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Abstract

We consider a Multi-Agent Path Finding (MAPF) setting
where agents have been assigned a plan, but during its exe-
cution some agents are delayed. Instead of replanning from
scratch when such a delay occurs, we propose delay intro-
duction, whereby we delay some additional agents so that the
remainder of the plan can be executed safely. We show that
finding the minimum number of additional delays is APX-
hard, i.e., it is NP-hard to find a (1 + ε)-approximation
for some ε > 0. However, in practice we can find opti-
mal delay-introductions using Conflict-Based Search for very
large numbers of agents, and both planning time and the re-
sulting length of the plan are comparable, and sometimes out-
perform the state-of-the-art heuristics for replanning.

1 Introduction
Multi-Agent Path Finding (MAPF) is a problem in Artificial
Intelligence (AI) that asks to find non-colliding paths for a
group of agents moving on a graph (Stern et al. 2019; Salz-
man and Stern 2020). Applications vary from autonomous
warehouse management (Wurman, D’Andrea, and Mountz
2008) and factory pipe routing (Belov et al. 2020) to rail
planning (Li et al. 2021) and swarm robotics (Ramaithitima
et al. 2016). Although MAPF is known to be generally an
intractable problem (Yu 2016; Banfi, Basilico, and Amigoni
2017; Nebel 2020; Geft 2023), recent algorithms can scale
to thousands of agents, e.g., (Li et al. 2022; Li, Ruml, and
Koenig 2021; Okumura 2023). A limiting aspect of these al-
gorithms is the simplifying assumption that, at deployment,
agents can synchronously execute a plan. In reality, how-
ever, it is common for agents to fall out of sync, e.g., due
to delays or model uncertainty. Such incidents may cause
the plan to no longer be valid (non-colliding), in which case
we must either compute a new plan or repair the old plan
quickly. This is challenging since replanning faces the same
difficulties as the original MAPF problem, and plan repair is
shown to be as difficult as plan generation itself (Nebel and
Koehler 1995).

In this work, we propose a simple but effective approach
to plan repair that inherits a lot of the benefits of the original
plan and can scale to a large number of agents. Our key idea
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is to use the topology of the original plan and resolve con-
flicts by allowing agents to stay in place. That is, we repair
the plan by introducing delays – i.e., requiring some agents
to remain in a certain location for a certain amount of time
instead of advancing according to the prescribed path. The
intuition is that resources are put into generating and vali-
dating the original plan. It is hence desirable to maintain at
least some of its properties. For example, in safety-critical
or ethical situations (e.g., transportation of hazardous mate-
rials, air traffic control) plans often need to be approved by a
human controller, and therefore, replanning requires the hu-
man to accept a new plan, which in turn requires trust. By
using the same paths, we gain several benefits, including in-
heriting the visual explainability of the original plan (i.e., the
paths visually remain the same), reducing the search space
to a smaller graph than the original one, and existence of a
solution when delays are not constrained along the paths.

Specifically, we consider the following setting: we work
over an environment modeled as a directed graph, where
agents wish to move from their starting vertices to their
goals. We further assume that we already have a plan P that
drives each agent from start to goal. However, P may con-
tain collisions. Motivationally, we think of P as obtained
from a non-colliding plan by having some agents delay in
place, resulting in possible collisions. We allow to repair P
to a new plan P ′ by having some agents delay at certain ver-
tices. Furthermore, we want P ′ to be such that the overall
number of delays is minimal.

We also draw motivation from a non-optimization prob-
lem formulation closely related to ours by (Abrahamsen
et al. 2023). They focus on adding any set of delays to P
to ensure P ′ is non-colliding, for which they provide posi-
tive and negative complexity results. Notably, they mention
studying optimization variants, akin to our problem, as an
open extension.

Introducing a minimal set of delays in this setting gives
rise to some intricate behaviors, as demonstrated in the fol-
lowing examples. In particular, the choice of when to delay
an agent and for how many steps is crucial and nontrivial.

Example 1 (Postponing delays). Consider the case in
Fig. 1a, which shows a plan for three agents. Note that the
original plan, which takes the agents straight to their respec-
tive goals, is non-colliding. Now, imagine Red is delayed at
time 0, resulting in the detection of an upcoming collision
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(a) Example 1 (b) Example 2

Figure 1: Setting of (a) Example 1 and (b) Example 2.
Straight lines depict the original plan, and curved edges rep-
resent the plan when Red agent is delayed at time 0. (a) It is
better to have Green agent delay at time 3. (b) it is better to
have Green agent delay for two timesteps.

with Green at time 4. However, delaying Green upon de-
tection (step 1) will cause a collision with Blue at time 3.
Instead, it is preferable to postpone the delay of Green to
time 3, and let Blue pass through.

