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Abstract

The longest simple path and snake-in-a-box are combinato-
rial search problems of considerable research interest. Recent
work has recast these problems as special cases of a general-
ized longest simple path (GLSP) framework, and showed how
to generate improved search heuristics for them. The greatest
reduction in search effort was based on SPQR tree rules, but
it was posed as an open problem how to use them optimally.
Unrelated to search, a theoretical paper on the existence of
simple cycles that include three given edges answers such
queries in linear time with SPQR trees. These theoretical re-
sults are utilized in this paper to develop advanced heuristics
and search partitioning for GLSP. Empirical results on grid-
based graphs show that these heuristics can result in orders of
magnitude reduction in the number of expansions, as well as
significantly reduced overall runtime in most cases.

Introduction
The longest simple path (LSP) problem is to find the Longest
Simple Path (where no vertex is visited more than once)
between two given vertices in an undirected graph. LSP is
a fundamental problem in graph theory, known to be NP-
hard, and even hard to approximate within a constant fac-
tor (Karger, Motwani, and Ramkumar 1997). The motiva-
tion to solve LSP comes from a variety of domains such
as information retrieval on peer to peer networks (Wong,
Lau, and King 2005), estimating the worst packet delay of
Switched Ethernet network (Schmidt and Schmidt 2010),
multi-robot patrolling (Portugal and Rocha 2010), and VLSI
design where the longest path should be found between two
components on a printed circuit board (Chen 2016).

Several prior works approached LSP as a heuristic search
problem: (Stern et al. 2014) showed how to modify com-
mon heuristic search algorithms designed for minimization
(MIN) problems to solve maximization (MAX) problems.
They used LSP to demonstrate this and proposed an admis-
sible heuristic for LSP. Then, (Palombo et al. 2015a) pro-
posed several admissible heuristics for solving the Snake-in-
the-box (SIB) problem (Kautz 1958). SIB is a variant of LSP
that can help find efficient error correction codes. In SIB, a
path may not use neighbours of vertices that are already in
the path. Followup work (Cohen, Stern, and Felner 2020)
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focused on LSP and proposed several methods to detect and
prune states that are dominated by other states. In addition
specific grid-based heuristics for LSP were proposed.

These two longest path search problems (LSP and SIB),
as well as others, were recast within a generalized longest
simple path (GLSP) framework that includes these prob-
lems as special cases (Dahan et al. 2022). Heuristics based
on biconnected components were shown to be applicable to
many GLSP types, by discounting vertices that are guaran-
teed not to be on such a simple path. Using separation pairs
and SPQR trees (Dahan et al. 2022), it was shown that the
admissible heuristic bound could be greatly improved due
to considering an independent set in an ”exclusion graph”,
consisting of an edge for each vertex pairs that cannot be on
a desired simple path. This was called the independent-set
(IS) heuristic. Although the new SPQR-tree based heuristics
led to a major improvement in number of expanded nodes
and runtime, still two major issues remained open: the exclu-
sion rules in (Dahan et al. 2022) did not deliver all possible
exclusion pairs, and the independent set (being NP-hard to
compute in general) was only approximated. A recent theo-
retical paper on conditions for the existence of a simple cycle
that includes three given edges (Dinitz and Shimony 2023)
provides an exact and efficient method (using SPQR trees)
to find all exclusion pairs, but does not actually compute the
heuristic value and does not apply the results to search.

This paper leverages off the theoretical results, proving
that an exact independent-set heuristic can be computed effi-
ciently (linear time). This heuristic dominates all the approx-
imate versions of the IS heuristic from (Dahan et al. 2022).
Implementing this heuristic results empirically in consider-
able savings in number of expansions and runtime for both
LSP and Snake problems, our second contribution. Finally,
we show that the SPQR structure allows for a partitioning of
the search: solving a weighted longest simple path problem
in individual triconnected components results in an over-
all longest path. This partitioning is valid beyond LSP: it
holds for Snake problems, as well as constrained longest
path problems with ”symmetric” constraint rules that are ”in
between” LSP and Snakes. We develop a scheme exploiting
partitioning, with empirical results again showing consider-
able search time reduction in hard problem instances.
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Background
We begin with background on longest path problems, solv-
ing them using exhaustive search, and admissible heuristics
used therein in prior work. The latter requires concepts from
graph decomposition: biconnected components and SPQR
trees, also overviewed.

Generalized Longest Simple Path Problems
Let G = (V,E,w) be a connected undirected weighted
graph with no self-loops. A path from v0 to vm is an al-
ternating sequence P = (v0, (v0, v1), v1, (v1, v2), ...vm) of
vertices and edges in G such that following elements in the
sequence are adjacent, i.e. each edge is incident on the pre-
ceding and following vertices in P . Path P is simple if no
vertex appear is P more than once. In this paper we aim at
finding longest paths under constraints - where constraining
the path to be simple (LSP) is the most common.

The Generalized Longest Simple Path (GLSP) framework
(Dahan et al. 2022) supports analysis of heuristics across
several domains, including LSP and Snakes. We briefly re-
peat its essential definitions here.

