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Abstract

Interest in vehicle routing problems (VRP) with stochastic
and dynamic elements has grown in the past decade. Despite
numerous contributions in this area, the handling of uncer-
tainties and dynamic changes in complex VRPs received little
attention. Based on our experience from industrial practice,
we discuss why accounting for uncertainties and dynamic
changes is crucial for the applicability of the produced rout-
ing plans. Then, we first identify and justify the best-suited di-
rection to address dynamicity and uncertainties in real-world
VRPs. Second, we outline the key concepts and ideas of our
approach to finally demonstrate that it is realistic to imple-
ment them efficiently.

Introduction
Vehicle routing problems (VRP) have been studied for
decades for their apparent potential to address omnipresent
challenges. To this date, the standard (static) VRP problem
and its numerous variants are well-covered in the literature
both in terms of solution approaches, constraints, and prob-
lem features (Vidal, Laporte, and Matl 2020). While con-
cerns about uncertainties and dynamicity in real-world envi-
ronments have been present for a long time, research in this
direction did not become widespread until the past decade.
The state-of-the-art on dynamic and stochastic VRPs ad-
dresses all the crucial aspects such as stochasticity of travel
times, (un)loading times, customer demands, and dynamic
introduction of new customers (Ojeda Rios et al. 2021).
However, to the best of our knowledge, the current literature
lacks both (1) works combining a wider range of stochastic
and dynamic elements, and (2) a combination of real-world
rich-featured VRP variants together with stochastic and dy-
namic elements.

Our main motivation is cooperation with the company
Wereldo. We already designed a solver handling real-world
features and constraints (Sassmann et al. 2023) and also
adapted it for a more complex generalization of the real-
world problem (Sobotka and Rudová 2023). The solver is
used in everyday operations by the company, yet parts of
its outputs are often considered unacceptable by human dis-
patchers. Based on our discussions, the main problem is that
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the solver addresses a static problem while its inputs are sub-
ject to uncertainties, and a non-trivial part of customers is
not known upfront. In order to minimize necessary manual
changes to the produced routing plans, the solver must ex-
plicitly incorporate risk-aversion and account for future ac-
commodation of newly incoming customers during the day.

Applicable Methods
The problem at hand includes stochastic information (uncer-
tainties in demands and time) as well as dynamicity (newly
incoming customers). Thus, representing the problem as a
Markov decision process (MDP) is a natural fit as argued in
(Powell, Simao, and Bouzaiene-Ayari 2012). The states con-
sist of the current routing plan and the event to be processed
(incoming customer, realization of uncertain value). The ac-
tions in a state are all feasible routing plans covering the
current instance together with the incoming event. The re-
wards are given by the change in objective function induced
by the chosen action (new routing plan). The policy is any
mechanism selecting an action for a given state.

For problems of this kind, four general classes of ap-
proaches exist (Powell, Simao, and Bouzaiene-Ayari 2012):
reoptimizations (RO), look-aheads (LA), policy approxima-
tions (PA), and value function approximations (VFA). RO
methods incorporate the incoming event and solve the re-
sulting instance so that locally (near) optimal decisions are
made. However, this leads to myopic decisions. LA methods
select among actions by simulating possible future scenar-
ios in Monte Carlo fashion. The concept of LA is a sim-
ple yet strong approach to promoting anticipatory behav-
ior. Unfortunately, the large number of simulated scenarios
needed to obtain sufficiently precise approximations proves
prohibitive for complex VRPs. PA and VFA methods are
closely linked to reinforcement learning. PA methods are
applicable in cases when the functional form of the MDP
policy is apparent and the main interest is in finding its
best-suited parameters. Unfortunately, complex VRPs lack
such a straightforward policy form. VFAs aim to learn the
post-decision state value function in offline simulations to
replace the costly explicit LA approximations. The key is-
sue of VFAs is in the combinatorial size of state and ac-
tion spaces as recently argued in (Hildebrandt, Thomas, and
Ulmer 2023). Thus, our choice is to opt for ROs. As their
main disadvantage is their myopic nature, our aim is to at

Proceedings of the Sixteenth International Symposium on Combinatorial Search (SoCS 2023)

202



least push towards the construction of robust routes. This
indirect handling of dynamicity and uncertainty will be per-
formed by penalizing route failure risks and motivating dy-
namic customer anticipation within the objective.