Example 2 (Long delays). Consider the setting in Fig. 1b.
Green is again about to collide with Red. However, delaying
Green for a single timestep will cause another collision with
Blue at time 7. Blue, in turn, passes a train of 100 agents
(depicted in orange) just before it crosses at time 8. Thus, if
we delay Blue for even a single timestep, this would require
either delaying it for another 100 times, or delaying the train
of 100 agents. Thus, the optimal solution is to delay Green
for 2 timesteps or delay Red for another timestep.

These examples allude to our two main contributions:

• We show that the problem of avoiding collisions by intro-
ducing delays (ACID) is NP-complete, and in fact even
APX-hard.

• We propose an algorithmic approach to ACID by formu-
lating it as a small instance of MAPF, with a low branch-
ing degree, for which existing algorithms can be readily
used.

We experimentally evaluate our algorithmic approach
through several standard benchmark problems. Specifically,
the results show that for a small number of unexpected de-
lays (one delay, in our experiments), the simplicity of the
small MAPF problem allows to use optimal algorithms such
as Conflict-based Search (CBS) (Sharon et al. 2015) to com-
pute a plan with minimum number of delays fast and scale
up to 1000 agents. For more delays (with a large number
of agents), CBS does not scale, but Heuristic-based MAPF
algorithms perform well.

Related Work: The execution of MAPF plans may
present unexpected delays that hinder the system’s ability
to follow the prescribed plan. Atzmon et al. (2020b) pro-
posed a method to account for these uncertainties by com-
puting k-robust plans (for some user-provided k) that guar-
antee safe execution even in the presence of up to k delays.
Atzmon et al. (2020a) also extended the idea to the proba-
bilistic setting, guaranteeing success with probability at least
p, when given a (user defined) probabilistic model of delays.
However, these robust planning techniques suffer from be-

ing computationally expensive, overly-conservative, and are
robust only in expectation (probabilistically).

Plan repair was considered almost three decades ago
by Nebel and Koehler (1995), where the authors show that
repairing plans is potentially harder than planning from
scratch. Interestingly, they show that a bottleneck of re-
pairing plans is choosing the plan that we repair to. This
challenge can be avoided in specific cases. For exam-
ple, Tonola et al. (2023) repaires single-agent paths in the
presence of dynamic obstacles by connecting pre-computed
path-segments together to repair an invalid motion plan.
Their work does not consider coordination with additional
agents. Komenda and Novák (2011) introduce the general-
ized problem of multi-agent plan repair and proposed three
sub-optimal algorithms. Komenda, Novák, and Pěchouček
(2014) present an optimal way to solve the problem but their
results only consider up to 10 agents.

Hönig et al. (2016) solves problems associated with de-
lays via a post-processing technique that transforms a MAPF
plan into a plan-execution schedule (MAPF-POST). Their
setting crucially relies on agents’ kinematic abilities. Specif-
ically, the ability to use rational constant speeds allows re-
ducing the problem to a linear program (LP) using sim-
ple temporal networks. That work is extended by Berndt
et al. (2020) by formalizing the problem as a MILP and
solving it sub-optimally online. Similarly, Ma, Kumar, and
Koenig (2017) present a probabilistic approach to resolving
delays in decentralized systems by employing an approxi-
mate expectation-minimization approach. Note that casting
our work as an instance of MAPF-POST allows for a sim-
ple solution: when an agent is delayed, simply slow down
agents that may collide with it. This is a particularly simple
case of MAPF-POST. Therefore, our main interest is in the
combinatorial aspect of this problem in the discrete case.

There are recent works that are similar to our work.
Barták, Švancara, and Vlk (2018) solve traditional MAPF
via a scheduling-based approach. Specifically, they use a
layered graph to represent delays. If only a single layer is
used, no delays are allowed. Secondly, Svancara et al. (2023)
present a preliminary work where the goal is to solve MAPF
by only introducing delays onto predefined paths. They cre-
ate an abstract graph where the nodes represent agents and
the edges represent choices to wait. Lastly, Abrahamsen
et al. (2023) studies the most similar version of our prob-
lem. There, however, they study the feasibility problem of
finding a set of delays that allows agents to reach their tar-
gets without colliding along a set of simple paths. They pro-
vide an in-depth computational complexity investigation in
lieu of empirical results. Specifically, they present a sharp
tractability boundary based on a key parameter called vertex
multiplicity (VM), defined as the maximum number of paths
passing through the same vertex. They present a variant of
the problem that is NP-complete for VM = 3 and efficiently
solvable for VM ≤ 2.

This work differs from all of these works in multiple as-
pects. First, in contrast to Hönig et al. (2016) and Berndt
et al. (2020), we consider a combinatorial problem, which
does not admit a reduction to LP. Moreover, our approach
allows for constraints that prohibit certain delays. Secondly,
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we deviate from Ma, Kumar, and Koenig (2017) by (i) con-
sidering a worst-case scenario rather than a probabilistic one
and (ii) provide an optimal approach for the setting where
the system has a centralized controller rather than proposing
execution policies for decentralized systems. The key differ-
ences between the work of Svancara et al. (2023) and our
work are that (i) we use traditional MAPF algorithms rather
than optimization techniques and (ii) our graph is compara-
tively very small, allowing us to solve much more complex
problem instances in a much shorter amount of time.

