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Abstract

Automation in industries is becoming an ever-increasing ne-
cessity, especially in the sector of logistics. In many cases,
this means having many different automated guided vehicles
(AGVs) moving at the same time, hence needing coordina-
tion to avoid conflicts between different agents. The problem
of organizing a fleet of autonomous robots is known as the
Multi-Agent Path Finding (MAPF) problem in the literature
for which several optimal and sub-optimal algorithms have
been proposed. When faced with real-life scenarios, these al-
gorithms must provide the best feasible solution in the short-
est time possible, therefore they must scale for large scenarios
and be efficient. In this work, we briefly describe our open-
source framework we are working on and we lay down the
research paths we are going to focus on. The goal is to de-
velop a holistic system that allows to control different aspects
of the MAPF problem, from graph topology to goal schedul-
ing.

Introduction

The Multi-Agent Path Finding (MAPF) problem (Standley
2010; Roni et al. 2019) is a well-known combinatorial prob-
lem that has been proven to be NP-hard (Yu and LaValle
2013), hence an optimal solution cannot be easily computed.

Optimal algorithms exist (Sharon et al. 2013, 2015;
Surynek et al. 2016), but they tend to be slow and to scale
poorly when faced with large environments, which is par-
ticularly important in scenarios where a new plan must be
recomputed on the flight upon an unexpected event.

To better fit the scalability and efficiency necessities, sub-
solvers are usually preferred to tackle the MAPF problem,
providing either a bounded sub-optimal solution (Walker,
Sturtevant, and Felner 2018), i.e., a solution that distances
the optimal one by a maximum chosen margin, or an un-
bounded sub-optimal solution (Barer et al. 2014), i.e., a so-
Iution that may be much worse than the optimal, but is pro-
vided faster.

Anytime solvers provide a trade-off since they initially re-
turn an unbounded sub-optimal solution, and then, in the re-
maining time, they refine it by using Local Neighborhood
Search (LNS) to isolate a sub-problem and solve it (Li et al.
2021; Huang et al. 2022).
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Figure 1: A diagram representing the system we aim at de-
veloping.

All these algorithms focus on solving the algorithmic part
of the problem, but fail to take into consideration other as-
pects of the MAPF problem. Our goal is to create a system
which does not simply solve the problem as is, but it may
provide better support both on the short run and on the long
run by considering also the topology of the network, differ-
ent sets of goals and finally the interpolation and feasibility
of the planned paths.

Problem Definition

We consider a modified MAPF problem, and a variant of
the pick-up and delivery problem (Liu et al. 2019), in which
each agent may have some intermediate goals that they must
move through before reaching their final destination. The
problem consists in moving k agents A = {aq, ..., ax } from
their initial position s; to their final position ¢; through a se-
ries of intermediate goals g, while minimizing a cost func-
tion, e.g., the sum of costs or the makespan.

Framework and Future Works

The studies mentioned in the introductory section are meant
for single-goal reasoning, that is, they provide a solution for
the agents moving from a source node to a target node. In
real-life scenarios, this is usually not the case, but instead,
multiple goals are assigned to the agents that they have to
complete before moving to the target location.

Our main goal is to create a holistic system as shown in
Figure 1, which would consider also other different aspects
of the problem. In Figure 2, a search-based algorithm would
move the two robots along the the shortest paths, ending up
in a long series of swap conflicts increasing the search space.
One of the two robots must use the longer road in order to
solve the problem. There are two possibilities that we aim



at exploiting with our system. In a first instance, we could
notice that the two goals are near the wrong agents, that is,
if the agents were to reach the nearest “G” and then move
to their target, then the problem would be much simpler to
solve and it would lead to a far better solution.

Another possibility considers the fact that the agents can-
not swap goals, e.g., if they had to load some goods too large
or heavy for the other agents. Then, if this situation happens
frequently, we could work on the graph topology by creating
one-way corridors in order for the agent to not conflict with
each other. To do this, a database of the past goals should
be kept and an evolutionary algorithm may be run on it to
verify whether some routes on the map are taken more often
then others and if changes in the map topology may improve
the results.

So far, we have developed a general open-source frame-
work! written in C++ that aims at creating an environment
in which it is possible to easily test different algorithms on
different scenarios interchanging some aspects of the algo-
rithms. We have written an implementation of three opti-
mal solvers, namely CBS, ICTS and a MILP solver which
uses CPLEX, and a rudimentary implementation of the any-
time solver X* (Vedder and Biswas 2021). As for the single-
agent solvers, we have coded A* and another solver based on
Multi-Valued Decision Diagrams (MDDs) (Srinivasan et al.
1990). We are currently using an admissible heuristic for A*
when solving X* conflicts that takes into consideration also
the paths of the other agents in the sub-problem allowing to
reduce the number of sub-conflicts to solve.

We also added the possibility of representing the map with
different structures, either through an adjacency matrix, a
grid or a graph. Indeed, the framework, and hence our prob-
lem, is not bound to unitary cost edges, but we could also
model graphs with edges of different lengths. The possibility
of having multiple choices on how to load the environment
may lead to performance improvements in some scenarios,
for example a grid may be better when there are a lot of
nodes and fewer obstacles, whereas a graph may be better
when there are more obstacles.

While at the moment the agents are considered as points
moving on the map, future improvements will work on non-
homogeneous agents and also consider the possibility that
agents may need to recharge periodically.

One final aspects on which we are going to focus is mo-
tion planning. Indeed, once the MAPF algorithm has com-
puted the best solution on the graph, the agents have to ac-
tually follow it. If the information on the kinematics con-
straint of the agents are not taken into consideration during
the planning of the paths, then the resulting solution may
be unfeasible to follow, leading to a waste of time and re-
sources.
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Figure 2: In this scenario, the robots should first move on
the cell with the color-matched goal (“G”) and then move to
their final destination which is the corresponding circle.
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