A pair (x,Mx) with x ∈ (V ∪ E) and Mx ⊆ (V ∪ E) is
called a local exclusion constraint. The semantics of a con-
straint are as follows: after exiting x, a path cannot visit any
member of Mx. A global exclusion constraint for G is a set
of local exclusion constraints. Let L be a global exclusion
constraint. If (x,Mx) is in L, we denote Mx (assuming it is
unique) by L(x). Path p violates global exclusion constraint
L if it violates any of the local constraints of any element
in p. Thus defined, the global constraint L is always mono-
tonic: if p violates L, every extension of p also violates L.
When the local constraints in L are defined uniformly, we
call L a constraint rule. For example, the global constraint:
∀x ∈ (E ∪ V ), L(x) = {x}. i.e. ”no vertex or edge of the
graph may be visited more than once” is a constraint rule.

Definition 1 (Generalized LSP Problem). Given a graph
G = (V,E,w), and a global exclusion constraint L, find
a path of maximum weight w in G (optionally starting at
start vertex s, optionally ending at target vertex t) that does
not violate L.

As mentioned above, LSP and Snake are special cases of
GLSP, as follows. Longest (vertex-wise) simple path (de-
noted as standard LSP): pairs in L are (x, {x}) for all ver-
tices x ∈ V . Snake: pairs in L are (x,N(x) ∪ {x}) where
N(x) are the immediate neighbours of x, for all x ∈ V . In
this paper, we assume the G is unweighted (i.e. w(x) = 1
for all x ∈ E ∪ V ) unless explicitly stated otherwise.

Best-First Exhaustive Search in GLSP
We assume, unless stated otherwise, that search progresses
from a start vertex s by adding one edge and vertex at a time
to a partial path P that has s′ as a last vertex, and that the
path has to end at target vertex t. Here g(n) is naturally the
length of P . Define the remaining graph, Gr(G,P ) to be G
after removing all P vertices other than s′ from G, as well
as any other elements no longer accessible under constraint
L: the edges incident to P − {s′} in LSP, and also adjacent

vertices in Snake. Clearly a state is not a dead end only if
s′, t are in the same connected component of Gr(G,P ).

In shortest-path problems, which aim to minimize a path
length (called MIN problems) search algorithms such as A*
prefer search nodes with lower f(n) = g(n) + h(n) values.
Symmetrically, for longest path problems (MAX problems),
A* must be modified to prefer search nodes with the greatest
f(n) values, as done specifically for LSP (Stern et al. 2014).
Admissibility in MAX problems. A function h is said to be
admissible for MAX path problems iff for every state n in
the search space h(n) is greater than or equal to the weight
of the longest constrained path (longest simple path for LSP)
from s′ to t in Gr(G,P ).

Graphs and Connectivity Types
Undirected graph G = (V,E) is connected if for every pair
of vertices u, v ∈ V there is a path from u to v in G. Obvi-
ously the longest simple path cannot have more edges than
the number of vertices in G minus one. Different notions
of connectivity play a crucial role in designing admissible
heuristics in searching for longest paths (Dahan et al. 2022).

Path search literature (Cohen, Stern, and Felner 2020)
uses the notion of k-connectivity. Graph G is (vertex) k-
connected if there is no set of vertices S of size k− 1 which
disconnect G, when removed. Such graphs have at least k
vertex-disjoint paths between any two vertices.

Especially relevant to LSP in past work are 2-connectivity
(biconectivity), and 3-connectivity (triconnectivity). A bi-
connected component (block) of G is any maximal bicon-
nected subgraph of G. Every pair of biconnected blocks
G1, G2 has at most one vertex v in common; which is called
an articulation point, or a separator. A graph consisting
of one block-vertex V (Gi) representing each biconnected
block Gi of G, one vertex v for each separator, and an edge
between v and V (Gi) just when the separator v ∈ Gi is
known as the block-cut graph of G. For example, Figure 1.
taken from (Dahan et al. 2022), shows a graph (left), with
two separators: y and x, splitting the graph into 3 bicon-
nected blocks; and the corresponding block-cut tree (center).

In a biconnected graph, a pair of vertices is called a
separation pair if deleting it makes G disconnected. Tri-
connected components are maximal subgraphs that are 3-
connected. A biconnected graph can be organized into a tree-
like structure of triconnected components and separation
pairs, known as an SPQR tree (Battista and Tamassia 1996;
Dinitz and Shimony 2023). SPQR trees have many techni-
cal details, one must read the cited papers to fully under-
stand them. Here, we describe details essential to our work.
SPQR trees consist of components of 4 types; each com-
ponent represents a graph fragment. R (”Rigid”) compo-
nents represent triconnected parts of G. P (”Parallel”) com-
ponents represent a separator pair that separates the graph
into three or more parts. S (”Series”) components repre-
sent a circular series of vertices. Q components represent
individual edges, but are not used in our SPQR represen-
tation. See Figure 1 (right) for an SPQR tree of block B3,
which contains all vertices between x and t. The pair x, t
gives rise to a component of type P which separates the
graph into 3 parts, each of type S. In the figure, for each S
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Figure 1: A graph (left), its biconnected block-cut tree (center), and simplified SPQR tree of block B3 (right).

component the sequence of vertices are listed in the paren-
thesis. The S vertex with the ui vertices contains separa-
tor pair u1, u2, giving rise to a P component, which abuts
a triconnected component (an R component). Inside each
component C, for each separation pair u1.u2, a virtual edge
e = (u1, u2) is added to represent each part of the SPQR
tree (and thus also G) separated off by u1, u2. The part of
the graph so represented is denoted by T (C, e). We denote
by V (T (C, e)) the set of vertices in T (C, e), and also use
V −(T (C, e)) = V (T (C, e)) \ {u1, u2}. Figure 2 is another
example, with internal component structure visible, and vir-
tual edges dashed. Virtual edge e1 represents the top-left S
component in the R component, and vice-versa. See (West-
brook and Tarjan 1992; Battista and Tamassia 1996) for de-
tails on SPQR trees, their properties, and constructing them
in linear time (Gutwenger and Mutzel 2000). SPQR trees
were used in (Dahan et al. 2022) to design heuristics, de-
scribed below and improved in this paper.