Additionally, our problem setting is very similar to that of
Svancara et al. (2023) but our solving techniques are quite
different. Specifically, we avoid the feasibility problem by
assuming the predefined paths came from an originally safe
plan and solve the problem optimally using out-of-the-box
MAPF solvers. And finally, in contrast to Abrahamsen et al.
(2023), we study the optimality of plans, i.e., we aim to
minimize the number of delays that are introduced, and not
merely check for the feasibility of some number of delay in-
troductions. Indeed, in practical settings (as well as in our
experimental setting), collisions occur due to agents break-
ing down. In such cases, it is trivial to repair the plan by
introducing delays in all the remaining agents, thus halting
execution until the breakdown is fixed (c.f., Remark 3).

In contrast to Atzmon et al. (2020a,b), our method does
not pre-compute a robust plan (and hence has no inherent
added computational cost), but rather fixes (repairs) an ex-
isting plan if a delay occurs. We show theoretically that
our setting still incurs the computational hardness presented
by Nebel and Koehler (1995) (c.f., Theorem 1). However, we
mitigate practical computation by keeping the set of repaired
plans relatively small due to strictly limiting the agents to
only using delays. Thus, modern MAPF algorithms allow us
to practically repair plans.

2 Problem Statement
We start by formulating the general MAPF setting. Consider
n ∈ N agents, acting in an environment represented by a
directed graphG = 〈V,E〉 where each agent i ∈ {1, . . . , n}
has a source si ∈ V and a goal gi ∈ V . A path in G is a
sequence of vertices π = v1v2 . . . vm such that (vk, vk+1) ∈
E for all 1 ≤ k < m. We assume that the vertices of G
contain self loops (i.e., for all v ∈ V , we have (v, v) ∈ E),
so agents can be delayed. We remark that our results still
hold if one allows self loops only on some of the vertices.

Given paths π1 = v1v2 . . . vk and π2 = u1u2 . . . uk in G,
we say that π1 and π2 are non-colliding if the following con-
ditions are satisfied for all 1 ≤ j < k:

(i) vj 6= uj (i.e., no vertex collisions),
(ii) (vj , vj+1) 6= (uj+1, uj) (i.e., no edge collisions).

If π1 and π2 are of different lengths, we assume the agent
with the shorter path remains in the target state for collision-
checking purposes.1

1Changing this to have the agents “disappear” (which is a
commonly-used assumption) at the target location does not impact
our results in any way.

Given n agents on a graph G and two lists s1, . . . , sn
and g1, . . . , gn of source and goal vertices, respectively, a
plan P = {π1, . . . , πn} is a set of paths such that πi drives
agent i from si to gi for every i ∈ {1, . . . , n}. A plan
is called non-colliding if πi and πj are non-colliding for
all i 6= j ∈ {1, . . . , n}. The length of the plan, denoted
by `(P ), is the maximal length of a path in P . The sum-of-
costs (SOC) of P , denoted by ‖P‖, is the sum of lengths
of all the paths in P . The classical Multi-Agent Path Find-
ing (MAPF) problem is to find a non-colliding plan2 P in G
with the given source and target vertices.

We now turn to formalize delays and delay-introduction.
Consider a path π = v1 . . . vm and some d ∈ N. We say that
a path π′ is a d-delay of π if π′ = v1v

k1
1 v2v

k2
2 . . . vmv

km
m ,

where vki
i means repeating vi for an additional ki ≥ 0 times.

That is, π′ repeats some of the vertices of π so that the to-
tal amount of repetitions is d. Note that if ki = 0 for all
i ∈ {1, . . . ,m} then π′ = π, i.e., π′ is a 0-delay path of π.
Also, π might already have vertex repetitions (e.g., it could
be that v1 = v2). Thus, we only allow adding repetitions,
not removing them.
Problem 1 (Avoiding Collisions by Introducing Delays
(ACID)). Given a graph G = 〈V,E〉, a plan P =
{π1, . . . , πn} and a budgetD ∈ N, decide whether there ex-
ist paths π′1, . . . , π

′
n where π′i is a di-delay of πi for each i,

with
∑n

i=1 di ≤ D and P ′ = {π′1, . . . , π′n} is non-colliding.
Note that ACID is stated as a decision problem, but for

algorithmic purposes we consider its optimization variant,
in which we want to find a non-colliding plan that mini-
mizes D, i.e., the added length of the plan.

3 Computational Complexity of ACID
We start our investigation of ACID by establishing its com-
putational complexity. Specifically, we show that solvable
instances can be solved using a quadratic delay.
Lemma 1. Consider an ACID instance with plan P =
{π1, . . . , πn} and budget D. If the instance is solvable, then
it is also solvable with budget D′ = (n− 1) · ‖P‖.

