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Abstract

Facility Location Problems (FLPs) arise while serving mul-
tiple customers in a shared environment, minimizing trans-
portation and other costs. Hence, they involve the optimal
placement of facilities. They are defined on graphs as well as
in Euclidean spaces with or without obstacles; and they are
typically NP-hard to solve optimally. There are many heuris-
tic algorithms tailored to different kinds of FLPs. However,
FLPs defined in Euclidean spaces without obstacles are the
most amenable to efficient and effective heuristic algorithms.
This motivates the idea of quickly reformulating FLPs on
graphs and in Euclidean spaces with obstacles to FLPs in Eu-
clidean spaces without obstacles. Towards this end, we pro-
pose a new approach that uses FastMap and Locality Sen-
sitive Hashing. FastMap is a near-linear-time algorithm that
embeds the vertices of a graph in a Euclidean space while ap-
proximately preserving graph-based distances as Euclidean
distances for all pairs of vertices. Through extensive experi-
ments, we show that our approach significantly outperforms
other state-of-the-art competing algorithms on a variety of
FLPs: the Multi-Agent Meeting, Vertex K-Median (VKM),
Weighted VKM, and the Capacitated VKM problems.

Introduction
Facility Location Problems (FLPs) are constrained opti-
mization problems that seek the optimal placement of fa-
cilities for providing resources and services to multiple cus-
tomers in a shared environment. That is, FLPs serve the pur-
pose of orchestrating shared resources between multiple cus-
tomers. They are used to model decision problems related to
transportation, warehousing, polling, and healthcare, among
many other tasks, for maximizing efficiency, impact, and/or
profit. FLPs can be defined on graphs or in geometric spaces,
in continuous or discrete environments, and with a variety
of distance metrics and objectives. A compendium of FLPs
along with various algorithms and case studies can be found
in (Farahani and Hekmatfar 2009).

FLPs defined on graphs as well as in Euclidean spaces
with or without obstacles are NP-hard to solve opti-
mally (Guo-Hui and Xue 1998; Owen and Daskin 1998).
Nonetheless, there are many heuristic algorithms tailored to
different kinds of FLPs. FLPs defined on graphs are broadly
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applicable, since most environments can be represented as a
graph (even if discretization is required). Modulo discretiza-
tion, they are more general compared to FLPs defined in Eu-
clidean spaces with obstacles, which, in turn, are more gen-
eral compared to FLPs defined in Euclidean spaces without
obstacles. However, FLPs defined in Euclidean spaces with-
out obstacles are the most amenable to efficient and effec-
tive heuristic algorithms. In fact, FLPs in Euclidean spaces
without obstacles are definitionally very close to clustering
problems, which, in turn, are amenable to popular cluster-
ing algorithms such as the K-means and Gaussian Mixture
Model (GMM) clustering (Murphy 2012).

The foregoing summary motivates the idea of quickly re-
formulating FLPs on graphs and in Euclidean spaces with
obstacles to FLPs in Euclidean spaces without obstacles.
In this paper, we propose a new approach towards this end
that uses FastMap and Locality Sensitive Hashing (LSH).
FastMap (Cohen et al. 2018; Li et al. 2019) is a near-linear-
time algorithm that embeds the vertices of a graph in a Eu-
clidean space while approximately preserving graph-based
distances as Euclidean distances for all pairs of vertices. We
use FastMap to efficiently reformulate an FLP on a graph to
an FLP in a Euclidean space without obstacles.1 LSH (Datar
et al. 2004) is a hashing technique that maps similar in-
put items to the same hash buckets with high probability.
It is designed to answer nearest-neighbor queries efficiently,
with time complexity close to O(log n) (even in very high-
dimensional spaces), where n is the total number of items.
We use LSH to efficiently interpret a solution found in the
FastMap embedding as a solution on the original graph.

We address four well-known FLPs in this paper: the
Multi-Agent Meeting (MAM) problem, the Vertex K-
Median (VKM) problem, the Weighted VKM (WVKM)
problem, and the Capacitated VKM (CVKM) problem. Be-
low, we briefly describe each of these problems on graphs.
Their counterparts in Euclidean spaces with or without ob-
stacles have analogous definitions. Moreover, we assume
that the graphs are undirected for two reasons: for the ease of
exposition and to preserve the analogy in Euclidean spaces
where distances are inherently symmetric.

In the MAM problem (Atzmon et al. 2023), the input is a

1As explained later, an FLP in Euclidean space with obstacles
is also amenable to a similar reformulation.

Proceedings of the Seventeenth International Symposium on Combinatorial Search (SoCS 2024)

46



graph and a set of agents, each initially on a different start
vertex. The task is to find a common vertex where all the
agents should meet so as to minimize the sum of the agents’
shortest-path distances to it.2 The VKM problem seeks K
vertices on the input graph for the placement of facilities so
as to minimize the sum of the shortest-path distances over
each vertex to its nearest facility. The WVKM problem is
similar to the VKM problem, except that the objective is to
minimize the sum of the weighted shortest-path distances
over each vertex to its nearest facility. Here, each vertex is
given a weight that measures its importance. The CVKM
problem is also similar to the VKM problem, except that no
facility is allowed to serve more than τ vertices.3

The MAM, VKM, WVKM, and the CVKM problems
have many real-world applications. For example, in multi-
agent coordination tasks (Atzmon et al. 2023), they can
be used to choose a gathering point; in urban develop-
ment (Farahani et al. 2019), they can be used to optimally
place various public service centers within a city; and in
communication networks (Monge and Contractor 2003),
they can be used to determine the optimal placement of com-
putation sites for critical multiplexing.