Must-Include Paths and Cycles
A fundamental graph problem used in GLSP problems (Da-
han et al. 2022; Palombo et al. 2015b), is: given a graph
G = (V,E) and a set of elements S, is there a simple path
(or cycle) that includes all elements in S? Since this problem
is hard in general, typically only |S| ≤ 3 is used.

The following known relations between connectivity and
must-include paths and cycles are useful to define GLSP
search heuristics (Dahan et al. 2022):
Theorem 1. Let G = (V,E) be a biconnected graph, and
s, t, v ∈ V . Then there is a simple s to t path through v.

Conversely, a biconnected block can only be entered or
exited through a separator. Thus, a simple path (which can-
not use a separator more than once) between vertices s and
t can only visit biconnected blocks B obeying the follow-
ing condition B: B is on the path from (a block containing)
s to (a block containing) t in the block-cut tree of G. This
observation leads directly the BCC heuristic (see next sub-
section). Together with Theorem 1 we have: vertex x can be
on a simple path from s to t if and only if and only if x is in
a biconnected block for which condition B holds.

Likewise, we might wish to find exclusion pairs: i.e. pairs
of vertices v, w that cannot be on a simple path from s to t.

A triconnected graph has no such pairs (Dahan et al. 2022):

Theorem 2. LetG(V,E) be a triconnected graph. Then, for
every s, t, v, w ∈ V there exists a simple path in G from s to
t that includes v and w.

Exclusion pairs can be found quickly using SPQR trees
(Dahan et al. 2022; Dinitz and Shimony 2023). Let v, w be
a separation pair that partitions G into disjoint (other than
v, w) subgraphs G1, G2, ..., Gk, k ≥ 3. This is called case
P because it occurs in components of type P in the SPQR
tree. Clearly, a simple path can only enter and then exit at
most one of the Gi, because entering and exiting Gi uses up
both w and v which cannot be used any more. The simple
path may in addition start and/or end at some Gj , Gm with
j 6= i 6= m although either j = m or j 6= m are possi-
ble. Therefore, let Gi1 and Gi2 be components that do not
contain either s or t. then vertices x ∈ Gi1 , y ∈ Gi2 , (both
distinct from v, w) are exclusion pairs.

Case S (occurs in components of type S in the SPQR tree)
is in a cycle of 4 or more separation pairs, noting that if s
and t are on opposite sides of the cycle, only one side of the
cycles can be traversed with a simple path.

In the graph of Figure 1 we have a P component (right),
with three neighbors, none of which contain the ”entry ver-
tex” x or the ”exit vertex” t, except in the separator. So only
one of the subtrees rooted at these neighbors can be entered
and exited, thus all pairs of vertices, one from each subtree,
are exclusion pairs.

The above S and P rules were used to compute an SPQR-
tree based heuristic (see next section), but do not deliver all
possible exclusion pairs. An open question was how to find
all exclusion pairs efficiently. A crucial idea in (Dinitz and
Shimony 2023) was to add the edge (s, t) to graph G before
constructing the SPQR tree T . Then, one requires a simple
cycle containing u, v, and the edge (s, t), which is equivalent
to requiring a simple path from s to t via u, v without edge
(s, t). If G was biconnected, this trick forces s, t to be in
the same SPQT tree component C, thereby simplifying the
required rules. If G is triconnected, for every set S of size 3
where not all elements are edges there exists in G a simple
cycle that includes all elements in S. For the case of 3 edges,
we have (Dinitz and Shimony 2023):
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Theorem 3. Let G be a triconnected graph, and e1, e3, e3
be given edges in G. Then there exists a simple cycle that
traverses e1, e2, e3 if and only if these edges are not all inci-
dent on one vertex, and do not form an edge-cut of G.

Together with Theorem 2, it was shown that the following
scheme, called the Exclusion Pair Enumeration (EPE) algo-
rithm, provably outputs exactly all exclusion pairs (Dinitz
and Shimony 2023), as follows. Starting at the component
containing the real edge (s, t) as the root, visit all compo-
nents of the SPQR tree in a preorder. In each visited com-
ponent C, exclusion pairs are emitted by calls to an EMIT-
PAIRS(E′, C) function that receives a set of virtual edges
E′ in C. Then, for each pair of edges ei, ej ∈ E′ with
i 6= j, every vertex in V −(T (C, ei)) forms an exclusion
pair with each of the vertices in V −(T (C, ej)). These exclu-
sion pairs can be output explicitly, or implicitly by just list-
ing the virtual edges in E′. For conciseness, define a pred-
icate ExclusionP(E′, C) which is true if and only if EMIT-
PAIRS(E′, C) is called by EPE when visiting component C.

It suffices here to define the output of EPE, using the Ex-
clusionP predicate. Below are the only cases where Exclu-
sionP is true. Denote by (s′, t′) the edge (real or virtual)
by which EPE enters component C, with (s′, t′) = (s, t)
at the root. Denote by Evirt(C) the set of virtual edges in
C. If C is a P component, we have ExclusionP(Evirt(C) \
(s′, t′)), C). This corresponds to case P above.