Proof. Intuitively, the maximal number of delays we may
need to introduce is such that we “spread” P so that only a
single agent moves at each timestep, and the remaining n−1
agents are delayed.

Formally, consider a plan P ′ that is a solution to Prob-
lem 1. If there is a time where all agents are delayed simul-
taneously in P ′, this delay can be safely removed. Thus, at
each step, at least one path advances, so to obtain P ′ from
P , we introduce, for each agent and each step of P , at most
n− 1 delays. Since P comprises a total of ‖P‖ agent steps,
the total delays introduced are at most (n− 1) · ‖P‖.

Remark 1 (Encoding of the budget D). ACID can be con-
sidered withD encoded either in binary or in unary. We note
that this does not affect the computational complexity, since
by Lemma 1, we can assume w.l.o.g. that D is polynomially
bounded in the size of P (namely in n and ‖P‖).

2Typically, the plan is required to be optimal with respect to
some cost function, e.g., length or sum-of-costs.
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We are now ready to establish the complexity of ACID.
The complete proof can be found in extended version (Kot-
tinger et al. 2023). For background on hardness of approxi-
mation see (Ausiello et al. 1999).

Theorem 1. ACID is NP-complete, and even APX-hard.

Proof sketch. Membership in NP follows immediately from
Lemma 1—simply guess a set of (polynomially bounded)
delays and check that the resulting plan is non-colliding.

We turn to show NP-hardness by showing a reduction
from the Minimum Sum Coloring (MSC) problem, defined
as follows. In an MSC instance we are given an undirected
graph G = 〈V,E〉 and a threshold C (encoded in unary),
and the goal is to decide whether there exists a coloring
χ : V → N such that

∑
v∈V χ(v) ≤ C. That is, we need to

color the vertices of G with natural numbers (including 0),
such that every two vertices that share an edge are assigned
different colors, and the sum of colors is at most C. MSC
was shown to be NP-complete in Kubicka and Schwenk
(1989) and is APX-hard (DeHaan and Friggstad 2023).

We start with an intuitive overview of the reduction and
depict the reduction in Figs. 2 and 3. Given a graph G =
〈V,E〉 and C ∈ N, denote V = {1, . . . , n} and E =
{e1, . . . , em}. Our ACID instance consists of n agents trav-
elling along a concatenation of C + 1 identical blocks, con-
structed as follows. For agent i ∈ {1, . . . n} we build a path
of length m that for the most part is disjoint from all other
paths. However, for each edge er ∈ E, if er = {i, j} for
some j ∈ V , then node r in the path is shared by the paths
of agents i and j. For example, edge e2 in Fig. 2 appears on
both the green and red paths in the blocks in Fig. 3. Each
agent starts its traversal from a distinct initial node, and the
blocks are concatenated in the natural way. Note that since
C is in unary, the reduction is polynomial.

We claim that G can be colored with sum at most C if
and only if the resulting ACID instance has a solution with
budget C. Intuitively, without introducing delays, for every
edge er = {i, j} ∈ E agents i and j collide in each block
on the node corresponding to er. However, if i and j are
delayed by different amounts before reaching node er, then
they do not collide.

Thus, one direction of the proof is easy: if G has a color-
ing χ of sum at most C, then by delaying agent i ∈ V for
χ(i) steps (hence keeping within the budget C), the agents
do not collide in any block.

The converse direction is more involved. Assume the
ACID instance has a solution with budget at most C. Since
there are C + 1 blocks, it follows that there is at least one
block where the agents are not delayed. In the technical ap-
pendix we show that we can therefore assume all follow-
ing blocks contain no delays as well, and moreover – that
we can aggregate all the delays to the initial node of each
agent. These delays induce a coloring of G of sum at most
C, whereby each agent is colored with its number of delays.
Since the agents do not collide, this coloring is legal. The
hardness of approximation follows from the fact that our re-
duction preserves the cost of a solution.

x
y

z w
e1 e2

e3

e4

Figure 2: An input graph for the reduction with C = 3. Ob-
serve that the graph can be colored with sum 3, by χ(x) =
χ(w) = 0, χ(y) = 1 and χ(z) = 2. Note that for clarity, we
use x, y, z and w and not 1, . . . , 4 (as is done in the reduc-
tion) to name the vertices.

e1

e2

e3

e4

e1

e2

e3

e4

Block 1 Block 2 Block 4

Figure 3: Reduction output. Each agent is represented by a
path (e.g., x is the blue path, also distinguished by arrow
types). The complete output has C + 1 = 4 blocks.

Remark 2 (ACID variants). The hardness in Theorem 1
holds already for the most “relaxed” version of ACID. How-
ever, the upper bound still holds with various restrictions on
the delays, such as only allowing a certain number (possibly
zero) of delays per agent, or per node. Thus, ACID remains
NP-complete even if the agents are not allowed to delay in
some nodes, or if the budget is specified for each agent, or
most generally – if each agent-vertex pair has a budget.