On each of the FLPs described above, including their
Euclidean variants, we demonstrate the efficiency and ef-
fectiveness of our approach through extensive experimen-
tation: We show that our approach significantly outper-
forms other state-of-the-art competing algorithms. In dis-
cretized Euclidean spaces, we also show that it is possible
to combine FastMap with an any-angle path planner, such as
Anya (Harabor et al. 2016).

Preliminaries
In this section, we define the MAM, VKM, WVKM, and the
CVKM problems. We first define the graph variants of these
problems. We then briefly describe their Euclidean variants.

The MAM problem is as follows: Given an undirected
edge-weighted graph G = (V,E,w), where w(e) is the
non-negative weight on edge e ∈ E, and the start vertices
s1, s2 . . . sk ∈ V of k agents, the task is to find a vertex
v∗ ∈ V such that v∗ = argminv∈V

∑k
i=1 dG(si, v). Here,

dG(vi, vj), for vi, vj ∈ V , is the shortest-path distance be-
tween vi and vj in G with respect to the edge weights.

The VKM problem is as follows: Given an undirected
edge-weighted graph G = (V,E,w), where w(e) is the non-
negative weight on edge e ∈ E, and a positive integer K, the
task is to find a subset of vertices U∗ ⊆ V of cardinality K
such that U∗ = argminU

∑
v∈V minu∈U dG(v, u).

The WVKM problem is as follows: Given an undi-
rected vertex-weighted and edge-weighted graph G =
(V,E, w̃, w), where w̃(v) is the non-negative weight on ver-
tex v ∈ V and w(e) is the non-negative weight on edge

2There are a few other variants of the MAM problem described
in (Atzmon et al. 2023). These differ in being conflict-tolerant or
conflict-free and having different objective functions.

3In a more general version of the CVKM problem, there is a
supply and a demand associated with each facility and vertex, re-
spectively. No facility is allowed to serve a total demand that ex-
ceeds its supply.

e ∈ E, and a positive integer K, the task is to find a sub-
set of vertices U∗ ⊆ V of cardinality K such that U∗ =
argminU

∑
v∈V minu∈U w̃(v)dG(v, u).

The CVKM problem is as follows: Given an undirected
edge-weighted graph G = (V,E,w), where w(e) is the non-
negative weight on edge e ∈ E, and positive integers K
and τ , the task is to find a subset of vertices U∗ ⊆ V of
cardinality K and an assignment function f∗ : V → U∗

such that (U∗, f∗) =

argminU,f

∑
v∈V dG(v, f(v))

subject to ∀u ∈ U : |{v ∈ V : f(v) = u}| ≤ τ.
(1)

The Euclidean variants of the MAM, VKM, WVKM, and
the CVKM problems are defined in Euclidean spaces, which
are continuous. In a Euclidean space without obstacles, a
given set of N points corresponds to V ; and the straight-
line distances between pairs of these points correspond to the
shortest-path distances between the pairs of vertices. How-
ever, the solution may be allowed to contain points in the Eu-
clidean space outside of the given N points. In a Euclidean
space with obstacles, shortest-path distances via free space,
that is, avoiding obstacle regions, replace straight-line dis-
tances; and the solution can only include points in free space.

Solving FLPs via FastMap and LSH
In this section, we present our approach for solving FLPs
via FastMap and LSH. We illustrate it on the MAM, VKM,
WVKM, and the CVKM problems. The FastMap compo-
nent of our approach allows us to quickly render the FLP
in Euclidean space without obstacles: This enables efficient
and effective geometric and analytical techniques for solving
the problem. The LSH component of our approach allows us
to quickly interpret the solution obtained in Euclidean space
as a viable solution on the original graph.

FastMap on Graphs
FastMap (Cohen et al. 2018; Li et al. 2019) is used to em-
bed the vertices of a given undirected edge-weighted graph
in a κ-dimensional Euclidean space. The Euclidean dis-
tance between any two vertices in this space approximates
the shortest-path distance—or any other graph-based dis-
tance—between them in the given graph. FastMap approxi-
mates a quadratic number of pairwise distances between all
the vertices without investing quadratic time for doing so.
Instead, it runs in only O(κ(|E|+ |V | log |V |)) time, where
V and E are the vertices and the edges of the graph, re-
spectively. This time complexity is the same as that of Di-
jkstra’s single-source shortest-path tree algorithm (Fredman
and Tarjan 1987)4 and is only linear in the size of the graph.5

Algorithm 1 of (Li et al. 2023) presents the pseudocode
for FastMap on graphs: κ is user-specified, but a threshold
parameter ϵ is introduced to detect large values of κ that have
diminishing returns on approximating the pairwise shortest-
path distances. That algorithm can also be easily adapted to
other graph-based distance functions (Li et al. 2022, 2023).

4since κ is usually designated as a constant
5unless |E| is O(|V |), in which case the complexity is near-

linear in the size of the input because of the log |V | factor
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Solving FLPs in Euclidean Space without Obstacles

Most FLPs defined on graphs are also defined in Euclidean
spaces without obstacles. As described before, the MAM,
VKM, WVKM, and the CVKM problems are defined in
such a space using Euclidean distances instead of graph-
based distances. There are two benefits of using FastMap
to convert an FLP specified on a graph to an FLP speci-
fied in the Euclidean embedding of that graph. First, FLPs
defined in Euclidean spaces without obstacles are the most
amenable to efficient and effective heuristic algorithms. Sec-
ond, invoking FastMap with an intelligently designed dis-
tance function can simplify the problem even more.