If C is an R component, we have ExclusionP(E′, C) iff
E′ ∈ Evirt(C)\(s′, t′)) and one of the following conditions
hold (corresponding to the cases in Theorem 3):

1. E′ is a maximal set of virtual edges, all incident on s′, or
all incident on t′, with |E′| ≥ 2.

2. E′ forms a 2-edge cut of C ′ \ (s′, t′), and the edges of E′
are not both incident on s′ or t′.

To find all 2-edge cuts, EPE calls a linear runtime function
FIND2EDGECUTS, also used below.

For example, in Figure 2 EPE starts with C being the R
component and (s′, t′) = (s, t) (additional edge (s, t) is
not shown). We get ExclusionP({e1, e2}, C) (correspond-
ing to exclusion pair (c1, c2)) and ExclusionP({e3, e4}, C)
(exclusion pair (c3, c4)) due to case 1. Then EPE visits
each S component, entering through the respective vir-
tual edge ei, but emitting no additional exclusion pairs as
ExclusionP(E′, C) is never true for S components. There
are no exclusion pairs insideR components, due to Theorem
2. The runtime of the EPE algorithm is linear in the size of
G with implicit output. Still, unlike the S and P rules above,
EPE was never used to actually compute a search heuristic
before, a contribution of this paper.

Existing Longest Path Search Heuristics
In searching for a path from s to t, biconnected blocks for
which condition B above does not hold can be dropped
from G, resulting in the admissible biconnected component
heuristic hBCC (Cohen, Stern, and Felner 2020). In Figure
1, s is in block B1, and t is in block B3. Block B2 is not on
the path from B1 to B3, and can be discarded. Equivalently,
vertices z, z′ cannot appear in any simple path from s to t.
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c3

c4

S(s, u, c1) S(t, u, c3)
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l
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t
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t

c3u

e3

t

c4l

e4

Figure 2: Graph, SPQR tree (left), SPQR components (right)

Theorem 4. Given a constrained (s, t) longest path prob-
lem on graph G = (V,E), with a constraint L such that
x ∈ L(x) for every vertex x ∈ V . Denote by S′ the set of
all vertices v for which there is no must-include {v} con-
strained path from s to t. Then the length of the longest con-
strained (s, t) path is at most hBCC(G, s, t) = |V |−|S′|−1.

Considering vertex pairs, (Dahan et al. 2022) proposed
the following method. Step 1: Remove the above defined S′
vertices from G, resulting in graph G′ = (V ′, E′). Step 2:
Construct an auxiliary ”exclusion” graph Gex consisting of
all vertices V ′−{s, t}, and an edge {u, v} ∈ Gex just when
there is no simple path (from s to t) in G′ including {u, v}.
Then we have (Dahan et al. 2022):
Theorem 5. Every (s, t) path in G = (V,E), constrained
by L s.t. ∀x ∈ V, x ∈ L(x), has length at most α(Gex) + 1,
where α(.) is the maximum independent set size.

For example, in the graph of Figure 1 (left) after reaching
vertex x one can traverse (only) either the top branch from
x to t (the ui vertices), or the middle branch, or the bottom
vertex w4. Thus Gex contains all the vertices of block B3,
except for x, t. The edges in Gex are between w4 and all the
other wi vertices, between all ui vertices and all wj vertices.
The maximum independent set in thisGex consists of all five
ui vertices, total size 5. Thus the bound is 6. In this graph the
bound happens to be tight, i.e. equal to the number of edges
in a LSP. Henceforth, denote hIS(G, s, t) = α(Gex) + 1.
Note that by construction hIS dominates hBCC .

Computing the maximum independent set is NP-hard, so
it was approximated in (Dahan et al. 2022) by counting the
number of maximal cliques in some (not necessarily dis-
joint) clique cover of an approximation to Gex resulting
from applying the S and P rules in the SPQR tree. The re-
sulting heuristic was called ĥSPQR. This left two open is-
sues: how to compute the exact exclusion graph efficiently,
and how to compute or better approximate the size of the
maximum independent set - both solved in this paper.

Heuristics for Snakes Constraints L tighter than simple
path, such as Snake problems, allow for additional admis-
sible heuristics. For Snake problems, the remaining graph
is partitioned into disjoint sets of connected components
(Palombo et al. 2015a). For each such component the largest
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set of vertices that can be in a snake was identified. One such
component type used was a star-shape subgraph G′ consist-
ing of a vertex and its immediate neighbours, which cannot
all be in the same snake path if the number of vertices in G′
is greater than 3. It was observed that smaller patterns lead
to better heuristics (Dahan et al. 2022), where the vertices
in Y-shaped (star with only 3 spokes) and 2x2 square pat-
terns also cannot all be visited by a Snake. In either case,
the number of allowed vertices in each of these sets were
added together into an admissible heuristic. With the intro-
duction of exclusion-pair based heuristics in (Dahan et al.
2022), another open question is how to best combine such
patterns with exclusion pairs (problematic when they over-
lap, e.g. when a vertex is in a 2x2 pattern as well as in an
exclusion pair), another issue addressed in this paper.

Efficient Exact Computation of hIS

We now adapt the methods of (Dinitz and Shimony 2023)
to compute hIS . Since our version computes the exact size
of the maximum independent set of the complete Gex, we
denote this heuristic by hMIS . Due to theorems shown
therein, their EPE algorithm correctly emits all exclusion
pairs. Thus, one can use the EPE algorithm to generate the
exact exclusion graph Gex, and then find its independent set
size to compute hMIS . However, we show that Gex actu-
ally has a special structure allowing computation of its max-
imum independent set size without explicitly constructing
Gex. Thus, we modify the EPE algorithm to compute the
value of hMIS directly, without emitting the exclusion pairs.