4 MAPF Formulation of ACID
We turn our attention to developing an algorithmic approach
for solving ACID. To this end, we reduce ACID to a version
of MAPF, and utilize existing solutions for the latter. Cru-
cially, we show that the specific MAPF instances resulting
from our reduction have certain favorable properties which
render them amenable to scalable optimal solutions.

Before detailing our approach, we present a small modi-
fication to the MAPF problem, whereby we allow a differ-
ent set of edges for each agent. An instance of MAPF with
agent-specific edges (dubbed Agent-Edge MAPF) is a set of
vertices V and setsE1, . . . , En ⊆ V ×V of edges, as well as
start and goal vertices for each of the n agents. The remain-
ing definitions are identical to MAPF, with the exception that
a path for agent i must use only edges from Ei.

From an algorithmic perspective, solving Agent-Edge
MAPF is similar to solving MAPF, in the following sense.

Observation 1. An algorithm A for MAPF whose queries
to the graph are only stated in the form “what are the
edges from vertex v for agent i?” can solve Agent-Edge
MAPF and preserve the same optimality/bounded sub-
optimality/anytime properties of the original algorithm A.

Note that (i) if A makes only such queries, it cannot dis-
tinguish between a (regular) graph and the agent-specific
edge setting and that (ii) most common MAPF solvers such
as all A∗-based solvers like CBS (Sharon et al. 2015) and
PBS (Ma et al. 2019) satisfy the condition of Observation 1.
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(a) Constrained Graph. (b) Improved Constrained Graph.

Figure 4: (a) A Constrained Graph and (b) an Improved Con-
strained Graph for an MAPF plan with three agents.

4.1 Constrained Graph
Our reduction of ACID to Agent-Edge MAPF is as follows.
Consider an ACID instance with graph G = 〈V,E〉 and a
plan P = {π1, . . . , πn} (ignore the budget for now). We
construct an Agent-Edge MAPF instance with the vertices
V × {1, . . . , `(P )} (i.e., a copy of V for each step in P , up
to the longest path), and the edges are defined by the paths
in P , as well as self-loops. That is, let πi = vi1, . . . , v

i
k. Then

we define Ei = {((vij , j), (vij+1, j + 1)) | 1 ≤ j < k} ∪
{((vij , j), (vij , j)) | 1 ≤ j < k}. We set the start and goal
vertices for agent i as (vi1, 1) and (vik, k), respectively.

We refer to the multiple-edgeset graph obtained above as
the Constrained Graph (CG) (see Fig. 4a). Notice that the
Agent-Edge graph does not allow agents to deviate from
their original paths. That is, the green agent located at either
highlighted vertex must either delay or transition to the next
immediate right vertex. Similarly, the red and blue agents lo-
cated at the same vertices must either delay or move upward.

Note that the out-degree (number of outgoing edges) of
each vertex in a CG is at most two. This makes a CG an
“easy” candidate for planning since the branching factor
used by search algorithms is often (though not necessarily)
small, implying low running times.

We later show that an ACID instance has a solution with
delay D iff the Agent-Edge MAPF instance on the CG has
a solution of length ‖P‖ +D. But first, we present an opti-
mization over the CG which further eliminates redundancy.

4.2 Improved Constrained Graph
Observe that the CG has self loops on all vertices. This,
however, may be redundant. For example, the collision from
Fig. 1a can be resolved by having the red agent delay at any
of the vertices along its path prior to the conflict. Thus, it
suffices to have a self loop on only one of the vertices along
its path prior to the conflict (see Fig. 4b).

Given a CG, we construct an Improved CG (ICG) as
follows. For each path πi = vi1, . . . , v

i
k in the plan, let

Ii ⊆ {1, . . . , k} be the set of indices j for which vij occurs
also in some other path πl. We refer to Ii as the intersecting
indices of agent i. The ICG is an Agent-Edge MAPF in-
stance obtained from a CG so that between every two inter-
secting indices we keep exactly one vertex with a self-loop.
Formally, for every agent i and s < t ∈ Ii ∪ {0} we retain
one self loop in the vertices vis+1 . . . v

i
t.

Note that computing ICG from CG is easy—we simply
find the intersecting vertices in quadratic time, and scan the
intervals between them.

As we prove in the extended version (Kottinger et al.
2023), using ICG instead of CG is sound and complete, in
the following sense.
Theorem 2. Given an instance of ACID with plan P , let the
CG and ICG be as above. Then, the following are equivalent.
1. The ACID instance has a solution with budget D.
2. The Agent-Edge MAPF of CG has a solution P ′ with
‖P ′‖ ≤ ‖P‖+D.

3. The Agent-Edge MAPF of ICG has a solution P ′ with
‖P ′‖ ≤ ‖P‖+D.

Following Theorem 2, we can solve an ACID instance by
applying any MAPF algorithm that satisfies Observation 1
to the corresponding CG or ICG.