Proposed Approach
Our aim is to extend the existing static solver. The first ma-
jor extension is in promoting dynamic customer anticipa-
tion. The second is in quantifying and penalizing risks aris-
ing from uncertainties in demand and time.

Dynamic Customers
A conceptually simple and widely used approach is to ar-
tificially add dynamic customer requests into the instance.
Then, the routes must incorporate even the artificial cus-
tomers and the resulting routes are naturally constructed
with anticipation of the potential dynamic changes to come.
We plan to introduce artificial requests so that the routes
serving them must maintain a favorable coverage of the
whole service area over time. Serving the artificial requests
will be optional, but the objective function will provide re-
wards for serving them. Importantly, we plan to draw in-
spiration from team orienteering problems (Gunawan, Lau,
and Vansteenwegen 2016) as they share the common theme
of optional customer service motivated by a reward.

Risk-Aversion
The major sources of route failure risks are uncertainties in
demands and times. First, we must be able to quantify such
risks in order to penalize them in the objective. Second, we
must ensure that sufficiently representative values for the as-
sessed risks may be calculated efficiently. For both demands
and time, we are interested in finding the weakest point of a
route where the probability of failure is the highest. We first
demonstrate the concept on demand-related risks. Then, we
explain the differences specific to time-related risks.

Given a route, the vehicle capacity limit, and a demand
distribution for each of the requests served by the route, the
goal is to identify the point in the route where the failure
is the most likely. The severity of the weakest point will be
penalized in the objective. We assume that the random vari-
ables representing the demands of different requests are in-
dependent. The planned load on the vehicle can be always
represented as the sum of the loaded request demand ran-
dom variables. With the independence assumption, the ex-
pectation and variance of this sum are equal to the sums
of expectations and variances of the individual request de-
mands. Consequently, these expectation and variance sums
may be computed alongside the route in linear time. For ar-
bitrary demand distributions, the risk of overreaching the ca-
pacity limit at a given location may be then bounded by,
e.g., Chebyshev inequality. Also, if demands are modeled
with (potentially skewed) normal distributions, the distribu-
tions may be still summed at the level of parameters, but the
failure probabilities may be calculated more precisely based
on tabular values. Since the probabilities may be calculated
(and recalculated upon route changes) efficiently, it is possi-
ble to penalize capacity-wise risks directly in the objective.

Regarding time-related risks, the situation is conceptu-
ally similar but more complicated. If the independence as-
sumption is acceptable, the uncertainties in travel times and
(un)loading times, again, in principle sum alongside the
route. In contrast to demands, however, these sums may be
affected by waiting times. Since arrival at a location be-
fore its time window opening requires waiting, any delays
may be fully or partially compensated. This adds a non-
linear element as waiting may erase delays at best, but never
make them negative. Consequently, the fast parameter sum-
ming demonstrated for the capacities becomes problematic.
The distributions of delays alongside the route may be of
course obtained via sampling or direct distribution summing
for discrete distributions. Yet, heavily iterating any of these
approaches within a search method would have severe per-
formance implications. Consequently, we currently investi-
gate how to approximate the impacts of waiting on delays
while doing so fast, with sufficient precision and accent on
preventing underestimation of the risks. The risk of failure
at a location would be then calculated based on the arrival
time, delay distribution, and end of the respective time win-
dow. Regarding efficient recalculation, we also analyzed the
dynamics of arrival times and waiting upon route changes.
With the understanding of the dynamics, we identified that
changes to the maximum risk in the route can be recalculated
with complexity limited by the delay distribution handling.
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