This algorithm follows the same traversal of the SPQR
tree as EPE, except that instead of emitting the exclusion-
pairs in preorder, the number of vertices in a maximum inde-
pendent set is computed post-order. The OPTCONSTRAINT
Boolean function in line 5 is used to apply the heuristic to
Snake and other problems, and always returns false for LSP.
For conciseness, in recursive calls to TRAVERSE we use Ce

to denote the component adjacent to C ′ in the SPQR tree
that hangs off the virtual edge e.

As stated above, when EXCLUSIONP(E′, C ′) and
e1, e2 ∈ E′ with e1 6= e2, all vertex pairs in
V −(T (C ′, e1)) × V −(T (C ′, e2)) are exclusion pairs
in Gex. Therefore an independent set among vertices
in these subtrees cannot contain more vertices than
maxe∈E′ V

−(T (C ′, ei)). However, subtrees hanging on
virtual edges not in any EXCLUSIONP(E′, C ′) are (mutu-
ally independent) independent sets of Gex, so their sizes are
summed.

Specifically, recall that EXCLUSIONP(E′, C ′) never oc-
curs in an S component, so the independent set sizes from
the subtrees hanging on its virtual edges are summed. To
that sum we add the number of vertices in the S cycle, not
including the two vertices s′, t′. In a P component EXCLU-
SIONP(E′, C ′) where E′ dentes all virtual edges in C−, so
the maximum number of vertices from the subtrees is taken.
In an R component, we count all vertices other than s′, t′, as
well as capturing the maximum independent set sizes of ver-
tices due to the virtual edges: sum over subtrees from virtual
edges not in any EXCLUSIONP(E′, C ′) plus sum of maxi-
mum over edge sets E′ for each EXCLUSIONP(E′, C ′).

Algorithm 1: Compute hMIS(G)

Input: a biconnected graphG and two of its vertices s, t
1: Compute SPQR tree T = T (G ∪ {(s, t)})
2: Root T at component C where e = (s, t) is a real edge
3: return (TRAVERSE(C, e)+1)
4: function TRAVERSE(C ′, (s′, t′))
5: if OPTCONSTRAINT(G, s′, t′) then
6: return (0)
7: Let C− = C ′ \ (s′, t′); Let E = virtual edges of C−
8: if C ′ is a P component then
9: return (maxe∈E TRAVERSE(Ce, e))

10: if C ′ is an S component then
11: return (|V (C ′)|−2+

∑
e∈ETRAVERSE(Ce, e))

12: /* (C ′ is an R component) */
13: Let Tot = |V (C ′)| − 2; Let ENEX = E
14: for u ∈ {s′, t′} do
15: Let EEX = {(u, v)|(u, v) ∈ E)}
16: if |EEX | ≥ 2 then
17: Tot +=maxe∈EEX

TRAVERSE(Ce, e)
18: ENEX = ENEX \ EEX

19: Let Cuts = FIND2EDGECUTS(C−, (s′, t′))
20: for all EEX ∈ Cuts s.t. EEX ⊆ E
21: and EEX not incident on s′ or t′ do
22: Tot +=maxe∈EEX

TRAVERSE(Ce, e)
23: ENEX = ENEX \ EEX

24: Tot +=
∑

e∈ENEX
TRAVERSE(Ce, e)

25: return (Tot)

In order to prove corectness of the computation, we intro-
duce the concept of an undirected abstract exclusion graph
A = A(G, s, t) = (VA, EA), which is defined using the the
SPQR tree T of G ∪ (s, t) rooted at the component that in-
cludes the real edge (s, t). The ”abstract” vertices of A con-
sist of all the virtual edges in T . There is an edge (v1, v2) in
EA just when there exist an exclusion pair u,w ∈ G such
that u is in the subtree of T represented by v1, and w is in
the subtree represented by v2. By construction, this occurs
if ExclusionP(E′, C) for some component C, and exists E′
such that v1, v2 ∈ E′. The following is an important lemma:

Lemma 1. All the connected components of abstract exclu-
sion graph A(G, s, t) are cliques.

Proof. By construction, if EXCLUSIONP(E′, C) then there
is a clique in A = A(G, s, t) among the abstract vertices
(standing for abstract edges) E′. Conversely, there is an
edge between abstract vertices v1, v2 ∈ A only if EXCLU-
SIONP(E′, C) for some C and E′ such that v1, v2 ∈ E′. So
it is sufficient to prove that these cliques do not overlap, or
formally:

Claim 1. Let C be a component, and E1, E2...Ek be differ-
ent edge sets such that ExclusionP(Ei, C) for all 1 ≤ i ≤ k.
Then e ∈ Ei for at most one 1 ≤ i ≤ k.

The claim holds vacuously for S components, and triv-
ially for P components. Therefore, assume that C is an R
component. To prove the claim by contradiction, let e be a
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virtual edge in C− = (C − (s′, t′)) and e ∈ Ei, e ∈ Ej for
some i 6= j. There are three cases to consider:
1. Ei, Ej ∈ Cuts. This is impossible, since (Dinitz and Shi-
mony 2023) showed that 2-edge cuts cannot share an edge
in C− of an R component.
2. Ei are all incident on s′, Ej are all incident on t′, or vice
versa, in C−. Then e = (s′, t′) ∈ C− (contradiction).
3. Ei is incident on s′ (or on t′), and Ej ∈ Cuts. Let
Ej = {(s′, w), (u, v)} s.t. u is on the s′ side of the cut Ej .
Then s′, v separates w from u in both C− and C, and is thus
a vertex 2-cut ofC. SoC is not triconnected, a contradiction.
A similar contradiction occurs for Ei incident on t′.