5 Experimental Evaluation
We now provide an empirical evaluation comparing different
approaches for plan repair. Our approach is as follows. We
take an existing plan P for some MAPF instance, and we
introduce delays to it such that the plan becomes colliding.
We then consider three approaches to repair the plan:
• In the first approach, we simply try to find a new plan

from the agents’ current locations to their original goals
on the original graph (OG) using a MAPF solver.

• In the second (resp. third) approach, we implement our
reduction to the Constrained Graph (CG) from Sec-
tion 4.1 (resp. Improved Constrained Graph (ICG) from
Section 4.2), and use a MAPF solver.

The approaches above are further split according to which
MAPF solver we use, as we detail in Section 5.1. An impor-
tant point is that we test on CBS, which typically does not
scale very well without suboptimal heuristics.

We remark that a-priori, the comparison with replanning
on OG is not “fair”, in that OG allows for shorter plans
that are unavailable when only delays can be introduced.
Nonetheless, we show that when only a single delay is in-
troduced, our approach is competitive also in this sense —
we almost never output longer plans than OG (especially as
the number of agents increases) with the exception of a few
outliers. Thus, our approach has both the advantage of keep-
ing to the original plan, as discussed in Section 1, as well as
in plan length.

In our setting, we consider environments where delays are
enabled on all vertices (c.f. Remark 2). While this is not used
by the algorithms, it does allow us to strengthen Lemma 1.
Remark 3 (Upper bound on delays). Consider a colliding
plan P for n agents obtained by experiencing d unexpected
delay from a non-colliding plan. We can always repair P
by delaying all the remaining agents for d timesteps, hence
synchronizing back to the non-colliding plan. This gives an
upper bound of d(n− 1) on the number of delays necessary
to repair a delayed plan.
We can use Remark 3 as a sanity check on the optimality of
solutions obtained in the experiments. We divide our exper-
iments to ones where we introduce a single delay, and ones

41



(a) Berlin (b) Boston (c) den520d (d) empty 32 (e) Paris (f) random 64 (g) w-coast (h) warehouse-1 (i) warehouse-2

Figure 5: MAPF maps used in the experimental evaluations.

(a) CBS success rates (b) CBS computation times (c) CBS added SOC

(d) Anytime-EECBS success rates (e) Anytime-EECBS computation times (f) Anytime-EECBS added SOC

(g) MAPF-LNS2 success rates (h) MAPF-LNS2 computation times (i) MAPF-LNS2 added SOC

Figure 6: Global averages over all tested instances. CG and ICG lines are coincident in Figs. 6a-6d, and 6g.

where we introduce multiple delays. Conceptually, the for-
mer is a “cleaner” study of the effect of a delay. As we show,
however, the latter is much more challenging to solve.

5.1 Experimental Setup – Single Delay
We consider nine different MAPF maps from Stern et al.
(2019) (see Fig. 5). For each map, we selected 10 random
MAPF instances and use Anytime-EECBS (Li, Ruml, and
Koenig 2021) to calculate a high-quality MAPF solution
P given a time budget of three minutes. If successful, we
perform 10 iterations where, in each iteration, we sample
a collision-inducing delay for a random agent i at a random
step 0 < k < mi, wheremi is the agent i’s path length, such
that the resulting plan becomes colliding at k < t < mi.
We then attempt to repair this plan on OG, CG and ICG
using CBS, Anytime-EECBS, and MAPF-Large Neighbor-
hood Search 2 (MAPF-LNS2) (Li et al. 2022) within a three
minute time limit.

We emphasize that our goal is not to compare MAPF al-
gorithms, but to compare the effect of CG and ICG against

OG on different MAPF algorithms.
The number of agents was incremented from n = 100 in

steps of 100 until a maximum number of agents was reached
for a particular instance. For most instances, the maximal
number of agents was n = 1000.

We evaluated our findings using three metrics:

(i) success rate (i.e., percentage of plans for which a solution
was computed within the allotted time budget),

(ii) computation time (only on successful instances), and
(iii) added plan length. For CG and ICG, this amounts to the

number of delays introduced.

All evaluations were performed on AMD 4.5 GHz CPU and
64 GB of RAM. Our implementation3 was forked from the
MAPF-LNS2 codebase4 built in C++. Due to space con-
straints, we provide a representative subset of our results
here.

3https://github.com/aria-systems-group/Delay-Robust-MAPF
4https://github.com/Jiaoyang-Li/MAPF-LNS2.
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We remark that we do not seed the MAPF solvers (e.g.,
MAPF-LNS2) with the colliding plan because we are only
interested in the affect of CG/ICG compared to OG. Doing
so is an implementation choice that does not affect our con-
clusions in any significant way.

5.2 Computation Time
The average computation times of every MAPF solver over
all of the instances are shown in Figs. 6b, 6e, and 6h. The
three lines correspond to OG (blue), CG (orange), and ICG
(green). The most obvious computation time improvements
are seen in Fig. 6b which show that not only can CBS on
CG and ICG scale to 1000 agents, but it also produced very
low computation times compared to OG. Similarly, MAPF-
LNS2 on CG and ICG performed faster than on OG (see
Fig. 6h). Anytime-EECBS on ICG improved its computation
times over both CG and OG, especially for large number of
agents (see Fig. 6e).