For illustration of the above arguments, we consider the
MAM problem on an input graph with k agents. Solving it
optimally requires the computation of k shortest-path trees
rooted at the individual start vertices of the agents. The
same problem in Euclidean space without obstacles is re-
ferred to as the Fermat-Weber problem (Durier and Michelot
1985). This problem is also NP-hard to solve optimally but
is amenable to very effective heuristics (Fekete, Mitchell,
and Beurer 2005). Moreover, if FastMap is invoked on the
input graph to preserve the square-roots of the shortest-path
distances—instead of the shortest-path distances—the prob-
lem in the resulting Euclidean space becomes one of finding
a point that minimizes the sum of the squared distances to k
given points. This is a significantly easier problem since the
required point is the centroid of the k given points.

Algorithm 1 of (Li et al. 2023) can be easily modified
to incorporate the square-root of the shortest-path distance
function

√
dG(·, ·) between vertices. This is done by return-

ing the square-roots of the shortest-path distances found by
the procedure ShortestPathTree() on Lines 4, 12, and 13.

The VKM, WVKM, and the CVKM problems can also
utilize the FastMap embedding with the square-root of the
shortest-path distance function. Doing so makes them very
similar to clustering problems popularly studied in Machine
Learning. For example, in a Euclidean space without obsta-
cles, clustering algorithms such as the K-means algorithm
intend to minimize the sum of the squared Euclidean dis-
tances over each data point to its nearest centroid. With
the Euclidean distances representing the square-roots of the
shortest-path distances in the input graph, this is equivalent
to solving the VKM problem of minimizing the sum of the
shortest-path distances over each vertex to its nearest facil-
ity. Similarly, the WVKM problem can also be solved by
invoking the K-means algorithm in the FastMap embed-
ding that preserves the square-roots of the shortest-path dis-
tances: The K-means algorithm is also given a weight as-
sociated with each data point that measures its importance.
Finally, the CVKM problem can also be solved by invoking
the constrained K-means algorithm (Bradley, Bennett, and
Demiriz 2000) in the FastMap embedding that preserves the
square-roots of the shortest-path distances: The constrained
K-means algorithm restricts the size of each cluster to be no
more than a user-specified parameter τ .

Although we have described how to solve FLPs in the Eu-
clidean space generated by FastMap on an input graph, the
solutions produced reside in the Euclidean space and are not

yet interpretable on the original graph. As described in the
next subsection, we use LSH towards this end.

LSH
While the input graph is a discrete structure and has only
a finite number of vertices, the Euclidean space generated
by FastMap on it is a continuous space and has an infinite
number of points. Therefore, while every vertex of the graph
maps to a point in the Euclidean space, not every point in
the Euclidean space maps to a vertex. In fact, a point in the
Euclidean space deemed as belonging to a solution—or any
other point of interest in the Euclidean space—may not map
to a vertex of the original graph.

To address the foregoing problem, we assign any point
of interest in the Euclidean space to its nearest neighbor that
maps to a vertex of the original graph. This requires us to an-
swer nearest-neighbor queries very efficiently. Fortunately,
this problem is well studied in Computational Geometry. For
example, in a 2-dimensional Euclidean space with straight-
line distances, nearest-neighbor queries can be answered in
logarithmic time using Voronoi diagrams. In higher dimen-
sions, we use LSH (Datar et al. 2004). LSH is a hashing tech-
nique that maps similar input items to the same hash buckets
with high probability. It answers nearest-neighbor queries in
logarithmic time (ignoring small complexity factors).

FastMap with Anya
Compared to FLPs in Euclidean spaces without obstacles,
FLPs in Euclidean spaces with obstacles are much harder to
solve. Primarily, this is because the shortest-path distances
in the latter are no more straight-line distances. In fact, even
by itself, computing the shortest path between two points in
a Euclidean space with obstacles may be very hard. Even
shortest-path algorithms that operate in a Euclidean space
with obstacles have to make various kinds of assumptions on
the nature of the obstacles and the acceptable paths that ma-
neuver through them. For the same reason, we define FLPs
in Euclidean spaces with obstacles only when the environ-
ment also supports Anya (Harabor et al. 2016), a popular
any-angle path planner. We note that this is not a restriction
on the kinds of FLPs that can be discussed but is a standard-
ization of the input environment that is also applicable to the
state-of-the-art shortest-path algorithms.

Anya (Harabor et al. 2016) is a recent any-angle shortest-
path algorithm for grid-worlds. Given any two discrete
points on a 2-dimensional grid-world, Anya finds a shortest
any-angle path between them, if one exists. It uses a vari-
ant of A∗ search over sets of states represented as intervals.
Anya is very efficient since it does not require preprocessing
or the introduction of additional memory overheads.