Lemma 1 enables the main result (proved in Appendix):

Theorem 6. The hMIS algorithm correctly computes
hMIS(G) in time linear in the size of G. (That is, O(|E|).)

Linear time is due to the complexity of EPE with implicit
output. Actually achieving the linear time requires careful
attention to implementation detail, e.g. set operations and
membership tests in lines 15-18, 20, and 23 should be done
by appropriate tagging of elements, rather than general-
purpose set operation functions. (These optimizations were
not done for the empirical evaluation in this paper.)

Adapting hMIS to Other Longest Path Problems
Recall that a GLSP problem is an LSP problem if its con-
straint rule has L(x) = {x} for every vertex x, and is a
Snake problem if its constraint rule likewise has L(x) =
N(x)∪{x}. Consider constraints ”in-between” these cases:
L such that {x} ⊆ L(x) ⊆ N(x) ∪ {x}; we call such con-
straints local vertex constraints. A local vertex constraint L
is called symmetric if for every pair of vertices x 6= y, we
have x ∈ L(y)⇔ y ∈ L(x).

Obviously hMIS is admissible for all problems with lo-
cal vertex constraints. Additionaly, when x ∈ L(y), a
path traversing both x and y must have x and y adja-
cent on the path. So hMIS can be tightened for sym-
metric local vertex constraints by defining the function
OPTCONSTRAINT(G, x, y) to return true when x ∈ L(y)
and (x, y) ∈ G. Note that OPTCONSTRAINT defined this
way always returns false for LSP, and returns true for Snake
just when (x, y) ∈ G.

To combine hMIS with pattern heuristics, we note that af-
ter setting Tot to V (C ′) − 2 in R components, we can use
any disjoint pattern-based heuristic, such as 2x2 squares for
Snakes, and deduct 1 from Tot for any such pattern S, as
long as V (S) ⊆ C ′. The resulting heuristic is still admissi-
ble, despite the fact that a vertex v in such a pattern may also
be in an exclusion pair. That is due the following property:
let EX(v) be the set of vertices which form an exclusion
pair with v. Then EX(u) = EX(v) for all u, v ∈ S ⊆ C ′.

Search Partitioning with SPQR Trees
Obviously, search for simple paths (both shortest or longest)
can proceed independently in different biconnected compo-
nents. A similar, albeit somewhat more complicated, scheme
can also partition search among SPQR tree components. The
crucial observation is that a simple path in the parts of G

corresponding to a subtree of the SPQR tree hanging on any
virtual edge e is independent of any simple path in the rest of
the SPQR tree. So in fact the equations used to agglomerate
the heuristic value in the hMIS computation algorithm can
also be used as-is for the length of the longest simple path
between the ends of e in each subtree.

By calling TRAVERSEP (algorithm) 2 that traverses the
tree the same way as TRAVERSE, we we get an actual longest
constrained path. Here, in a P component, the max means
comparison of paths by path length. The function SPLICE-
VIRTUALS(p) receives a path p consisting of real and virtual
edges, and replaces each virtual edge e in p by the appropri-
ate path p(e) computed by a recursive call. In an S node, p is
the unique path from s′ to t′ that does not include (s′, t′). In
an R node, do the traversal for every virtual edge, and give
each virtual edge a weight equal to the length of the returned
path. All other edges have a weight of 1. Then search in the
current R component for the heaviest weighted simple path
between s′, t′, (function MAXWEIGHTEDPATH) using, for
example, A*.

Algorithm 2: TRAVERSEP for Computing LSP

1: function TRAVERSEP(C ′e, (s
′, t′))

2: if OPTCONSTRAINT(G, s′, t′) then
3: return ((s′, t′))
4: Let C− = C ′ \ (s′, t′); Let E = virtual edges of C−
5: for e ∈ E do
6: Let p(e) = TRAVERSEP((Ce, e), C

′)

7: if C ′ is a P component then
8: return (maxe∈E p(e))
9: if C ′ is an S component then

10: Let p be the unique path from s′ to t′ in C−.
11: return (SPLICEVIRTUALS(p))
12: /* (C ′ is an R component) */
13: for e ∈ E(C−) do
14: Let w(e)=1
15: if e ∈ E then
16: Let w(e) = |p(e)|
17: Let p =MAXWEIGHTEDPATH(C−, s′, t′)
18: return (SPLICEVIRTUALS(p))

Partitioning in Other GLSP Problem Types
TRAVERSEP supports Snake problem partitioning when
OPTCONSTRAINT is defined to return true just when
(s′, t′) ∈ G. More in general, defining OPTCON-
STRAINT appropriately as above, the decomposition sup-
ports any symmetric local vertex constraint. Obviously,
MAXWEIGHTEDPATH must be a function returning the path
of maximum weight that does not violate constraintLwithin
the R component C ′, rather than just a simple path.