The computation times for all three MAPF algorithms on
the most difficult scenarios are shown in Table 1. Combina-
tions that performed at least as good as OG are bolded.

CBS on CG and ICG consistently outperformed OG (Ta-
ble 1, rows 1-9). Interestingly, Anytime-EECBS is generally
faster on OG than CG (Table 1, all rows except 8) but is
faster on ICG than both OG and CG (Table 1, all rows except
3 and 7). MAPF-LNS2 shows obvious computation-time im-
provements of up to 14× than when using OG (Table 1, all
rows except row 7).

5.3 Success Rate
The average success rates of every MAPF solver over all
the instances are shown in Figs. 6a, 6d, and 6g. The results
show that CG and ICG perform better than OG across all
values of n for both CBS and MAPF-LNS2 while perform-
ing equally as well for Anytime-EECBS. CBS improved the
most, which succeeded over 80% of the time for all n with
CG and ICG but only scaled to 400 agents on OG.

The success rates for all three MAPF algorithms on the
most difficult (largest number of agents n) scenarios are
shown in Table 2. The entries where CG or ICG performed
at least as well as OG are bolded.

Observe that using CG and ICG dramatically improved
(9×, at least) the success rate of CBS on all tested maps
(rows 1-9 of Table 2). In addition, the optimal CBS algo-
rithm becomes a viable candidate for solving instances of
ACID up to 1000 agents. Anytime-EECBS provided similar
success rates for all three graphs on most examples (rows
1, 2, 5, 7 and 9 of Table 2). There are however, scenar-
ios where Anytime-EECBS both improved the success rate
(rows 4 and 6 of Table 2) and hindered it (rows 3, and 8 of
Table 2). MAPF-LNS2 produced similar success rates for all
three graphs on about half of the tested instances (rows 1, 2,
4, 5, and 9) but did show significant improvements on the
other half (rows 3, and 6-8 of Table 2).

5.4 Added SOC
The average added SOC of every MAPF solver over all the
maps are shown in Figs. 6c, 6f, and 6i. The results show that

both Anytime-EECBS and MAPF-LNS2 generally provided
shorter solutions when using CG and ICG compared to OG
(see Figs. 6f and 6i). Replanning with CBS on CG and ICG
generally results in very small SOC additions (about 4� n
as per Remark 3) compared to Anytime-EECBS and MAPF-
LNS2 (see Fig. 6c).

The added SOC for all three MAPF algorithms on the
most difficult (largest number of agents n) scenarios are
shown in Table 3. The entries where CG or ICG performed
at least as well as OG are shown in bold.

In terms of added SOC, we see that in the (very) rare oc-
casion that CBS succeeds on OG, it can improve the original
plan (rows 1-2, 5-6, and 9 of Table 3). Meanwhile, CBS on
CG and ICG generally repair plans with 1000 agents with at
most 11 additional delays (all rows of Table 3). Anytime-
EECBS produces a larger number of delays compared to
CBS and MAPF-LNS2 but using CG and ICG performs bet-
ter than OG, in general (see rows 1-9 of Table 3). MAPF-
LNS2 on CG and ICG generally improved optimality com-
pared to OG (all rows except 7 of Table 3).

Overall, planning on CG and ICG improved all three al-
gorithms in different aspects. CBS on CG and ICG scaled
to 1000 agents while minimizing added plan length. CG and
ICG also enabled Anytime-EECBS to produce more opti-
mal solutions while occasionally improving success rate.
MAPF-LNS2 on CG and ICG greatly improved the added
plan length and success rates compared to OG while also
improving computation times.

Note that the performance differences on CG and ICG are
typically very small, if any. This occurs because as the space
becomes congested, most vertices become intersections, and
hence CG and ICG become almost identical.

5.5 Experimental Setup – Multiple Delays

Our setup for introducing multiple delays is identical to
that of Section 5.1 with some key exceptions: we intro-
duced multiple simultaneous delays, we tested on 3 maps
(Figs. 5e, 5f, and 5h), we only considered instances with 600
agents, our timeout was one minute, and we considered the
anytime properties of Anytime-EECBS and MAPF-LNS2.
Table 4 report our results for 10 and 50 delay introductions.

Roughly summarizing our findings, we see that CBS fails
almost entirely in the presence of multiple delays. This fact
is interesting, as it identifies a class of graphs for which CBS
struggles that is not caused due to the number of agents or
the branching degree (as CBS works well in the presence of
one delay with even more agents).

We see that Anytime-EECBS performs roughly equally
well on OG, CG and ICG, but typically elongates the plan
more on OG than in CG and ICG (despite having potentially
shorter plans!). MAPF-LNS2 performs poorly on OG, but
well on CG and ICG, introducing less delays than Anytime-
EECBS, when successful.