In our FastMap-based approach for solving FLPs, the
FastMap component always generates a Euclidean space
without obstacles. It can be used to transform an input Eu-
clidean space with obstacles to an output Euclidean space
without obstacles if the straight-line distances in the output
space preserve the desired distances in the input space. To-
wards this end, we can use the any-angle shortest-path dis-
tance function on the discrete points of a 2-dimensional grid-
world, as generated by Anya. However, using the any-angle
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shortest-path distance function with FastMap has the same
fundamental challenge as using the regular shortest-path dis-
tance function with FastMap: To retain the near-linear time
complexity of FastMap, the distances should not be com-
puted from a root vertex to all other vertices independently.
The computations have to be amortized to yield all of them
simultaneously, as shown on Lines 4, 12, and 13 of Algo-
rithm 1 of (Li et al. 2023). Thus, we modify Anya to com-
pute the entire tree of any-angle shortest-path distances from
a root vertex to all other vertices. We call this version as
Anya-Dijkstra. Hence, FastMap with Anya is similar to Al-
gorithm 1 of (Li et al. 2023), except that it replaces the pro-
cedure ShortestPathTree() by Anya-Dijkstra and returns the
square-roots of the any-angle shortest-path distances found
by Anya-Dijkstra on Lines 4, 12, and 13.

Related Work and Competing Algorithms
FastMap has been used as a preprocessing technique to facil-
itate A∗ search for shortest-path computations (Cohen et al.
2018). In this context, it differs slightly from Algorithm 1
of (Li et al. 2023) to ensure the consistency and admissibility
of the heuristics. This version of FastMap has been recently
improved by incorporating ideas of Differential Heuristics
in the last iteration (Mashayekhi, Atzmon, and Sturtevant
2023). FastMap, as in Algorithm 1 of (Li et al. 2023), has
been used for the MAM problem (Li et al. 2019); but there,
it does not use the square-roots of the shortest-path dis-
tances and, consequently, uses a heuristically computed so-
lution—instead of the centroid—in the Euclidean space. It
has also been used for the VKM problem (Thakoor et al.
2022) but only to the extent of improving the preprocessing
phase of other algorithms. FastMap with various novel dis-
tance functions has also been used for block modeling (Li
et al. 2022) and top-K centrality computations (Li et al.
2023). Moreover, FastMap has been generalized to directed
graphs (Gopalakrishnan et al. 2020); and the accuracy of the
FastMap embedding has been studied on various graphs (Li
et al. 2019; Gopalakrishnan et al. 2020).

The MAM, VKM, WVKM, and the CVKM problems can
be formulated using Integer Linear Programming (ILP). The
following template for the CVKM problem can be used.

min
∑

vi∈V

∑
vj∈V bijdij

subject to ∀vi ∈ V :
∑

vj∈V bij = 1

∀vj ∈ V :
∑

vi∈V bij ≤ τ

∀vi, vj ∈ V : bij ≤ cj∑
vj∈V cj = K.

(2)

Here, dij is a shorthand for dG(vi, vj); cj is a Boolean
variable that is ‘1’ iff vj is a facility; and bij is a Boolean
variable that is ‘1’ iff vj is the facility assigned to vi. For
the VKM problem, τ = |V |. For the WVKM problem,
dij = w̃(vi)dG(vi, vj) and τ = |V |. For the MAM problem,
the outer summation of the objective function spans only the
start vertices of the agents, τ = |V |, and K = 1.

The MAM problem can be solved optimally in polyno-
mial time and does not require the ILP solver: The algo-
rithm computes a shortest-path tree rooted at each of the
k start vertices of the agents. When heuristic guidance is
available, MM∗ (Atzmon et al. 2023) can also be used to
solve the MAM problem optimally. For the VKM prob-
lem, the state-of-the-art algorithm is FasterPAM (Schubert
and Rousseeuw 2021), the successor of the Partition Around
Medoids (PAM) algorithm (Kaufman and Rousseeuw 1987).
FasterPAM conducts local search by repeatedly swapping a
vertex from its current solution S with a vertex in V \ S. It
runs in O(K|V |2) time. For the WVKM problem, the state-
of-the-art implementation of the PAM algorithm is available
in the procedure ‘wcKMedoids’ (Maechler 2018) in R 4.3.
The CVKM problem is significantly harder: To the best of
our knowledge, there are no good solvers for this problem
that scale to the problem sizes discussed in this paper.

The ILP solver and the PAM algorithms require the pre-
computation of the all-pairs shortest-path distances, which
can be done via the Floyd-Warshall algorithm.

Experimental Results
In this section, we provide experimental results that compare
our approach to competing algorithms on the MAM, VKM,
WVKM, and the CVKM problems.

We implemented our approach in Python 3.9. For the
LSH module, we used the ‘FALCONN’ library (Andoni
et al. 2015) that has many code-level optimizations. For
the K-means procedure without weights, required for solv-
ing the VKM problem, and for the K-means procedure
with weights, required for solving the WVKM problem,
we used the ‘scikit-learn’ library (Pedregosa et al. 2011).
For the constrained K-means procedure, required for solv-
ing the CVKM problem, we used the ‘k-means-constrained’
library. For the ILP solver, we used the Gurobi Opti-
mizer 10.0 (Gurobi Optimization, LLC 2023). We used the
Anya procedure via a Python interface to its implemen-
tation in Java. For FasterPAM (Schubert and Rousseeuw
2021), we used the ‘kmedoids’ library. However, for the
PAM clustering of weighted data, we used the procedure
‘wcKMedoids’ (Maechler 2018) implemented in R 4.3. For
the Floyd-Warshall algorithm, we used the ‘NetworkX’ li-
brary (Hagberg, Swart, and S Chult 2008). We conducted all
experiments on a laptop with an Apple M2 Max chip and 96
GB RAM. For evaluation purposes, we chose two categories
of problem instances, both of which contain realistic FLPs.