Empirical Evaluation
We have tested the effectiveness of our new heuristics and
partition algorithms mostly on 4-connected grids, with the
exception being binary hypercube for SIB. We expect our
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Problem ĥBCC (old) ĥSPQR Naive ĥMIS hMIS Partition
Instances f∗ exp h(s) t exp h(s) t exp h(s) t exp h(s) t exp t
Showcase 128 158K 286 T/O 104K 160 T/O 127 128 0.51 127 128 0.09 153K T/O
Maze 85 694 109 0.19 364 103 1.10 268 99 0.53 268 99 0.52 210 0.45
Maze-A-1 91 102K 113 1160 43K 109 264 28K 105 100 28K 105 98 824 1.37
Maze-A-2 101 267K 117 T/O 257K 113 T/O 273K 113 T/O 279K 113 T/O 22K 126
Maze-B-1 93 28K 113 85 5724 107 24 3749 103 7.4 3749 103 7.0 1389 2.4
Maze-B-2 95 280K 117 T/O 112K 114 2923 57K 110 631 57K 110 645 14K 44

Table 1: LSP Results

hMIS to gain mostly when the true exclusion graph has ex-
clusion pairs not detected by SPQR rules in prior work, i.e.
when the SPQR tree of the graph contains converging vir-
tual edges, as in Figures 2, and 3 (left). To be more sys-
tematic, we also generate problem instances in sequences
of increasing difficulty. We use grid maps of mazes, with a
pre-determined s and t. We start with the maze in Figure 3
(right), and remove a 5x5 obstacle region (black) shaped as
depicted below at a random location to get the next instance,
repeating until all runs time out at 15K seconds:
X
XXX

XXXXX
XXX
X

Experiments were run on AMD Ryzen 9/3900X 12-Core
@3.80GHz with 64.0GB, 2667MHz RAM, programmed in
Python and Sagemath.

Typical results appear in Table 1 for the following, all us-
ing A*: (I) BCC heuristic (hBCC , to verify (Dahan et al.
2022) results), (II) the SPQR heuristic ĥSPQR from (Da-
han et al. 2022), (III) ”naive” new SPQR heuristic (”Naive”
ĥMIS), with Gex created using EPE, and greedy clique
cover to approximate the MIS, (IV) our hMIS heuristic, and
(V) the SPQR-based partitioning scheme, using hMIS in-
side R components. For each problem instance, we report
the length of the longest simple path as f∗. Then, for each
heuristic we report the following: (1) The number of ex-
panded nodes. (2) The value of the heuristic at the initial
state, denoted by h(s). (3) Runtime in seconds, with T/O
indicating time out. For the partitioning scheme, the num-
ber of expansions reported is the total for all search runs
(one in each R component), and h(s) is undefined and thus
not reported. Bold fonts indicate the best variant(s). We can
see that, confirming the results in (Dahan et al. 2022), for
easy problem instances ĥBCC is the fastest due to having the
smallest overhead. As the instances grow harder, the SPQR-
based schemes become relatively faster, with an advantage
for our new hMIS schemes (in Showcase this is several or-
ders of magnitude). In most cases hMIS performed no bet-
ter than the naive version, but is still recommended, as it
is guaranteed to compute hMIS exactly and is simpler to
implement. For hard instances, partitioning achieves several
orders of magnitude improvement; but performs poorly in
the Showcase example: it attempts to find a longest path in
the large R component, where, due to our hMIS heuristic,

non-partitioned A* never expands paths at all.

Figure 3: Showcase (left), Maze (right). Green: s. Purple: t

Prob. ĥBCC ĥSPQR hMIS Partition
Inst. f∗ exp t exp t exp t exp t

6D-H SIB 26 48K 1486 22K 493 19K 383 96K T/O
Maze 85 394 0.48 177 0.76 129 0.43 135 0.56
Maze-B-1 87 1541 2.13 556 2.60 328 1.07 228 0.56
Maze-B-2 87 13K 37.6 2216 19.2 853 6.89 875 4.87
Maze-B-3 89 46K 380 10K 82 3322 25 1648 11

Table 2: Snake Results

Finally, Table 2 depicts typical results for Snake and
Snake-in-a-box. We compare the same heuristics as above
(only one hMIS version as their perfomance was roughy
equal), combined with the pattern heuristics Y and 2x2.
These results show that our new heuristics and partitioning
also perform well in the Snake domain,

Conclusion
We have leveraged new theoretical results on must-include
cycles in graphs to improve both the effectiveness and run-
time of state-of-the-art admissible heuristics in a range of
longest path problem types. The insights from our new
scheme also allow a new type of longest-path problem par-
titioning, leading to orders-of-magnitude additional reduc-
tion in the number of search expansions and runtime. De-
spite that, there is clear room for future work, low-hanging
fruit would be to improve the partitioning scheme by first
running a round of hMIS computation, sort the subtrees by
that value, and then when computing the max in P com-
ponents, avoid recursive calls unless their heuristic value is
greater than the length of all previously computed paths.

34



That should overcome the shortcoming of partitioning ev-
ident in the showcase example. One could also consider
whether to employ dynamic partitioning (during search), a
much more complicated issue.

Appendix: Proof of Theorem 6
Denote byEX(v) the set of vertices u such that (u, v) are an
exclusion pair. Let us denote by G(C, e) the subgraph of G
induced by V −(T (C.e)), and Gex(V ) the subgraph of Gex

induced by V .
Lemma 2. Gex is hierarchical, with a hierarchy corre-
sponding to the SPQR tree, rooted at the component con-
taining real edge (s, t). That is:
1. For every component C, and every v, v′ ∈ V −(C), we

have: EX(v) = EX(v′), v 6∈ EX(v′),
2. Let C,C ′ be components such that C ′ is a descendant

of C, and vertices v ∈ V −(C), v′ ∈ V −(C ′). Then
EX(v) ⊆ EX(v′) and v′ 6∈ EX(v).

