Additionally, our approach only works for grounded HTN
planning. The lifted formalism is however more widely used
in the context of domain modeling. The grounded formalism
is defined in terms of propositional logic whereas the lifted
one is defined in first-order logic. Hence, the lifted formal-
ism is a generalization of the grounded one, meaning that
all corrections which are meaningful in the grounded setting
are also relevant to the lifted one whereas the lifted formal-
ism can have additional corrections, e.g., correcting the ar-
guments of a primitive task, a compound task, or a method.
An important future work is thus to generalize our approach
so that it can work for the lifted setting.

We have mentioned before that correcting primitive tasks’
preconditions and effects is also an important branch of cor-
recting a planning domain. This task has been addressed by
Lin, Grastien, and Bercher (2023). However, there exist hier-
archical planning formalisms which support methods/com-
pound tasks’ preconditions and effects. Fixing these compo-
nents is also an important aspect of fixing domains.

Another limitation is that some corrections returned might
not be desired by the modeler. To address this problem, we
want to employ an iterative process involving human-in-the-
loop. Concretely, our approach is invoked iteratively. On
each iteration, the user could decide which corrections re-
turned by our approach are desired and which are not. The
next iteration will then start by adapting those desired cor-
rections and forbidding those undesired ones. This process
keeps running until the domain is completely fixed.

Our evaluation shows that our approach only solved less
than 50% problems in the evaluation. To improve the perfor-
mance, we consider transforming the problem to SAT or ILP
because they have the same complexity as the domain cor-
rection problem, i.e., NP-complete (whereas TOHTN plan-

ning is EXPTIME-complete (Alford, Bercher, and Aha
2015)), which might have more efficient solving techniques
given the specific problem.

Conclusion
We presented an approach for correcting a TOHTN domain
with missing actions by compiling such a problem to a plan-
ning problem. We are the first to study such an approach for
hierarchical planning, making it an important contribution
toward modeling supports for hierarchical planning. Our ap-
proach can also be applied to a wide range of applications
because of the connection between a TOHTN problem and
a context-free grammar.
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