In the first category, we chose problem instances represen-
tative of FLPs that arise in warehousing, urban planning, and
transportation domains, among others. In such cases, the en-
vironment is essentially a 2-dimensional map. Moreover, in
such cases, both the regular FastMap (FM), that is, FastMap
that implements the procedure ShortestPathTree() using Di-
jkstra’s algorithm (DJK), and FastMap with Anya (FMA),
that is, FastMap that implements the procedure Shortest-
PathTree() using Anya-Dijkstra (ADJK), are defined. This
enables a more direct comparison of the various algorithms.
Such instances are available in the movingAI dataset (Sturte-
vant 2012): Each instance serves as both a graph instance
and a 2-dimensional grid-world instance. In it, each discrete
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# Instance Size (|V |, |E|)
1 orz102d (738, 2632)
2 den407d (852, 3054)
3 lak526d (954, 3329)
4 den009d (1003, 3620)
5 AR0512SR (896, 3275)
6 AR0402SR (1075, 3796)
7 AR0517SR (1083, 4078)
8 AR0530SR (1092, 3885)
9 Shanghai 0 256 (48696, 190303)

10 blastedlands (131342, 505974)
11 maze512-32-5 (253856, 990715)
12 wm00800 (800, 9498)
13 wm01000 (1000, 14923)
14 wm05000 (5000, 374925)
15 wm10000 (10000, 1499713)

Table 1: Shows the names and sizes of various instances:
The index number ‘#’ of each instance is used in Tables 2-9.

point on a traversable cell6 is represented as a vertex. Adja-
cent vertices, corresponding to discrete points on the same
traversable cell, are connected by an edge. A horizontal or
vertical edge has unit weight but a diagonal edge has weight√
2. If the graph constructed this way has multiple connected

components, only the largest one is used to represent the in-
stance. We used five representative benchmark suites in this
category: ‘Dragon Age: Origins’, ‘Warcraft III’, ‘Baldurs
Gate II’, ‘City/Street Maps’, and ‘Mazes’. The first three
are from commercial game environments; the fourth is from
the real world; and the fifth is artificial. Both FastMap and
FastMap with Anya use κ = 10 for these instances.

In the second category, we chose problem instances repre-
sentative of FLPs that arise in communication networks. In
the field of Computer and Communication Networks, Wax-
man graphs (Waxman 1988) are used as realistic commu-
nication networks. Hence, we generated Waxman graph in-
stances using NetworkX (Hagberg, Swart, and S Chult 2008)
with commonly used parameter values α = 0.3 and β = 0.1,
within a rectangular domain of 100 × 100, and with the
weight on each edge set to the Euclidean distance between
its endpoints. FastMap uses κ = 100 for these instances.7

Tables 2-9 show the performance results of various algo-
rithms on the MAM, VKM, WVKM, and the CVKM prob-
lems.8 Although our experiments are extensive and conclu-
sive, we can present only representative results in these ta-
bles due to space limitations. In each table, representative re-
sults are shown in sets of rows: the first set on instances from
‘Dragon Age: Origins’, the second set on instances from
‘Baldurs Gate II’, and the third set on the largest instances
from ‘City/Street Maps’, ‘Warcraft III’, and ‘Mazes’, in that
order. These three sets are from the first category and serve

6as defined in (Harabor et al. 2016) for the application of Anya
7The Normalized Root Mean Square Deviation, as used in (Li

et al. 2019) to measure the accuracy of the FastMap embedding, is
much higher for Waxman graphs even with κ = 100 compared to
movingAI instances with κ = 10.

8Table 1 shows the index numbers ‘#’s of the instances used in
these tables.

as both graph and grid-world instances. The even-numbered
tables also have a fourth set of rows from the second cat-
egory that serve only as graph instances. A ‘-’ is associ-
ated with any instance whose preprocessing time exceeds
1 hour. The suboptimality ‘SO’ columns report (cost - op-
timal cost)/(optimal cost) as a percentage. In general, our
approach is the only one that can scale to large input sizes
for the VKM, WVKM, and the CVKM problems.

Table 2 compares FastMap (FM) and the brute-force al-
gorithm (DJK) on the MAM problem. DJK computes the
ground truth by rooting a shortest-path tree at each of the
k start vertices of the agents. Here, each graph instance
is designed by picking the k start vertices at random. The
FastMap preprocessing time (FM pre) refers to the time
taken by FastMap to generate the Euclidean embedding of
the graph plus the time taken by LSH for the initial in-
dexing. This preprocessing time is required only once per
graph, independent of k and the start vertices. We observe
that FastMap is significantly faster than the brute-force al-
gorithm on larger instances, up to 4-5 orders of magnitude.9
In fact, FastMap is very often more efficient even with the
preprocessing time included. It also produces solutions that
are within just 7% suboptimality on instances from the first
category and within 10% suboptimality on instances from
the second category. Table 3 shows a similar dominance of
FastMap and FastMap with Anya (FMA) over the brute-
force algorithm (ADJK) that uses Anya to compute an any-
angle shortest-path tree rooted at each of the k start vertices
for generating the ground truth on grid-world instances. The
FastMap times are excluded from Table 3 since they appear
in Table 2. The suboptimality of FastMap is different in Ta-
bles 2 and 3, since the quality of a solution is measured using
any-angle shortest-path distances in Table 3.