3. For every component C, and every virtual edge pair
e1, e2 ∈ C, e1 6= e2 and every pair of vertices (x, y) ∈
V −(T (C, e1)) × V −(T (C, e2)), we have (x, y) ∈ Gex

if and only if EXCLUSIONP(E′, C) for some E′ where
e1, e2 in E′.

Proof. Immediate from the definition of EXCLUSIONP.

Note that the first claim above implies that if u ∈ C−, v ∈
C ′− are an exclusion pair, then so is any other pair of ver-
tices from C−, C ′− respectively. The third claim means that
C is a ”central” for x, y, (s, t), i.e. is the only component
determining whether {x, y} is an exclusion pair w.r.t. (s, t).

Algorithm 3: Compute MIS(Gex)

1: function TRAVERSES(C ′, (s′, t′))
2: if OPTCONSTRAINT(G, s′, t′) then
3: return (0)
4: Let C− = C ′ \ (s′, t′); Let E = virtual edges of C−
5: if C ′ is a P component then
6: return (argmaxe∈E TRAVERSES(Ce, e))
7: if C ′ is an S component then
8: return (V −(C ′) ∪

⋃
e∈ETRAVERSES(Ce, e))

9: /* (C ′ is an R component) */
10: Let I = |V −(C ′)|; Let ENEX = E
11: for u ∈ {s′, t′} do
12: Let EEX = {(u, v)|(u, v) ∈ E)}
13: if |EEX | ≥ 2 then
14: I = I ∪maxe∈EEX

TRAVERSES(Ce, e)
15: ENEX = ENEX \ EEX

16: Let Cuts = FIND2EDGECUTS(C−, (s′, t′))
17: for all EEX ∈ Cuts s.t. EEX ⊆ E
18: and EEX not incident on s′ or t′ do
19: I = I ∪maxe∈EEX

TRAVERSES(Ce, e)
20: ENEX = ENEX \ EEX

21: I = I ∪
⋃

e∈ENEX
TRAVERSES(Ce, e)

22: return (I)

Proof. (of theorem) We can show that TRAVERSE with mi-
nor modification, called TRAVERSES actually computes a
MIS of Gex. Instead of returning numbers, make TRA-
VERSES return vertex-sets: every maximization returns a set
of maximum set cardinality from its arguments, and addition
is treated as (disjoint) set union. The max operators among
sets should be read as returning a set of maximum cardinal-
ity. For an S node always add all its vertices except for s′, t′
(union with the union of all sets from recursive calls, if any),
and for an R node always add all its vertices (other than
s′, t′) to the appropriate independent set(s) from recursive
calls, if any.

We prove by structural induction that the set of ver-
tices returned by TRAVERSES(C, s′, t′) is a MIS of
Gex(V (G(C, (s′, t′)))). In the base case of a leaf compo-
nent, C− has no virtual edges. There are no exclusion pairs
within any component C. Indeed in both S and R com-
ponents, all vertices of V −(C) form an independent set
of Gex(V (G(C, (s′, t′)))) and are returned, as required. P
components can never be leaves of the SPQR tree, as a P
component must have at least 2 virtual edges.

Now to show the inductive step for each component type.
For a S component, there are no exclusion pairs between
any V −(T (C ′, ei)), V −(T (C ′, ej)). Denote by Ii an arbi-
trary independent set of Gex(V (G(C ′, ei))), and:

I =
⋃

ei∈Evirt(C−)

Ii

Then I is an independent set of Gex(V (G(C, (s′, t′)))), and
in particular for each Ii being a MIS of Gex(V (G(C ′, ei))).
Due to Lemma 2, there is no exclusion pair x, y with x ∈
V −(C) and y ∈ T (C, ei) ∪ V −(C) for any i, therefore,
by Lemma 2 item 3, I ∪ V −(C) is an independent set of
Gex(V (G(C, (s′, t′)))), as required. Since the independent
sets Ii are disjoint, the union size is maximized when the
size of each Ii is maximized, as required.

For a P component, every vertex pair from
V −(T (C ′ei , ei))×V

−(T (Cej , ej)) forms an exclusion pair.
Therefore, an independent set in Gex(V (G(C, (s′, t′))))
must be an independent set Ii in some Gex(V (G(C ′, ei))).
Since the Ii are disjoint, the maximum independent set is
achieved by taking the maximum-size Ii, as required.

For an R component, from each clique in the abstract
exclusion graph, only vertices from one abstract vertex (i.e.
virtual edge) can be in any independent set. Since all the
(maximal) cliques in the abstract exclusion graph are inde-
pendent, then the union of independent sets, one from each
clique, is an independent set, and has maximum size iff the
maximum size set is taken from each of the cliques. Again
due to Lemma 2, there is no exclusion pair x, y with x ∈
V −(C) and y ∈ T (C, ei)∪ V −(C) for any i, so all vertices
of V −(C) are also in the MIS of Gex(V (G(C, (s′, t′)))) as
required; this is exactly what is computed by TRAVERSES.

This completes the inductive proof that TRAVERSES re-
turns a MIS of Gex. By construction, TRAVERSE returns the
size of the set returned by TRAVERSES, thus TRAVERSE re-
turns α(Gex).
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