We conclude that for multiple delays, heuristic algorithms
are preferable to the optimal CBS, as expected, but that CG
and ICG do assist in minimizing the number of delay.
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Row Map CBS Anytime-EECBS MAPF-LNS2

OG CG ICG OG CG ICG OG CG ICG

1 Fig. 5a 12.5 4.8 4.6 10.6 12.7 6.8 7.0 0.8 0.5
2 Fig. 5b 6.5 4.9 4.7 13.3 14.3 8.3 13.4 1.3 2.6
3 Fig. 5c — 9.7 15.5 18.4 20.6 24.0 44.2 3.1 4.0
4 Fig. 5d — 5.7 4.8 3.0 3.6 1.9 23.3 4.5 9.6
5 Fig. 5e 10.3 4.5 4.1 8.4 11.1 5.0 4.3 0.6 0.7
6 Fig. 5f 65.6 4.1 3.5 0.8 2.3 2.2 17.7 4.4 13.2
7 Fig. 5g — 23.0 22.7 4.4 20.6 3.6 1.4 36.3 31.3
8 Fig. 5h — 6.6 7.4 16.7 16.5 25.2 35.4 5.0 2.6
9 Fig. 5i 25.8 7.2 7.3 6.4 7.8 4.5 1.2 0.4 0.4

Table 1: Computation time means (s) of the initial solutions for all maps on scenes with the most agents.

Row Map CBS Anytime-EECBS MAPF-LNS2

OG CG ICG OG CG ICG OG CG ICG

1 Fig. 5a 4.2 90.3 90.3 100.0 98.6 98.6 100.0 100.0 100.0
2 Fig. 5b 4.7 81.3 81.3 100.0 98.4 100.0 100.0 96.9 98.4
3 Fig. 5c 0.0 61.2 63.3 89.8 67.3 73.5 63.3 89.8 93.9
4 Fig. 5d 0.0 46.3 46.3 7.3 26.8 26.8 19.5 17.1 19.5
5 Fig. 5e 6.5 90.9 90.9 98.7 98.7 98.7 100.0 100.0 100.0
6 Fig. 5f 2.4 61.0 61.0 17.1 31.7 34.1 22.0 41.5 51.2
7 Fig. 5g 0.0 33.3 33.3 12.5 16.7 12.5 16.7 29.2 29.2
8 Fig. 5h 0.0 83.6 83.6 67.2 49.2 52.5 44.3 93.4 91.8
9 Fig. 5i 10.0 97.1 97.1 97.1 100.0 100.0 98.6 100.0 100.0

Table 2: Success rate means (%) of the initial solutions for all maps on scenes with the most agents.

Row Map CBS Anytime-EECBS MAPF-LNS2

OG CG ICG OG CG ICG OG CG ICG

1 Fig. 5a −16 4 4 1,727 1037 1036 2,977 171 199
2 Fig. 5b −16 3 3 4,813 2803 2816 6,428 995 983
3 Fig. 5c — 4 4 10,305 5847 6141 9,297 1019 1036
4 Fig. 5d — 11 11 457 262 340 420 480 375
5 Fig. 5e −8 3 3 1,110 694 695 2,114 141 144
6 Fig. 5f −37 5 5 607 555 661 1,340 726 1053
7 Fig. 5g — 5 5 1,657 5,926 1026 415 12,950 14,760
8 Fig. 5h — 5 5 5,245 1251 1363 4,074 540 487
9 Fig. 5i −11 3 3 506 293 293 767 73 75

Table 3: Added SOC means of the initial solutions for all maps on scenes with the most agents.

Delay Statistic CBS Anytime-EECBS MAPF-LNS2

Introduction OG CG ICG OG CG ICG OG CG ICG

10
Succ. Rate (%) 1 32 32 99 98 98 32 95 100

Comp. Times (s) — 5.3 5.3 1.6 2.1 1.7 5.4 3.7 4.5
Added SOC — 7 7 587 (168) 346 (80) 346 (79) 230 (66) 136 (99) 140 (102)

50
Succ. Rate (%) 0 0 0 100 100 100 31 100 100

Comp. Times (s) — — — 1.8 2.8 2.1 7.1 5.2 5.5
Added SOC — — — 660 (318) 758 (296) 757 (314) 336 (138) 556 (370) 567 (379)

Table 4: Experimental results for 10 and 50 simultaneous delays. Anytime algorithms report two values for Added SOC: the
initial solution and the best solution (in parentheses). Computation times are provided for the initial solutions.

6 Conclusion
We address the issue of repairing MAPF plans after encoun-
tering unexpected delays. We introduce the ACID problem,
and prove it is NP-Complete. We adapt ACID into an MAPF

problem using two novel graph formulations, CG and ICG,
which confine the graph to the original paths. We empiri-
cally show that the CG and ICG improve MAPF algorithms’
ability to repair plans compared to traditional MAPF.
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