Table 4 compares FastMap, the ILP solver, and Faster-
PAM for solving graph instances of the VKM problem. Both
the ILP solver and FasterPAM use the Floyd-Warshall algo-
rithm (FW) in a preprocessing step to compute the all-pairs
shortest-path distances. The preprocessing time of FastMap
is significantly smaller than that of the Floyd-Warshall al-
gorithm: The latter is about 3 orders of magnitude slower
and not even viable for large graphs. Moreover, at query
time, FastMap and FasterPAM are both significantly faster
than the ILP solver. FastMap produces solutions within
just 6% suboptimality on instances from the first category
and within 17% suboptimality on instances from the sec-
ond category. FasterPAM also produces high-quality solu-
tions but it does so with occasional outliers and does not
scale to large instances. Table 5 on grid-world instances
shows a similar dominance of FastMap and FastMap with
Anya—within similar suboptimality ranges—over the ILP
solver and FasterPAM with respect to the preprocessing time
and over the ILP solver with respect to the query time. The
FastMap times, the Floyd-Warshall preprocessing times, and
the FasterPAM query times are excluded from Table 5 since

9Based on the results reported in (Atzmon et al. 2023), FastMap
also seems significantly faster—and more scalable to large graphs
with large values of k—compared to MM∗.
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#
Preprocessing k = 50 k = 100

for FM: Time (s) SO (%) Time (s) SO (%)
FM pre (s) DJK FM FM DJK FM FM

1 0.05 0.09 0.00 1.23 0.19 0.00 0.93
2 0.07 0.09 0.00 0.28 0.18 0.00 0.98
3 0.07 0.09 0.00 0.56 0.19 0.00 1.17
4 0.07 0.10 0.00 1.49 0.21 0.00 1.55
5 0.06 0.10 0.00 6.35 0.19 0.00 2.31
6 0.10 0.13 0.00 6.49 0.26 0.00 1.70
7 0.09 0.12 0.00 4.47 0.24 0.00 1.17
8 0.08 0.11 0.00 6.45 0.22 0.00 0.57
9 4.81 6.67 0.01 1.15 13.26 0.00 2.26

10 12.95 18.58 0.02 5.87 37.18 0.02 0.90
11 21.82 35.25 0.04 1.09 70.54 0.04 2.81
12 1.06 0.25 0.00 7.08 0.50 0.00 5.81
13 1.78 0.38 0.00 9.37 0.76 0.00 5.80
14 88.64 13.43 0.00 3.80 26.76 0.00 3.56
15 360.29 54.00 0.00 1.65 107.38 0.00 1.13

Table 2: Shows the results for the MAM problem on various graph instances. ‘FM’, ‘FM pre’, ‘DJK’, and ‘SO’ stand for
‘FastMap’, ‘FastMap preprocessing’, ‘Dijkstra’, and ‘suboptimality’, respectively.

#
Preprocessing k = 50 k = 100

for FMA: Time (s) SO (%) Time (s) SO (%)
FMA pre (s) ADJK FMA FM FMA ADJK FMA FM FMA

1 3.29 5.42 0.00 0.96 0.30 10.86 0.00 1.45 0.46
2 2.66 3.92 0.00 0.91 0.58 8.07 0.00 0.09 0.13
3 3.77 5.12 0.00 2.52 2.52 10.01 0.00 2.90 5.15
4 2.00 3.46 0.00 3.65 1.08 6.96 0.00 0.05 0.29
5 10.81 13.84 0.00 4.91 2.71 27.62 0.00 2.76 3.47
6 8.54 10.54 0.00 1.07 2.53 21.33 0.00 0.03 3.53
7 9.84 13.89 0.00 6.33 4.28 27.95 0.00 1.82 2.72
8 12.09 15.37 0.00 0.64 0.21 30.87 0.00 1.33 0.43
9 16.77 16.09 0.01 1.56 1.27 32.12 0.01 1.06 3.07

10 44.81 35.70 0.02 6.87 7.52 71.59 0.02 3.70 5.50
11 34.69 55.79 0.04 2.68 3.03 111.51 0.04 1.43 1.48

Table 3: Shows the results for the MAM problem on various grid-world instances. ‘FMA’, ‘FMA pre’, and ‘ADJK’ stand for
‘FastMap with Anya’, ‘FastMap with Anya preprocessing’, and ‘Anya-Dijkstra’, respectively.

#
Preprocessing Preprocessing K = 10 K = 20
for ILP, PAM: for FM: Time (s) SO (%) Time (s) SO (%)

FW (s) FM pre (s) ILP PAM FM PAM FM ILP PAM FM PAM FM
1 27.10 0.05 79.34 0.00 0.00 1.47 3.70 175.76 0.00 0.00 1.84 1.01
2 41.24 0.07 48.70 0.00 0.00 1.34 3.44 132.63 0.00 0.01 1.95 1.78
3 56.36 0.07 170.70 0.01 0.02 0.23 1.09 71.53 0.00 0.01 7.43 2.72
4 64.38 0.07 83.20 0.12 0.06 0.21 1.23 96.65 0.08 0.06 4.23 1.60
5 48.20 0.06 52.95 0.00 0.00 54.19 2.52 485.62 0.00 0.01 0.99 2.98
6 82.27 0.10 73.03 0.07 0.05 1.85 2.68 74.51 0.11 0.16 0.11 4.06
7 85.25 0.09 1556.52 0.15 0.12 0.22 0.80 4467.56 0.19 0.06 0.45 2.66
8 84.71 0.08 121.16 0.08 0.03 1.43 0.41 209.84 0.13 0.10 0.12 5.69
9 - 4.40 - - 0.15 - - - - 0.25 - -

10 - 12.88 - - 0.49 - - - - 0.72 - -
11 - 22.61 - - 0.65 - - - - 1.00 - -
12 35.94 1.06 1650.12 0.00 0.02 0.03 16.50 3302.97 0.00 0.02 0.04 13.16
13 70.30 1.78 9188.83 0.06 0.04 0.07 15.04 9970.25 0.09 0.07 0.19 16.66
14 - 88.64 - - 0.12 - - - - 0.16 - -
15 - 360.29 - - 0.33 - - - - 0.49 - -

Table 4: Shows the results for the VKM problem on various graph instances. ‘FW’, ‘ILP’, and ‘PAM’ stand for ‘Floyd-
Warshall’, ‘ILP solver’, and ‘PAM algorithm’, respectively. The ILP solver and the PAM algorithm require the Floyd-Warshall
algorithm in a preprocessing phase for the computation of the all-pairs shortest-path distances.
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#
Preprocessing K = 10 K = 20

for FMA: Time (s) SO (%) Time (s) SO (%)
FMA pre (s) ILP FMA PAM FM FMA ILP FMA PAM FM FMA

1 3.29 77.38 0.28 6.44 1.69 1.35 214.98 0.28 38.30 1.57 2.87
2 2.66 49.04 0.28 0.51 3.65 1.32 144.29 0.23 31.33 2.42 4.77
3 3.77 170.97 0.28 0.04 1.80 0.12 72.49 0.28 0.31 1.98 6.70
4 2.00 83.16 0.28 -0.02 2.41 0.89 95.91 0.28 0.28 3.83 4.14
5 10.81 55.76 0.27 0.00 1.29 3.26 519.66 0.28 0.99 2.20 4.25
6 8.54 74.70 0.29 2.01 1.21 5.10 75.09 0.29 0.51 4.07 4.27
7 9.84 1581.05 0.28 3.68 0.78 0.73 5905.02 0.28 0.56 1.50 0.72
8 12.09 122.93 0.28 1.90 3.64 3.33 211.75 0.30 1.58 3.91 1.26
9 14.07 - 0.10 - - - - 0.30 - - -

10 37.21 - 0.47 - - - - 0.67 - - -
11 39.19 - 0.68 - - - - 1.11 - - -

Table 5: Shows the results for the VKM problem on various grid-world instances.

#
Preprocessing Preprocessing K = 10 K = 20
for ILP, PAM: for FM: Time (s) SO (%) Time (s) SO (%)

FW (s) FM pre (s) ILP PAM FM PAM FM ILP PAM FM PAM FM
1 27.10 0.05 44.49 0.06 0.00 2.61 4.26 95.91 0.14 0.00 4.12 5.50
2 41.24 0.07 52.29 0.15 0.00 1.69 0.72 74.92 0.18 0.01 4.91 4.90
3 56.36 0.07 101.26 0.09 0.02 1.19 2.78 60.25 0.21 0.01 3.35 2.49
4 64.38 0.07 79.18 0.11 0.01 1.12 1.63 137.58 0.35 0.01 2.39 4.09
5 48.20 0.06 146.60 0.08 0.00 1.57 0.72 119.31 0.33 0.01 1.68 3.78
6 82.27 0.10 80.94 0.11 0.02 3.92 3.18 92.47 0.25 0.03 4.92 6.26
7 85.25 0.09 2907.62 0.19 0.27 0.93 1.09 571.17 0.45 0.02 2.85 1.93
8 84.71 0.08 318.33 0.14 0.02 2.15 0.90 127.48 0.28 0.02 3.67 5.11
9 - 4.77 - - 0.17 - - - - 0.25 - -

10 - 13.10 - - 0.38 - - - - 0.70 - -
11 - 21.89 - - 0.68 - - - - 1.07 - -
12 35.94 1.06 1946.18 0.12 0.24 0.00 15.84 1388.69 0.21 0.01 0.00 17.19
13 70.30 1.78 5135.40 0.20 0.02 0.00 11.62 15112.05 0.21 0.02 0.01 12.68
14 - 88.64 - - 0.07 - - - - 0.07 - -
15 - 360.29 - - 0.32 - - - - 0.37 - -

Table 6: Shows the results for the WVKM problem on various graph instances.

#
Preprocessing K = 10 K = 20

for FMA: Time (s) SO (%) Time (s) SO (%)
FMA pre (s) ILP FMA PAM FM FMA ILP FMA PAM FM FMA

1 3.29 37.61 0.28 2.63 1.49 2.60 37.60 0.22 3.97 3.51 2.95
2 2.66 50.66 0.28 1.69 5.39 0.14 61.92 0.22 3.97 2.41 2.18
3 3.77 105.26 0.28 1.66 1.61 7.51 72.85 0.28 3.90 3.63 2.45
4 2.00 128.13 0.28 2.18 0.81 0.54 91.62 0.28 2.60 4.08 3.88
5 10.81 53.07 0.28 1.21 0.13 2.82 129.15 0.28 2.70 2.98 5.86
6 8.54 84.35 0.29 2.31 4.10 4.63 100.25 0.29 1.90 2.52 5.81
7 9.84 92.75 0.28 0.97 0.51 1.11 1358.58 0.28 2.11 1.98 1.67
8 12.09 204.61 0.27 1.29 4.39 2.22 139.88 0.28 4.71 3.88 2.83
9 14.98 - 0.21 - - - - 0.40 - - -

10 24.34 - 0.22 - - - - 0.45 - - -
11 37.99 - 0.67 - - - - 1.03 - - -

Table 7: Shows the results for the WVKM problem on various grid-world instances.

they appear in Table 4.10 However, the query times of the
ILP solver vary across different runs on the same instance

10The computation of the all-pairs any-angle shortest-path dis-
tances is very expensive. Therefore, the Floyd-Warshall algorithm
is invoked by treating the grid-world as a graph. This also creates
the remote possibility of the ILP solver producing a suboptimal so-
lution, although it is practically still treated as the ground truth.

and, thus, are included in Table 5. Tables 6 and 7 show the
same trends for the WVKM problem,11 instances of which

11The ILP solver can also be an anytime solver. However, its per-
formance is nowhere comparable to that of FastMap. For example,
on the representative instance ‘wm01000’ with K = 20, compared
to FM, ILP takes about 400× time to produce a mere 34% subop-
timal solution for both the VKM and the WVKM problems.
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#
Preprocessing Preprocessing K = 10 K = 20

for ILP: for FM: Time (s) SO (%) Time (s) SO (%)
FW (s) FM pre (s) ILP FM FM ILP FM FM

1 27.10 0.05 101.07 0.09 1.80 162.59 0.13 3.57
2 41.24 0.07 49.35 0.04 4.02 166.29 0.09 2.88
3 56.36 0.07 184.90 0.04 7.82 84.68 0.28 3.34
4 64.38 0.07 86.95 0.17 1.45 114.34 0.26 4.10
5 48.20 0.06 66.96 0.06 2.89 495.82 0.10 3.19
6 82.27 0.10 90.72 0.06 3.99 85.61 0.28 5.63
7 85.25 0.09 1942.77 0.24 3.17 3615.14 0.29 2.85
8 84.71 0.08 175.05 0.30 0.54 242.01 0.23 3.94
9 - 4.85 - 6.19 - - 33.48 -

10 - 15.18 - 59.19 - - 62.15 -
11 - 22.50 - 13.18 - - 20.08 -
12 35.94 1.06 2721.67 0.13 48.18 4590.93 0.27 62.34
13 70.30 1.78 10531.79 0.13 35.18 23911.17 0.24 58.05
14 - 88.64 - 1.08 - - 2.56 -
15 - 360.29 - 3.07 - - 6.04 -

Table 8: Shows the results for the CVKM problem on various graph instances.

#
Preprocessing K = 10 K = 20

for FMA: Time (s) SO (%) Time (s) SO (%)
FMA pre (s) ILP FMA FM FMA ILP FMA FM FMA

1 3.29 90.55 0.05 1.52 2.44 192.79 0.19 2.40 3.64
2 2.66 66.04 0.09 2.12 4.45 153.89 0.10 2.43 2.32
3 3.77 187.95 0.09 2.01 2.08 78.51 0.27 3.91 1.65
4 2.00 116.48 0.08 1.00 1.05 106.17 0.25 1.59 1.60
5 10.81 62.47 0.26 5.51 3.47 521.99 0.13 4.24 8.09
6 8.54 84.41 0.21 2.02 4.80 90.01 0.14 5.27 7.96
7 9.84 1237.97 0.42 3.20 3.22 4324.49 0.35 3.35 2.45
8 12.09 138.18 0.11 1.66 3.64 254.33 0.21 5.71 1.68
9 17.02 - 12.27 - - - 21.37 - -

10 42.48 - 33.20 - - - 34.67 - -
11 39.58 - 14.39 - - - 24.48 - -

Table 9: Shows the results for the CVKM problem on various grid-world instances.

are generated by attaching to each vertex a weight chosen
uniformly at random from the interval [0, 1). Here, the PAM
algorithm is the ‘wcKMedoids’ procedure in R 4.3.

Table 8 compares FastMap and the ILP solver for solving
graph instances of the CVKM problem. For representative
results, these instances use τ = ⌈2|V |/K⌉. Although the
CVKM problem renders many approaches ineffective due
to its comparative hardness over the VKM and the WVKM
problems, FastMap can still solve all the instances, even
those with a quarter-million vertices and a million edges, in
mere seconds. On smaller instances, FastMap is also signifi-
cantly faster than the ILP solver, which generates the ground
truth. Moreover, FastMap produces solutions within just 8%
suboptimality on instances from the first category and within
63% suboptimality12 on instances from the second category.
Table 9 shows the same trends for solving the grid-world in-
stances of the CVKM problem with the same τ , within just
9% suboptimality using FastMap and FastMap with Anya.

1263% suboptimality is still impressive, since the CVKM prob-
lem is combinatorially very hard and, till date, there is no known
polynomial-time constant-factor approximation algorithm for it.

Conclusions and Future Work
In this paper, we studied four representative FLPs: the
MAM, VKM, WVKM, and the CVKM problems. Like most
FLPs, these problems are well defined on graphs as well as
in Euclidean spaces with or without obstacles. While they
are generally difficult to solve optimally, the ones defined in
a Euclidean space without obstacles are akin to clustering
problems. We used the idea of FastMap to reformulate FLPs
defined on a graph to FLPs defined in a Euclidean space
without obstacles. Subsequently, we used standard cluster-
ing algorithms to solve the problems in the resulting Eu-
clidean space and LSH to interpret the solutions back on
the original graph. End to end, our approach produces high-
quality solutions with orders-of-magnitude speedup over
state-of-the-art competing algorithms.

In future work, we will use our approach to solve many
other kinds of FLPs. We will also consider FLPs that arise
in real-world robotics and communication domains.
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