
Domain-Independent Dynamic Programming (Student Abstract)

Ryo Kuroiwa*

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8
ryo.kuroiwa@mail.utoronto.ca

Abstract

In my dissertation, I will propose Domain-Independent Dy-
namic Programming (DIDP), a novel model-based paradigm
for combinatorial optimization (CO) based on dynamic pro-
gramming (DP). In DIDP, a problem is first formulated as
a declarative DP model and then solved by a general-purpose
solver. The goal of my dissertation is to develop an algorithm-
independent modeling formalism to define a DP model and
general-purpose solvers for it and demonstrate that DIDP is
promising for CO in practice. In particular, I will propose a
modeling formalism based on a state transition system and
heuristic search solvers for it.

Introduction
Combinatorial optimization (CO) is to make a set of discrete
decisions from a finite set to optimize an objective function.
Model-based approaches such as mixed-integer program-
ming (MIP) and constraint programming (CP) are widely
used for CO. In such a approach, a user formulates a problem
as a mathematical model and then solves it using a general-
purpose solver. Model-based approaches are considered the
‘holy grail’ of declarative problem-solving, where a user just
needs to define a problem to solve it (Freuder 1997).

In dynamic programming (DP), a problem is modeled
with recursive equations. For CO, DP has been typically
implemented as customized problem-specific algorithms,
which exploit problem-specific information to reduce the
solving effort. With the success of these methods in multiple
CO problems, I want to develop a model-based DP paradigm
that can exploit problem-specific information while being
generic and problem-independent.

I propose Domain-Independent Dynamic Programming
(DIDP), a model-based paradigm for CO based on DP. In
DIDP, a user defines a problem as a DP model using a solver-
independent formalism. The formalism also allows (but does
not require) a user to declaratively incorporate redundant in-
formation, which is implied by the problem definition but
can be exploited by a solver. For general-purpose solvers, I
will use heuristic search algorithms, which can easily and
efficiently exploit the redundant information. The goal of

*Supervised by Prof. J. Christopher Beck.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

my dissertation is to demonstrate that DIDP is a promising
model-based approach for CO in practice.

Research Progress
I have proposed a modeling formalism and general-purpose
solvers for it. The developed software is open-source.1

DyPDL: a Modeling Formalism
I developed Dynamic Programming Description Language
(DyPDL), a modeling formalism for DIDP (Kuroiwa and
Beck 2023a). In DyPDL, a problem is formulated in a state-
based representation. For example, in the traveling sales-
person problem with time windows (TSPTW), a set of cus-
tomers N = {0, ..., n} are given, where the depot is 0, and
visiting customer j from i incurs travel time cij . We assume
that cik+ckj ≥ cij . A salesperson must visit each customer i
in N \{0} within time window [ai, bi] and then return to the
depot while minimizing the total travel time. Let U be the
set of unvisited customers, i be the current location, and t be
the current time. These variables define a state of the prob-
lem: they are state variables in DyPDL. Let V be a function
mapping a state to its optimal objective value.

compute V (N \ {0}, 0, 0) (1)

V (U, i, t) =

{
min

j∈U :t+cij≤bj
cij + V (U \ {j}, j, t′j) if U ̸= ∅

ci0 if U = ∅
(2)

V (U, i, t) = ∞ if ∃j ∈ U, t+ cij > bj (3)

V (U, i, t) ≤ V (U, i, t′) if t ≤ t′ (4)
V (U, i, t) ≥ 0 (5)

where t′j = max{t + cij , aj}. Objective (1) declares that
we want to compute the optimal objective value of the state
where all customers except for the depot are unvisited, the
current location is the depot, and t = 0. Equation (2) is the
main body of the DP model: a state is transformed to another
by visiting a customer, and when all customers are visited,
the objective value is ci0, the cost to return to the depot. In
DyPDL, these dynamics are described as transitions. A tran-
sition is defined by applicability conditions, the changes in
the objective, and the changes in the state. In addition, a user
can model redundant information to achieve better perfor-
mance. Equation (3) defines a state constraint, which states

1https://didp.ai

Proceedings of the Sixteenth International Symposium on Combinatorial Search (SoCS 2023)

192

MIP CP CAASDy CABS
gap p.i. # gap p.i. # gap p.i. # gap p.i.

TSPTW (340) 227 0.227 484.1 47 0.026 49.0 257 0.244 458.6 259 0.003 9.00
CVRP (207) 26 0.585 1157.4 0 0.317 601.2 5 0.976 1757.1 6 0.185 351.2
m-PDTSP (1178) 945 0.078 180.0 1049 0.013 26.0 947 0.196 357.8 1035 0.002 5.3
SALBP-1 (2100) 1357 0.345 634.6 1584 0.005 28.5 1653 0.213 387.5 1801 0.000 1.9
Bin Packing (1615) 1157 0.039 86.2 1234 0.002 8.0 922 0.429 779.4 1163 0.002 5.3
MOSP (570) 224 0.039 100.4 437 0.004 13.0 483 0.153 275.5 527 0.000 0.4
Graph-Clear (135) 24 0.110 311.8 1 0.015 44.3 76 0.437 789.9 103 0.000 0.5
Talent Scheduling (1000) 0 0.051 142.9 0 0.002 18.1 207 0.793 1435.5 237 0.011 26.4
1||

∑
wiTi (375) 109 0.018 74.6 150 0.000 2.3 270 0.280 513.7 284 0.034 73.6

Average ratio 0.424 0.416 0.587 0.659

Table 1: Number of optimally solved instances (‘#’), the average primal gap (‘gap’), and the average primal integral (‘p.i.’) with
30 minutes and 8GB memory. ‘Average ratio’ is the mean of the per-problem-class proportion of solved instances.

that a state is a dead-end if any customer cannot be visited
by its deadline. Inequality (4) defines the dominance relation
based on t, and t is called a resource variable. Inequality (5)
is a dual bound, a lower bound on the objective value.

CAASDy: a Prototype Solver
The DP model for TSPTW can be solved as a shortest path
problem in a state space graph: nodes are states, edges are
transitions, the weight of each edge is the travel time, and
the shortest path cost from a node is the optimal objective
value of the corresponding state. In general, if a DyPDL
model satisfies certain conditions, cost algebraic heuristic
search (Edelkamp, Jabbar, and Lafuente 2005), generalized
versions of shortest path algorithms, can solve it. I developed
Cost Algebraic A* Solver for DyPDL (CAASDy), a proto-
type solver using the cost algebraic version of A* (Kuroiwa
and Beck 2023a). CAASDy exploits redundant information
in a given model; it uses the dual bound (Inequality (5)) as
a heuristic function, which guides the search. In addition,
CAASDy prunes a state if it does not satisfy a state con-
straint (Equation (3)) or a better state according to a dom-
inance relation (Inequality (4)) has been already explored.
I evaluated CAASDy using six problems, TSPTW, capac-
itated vehicle routing problems (CVRP), single assembly
line balancing problems (SALBP-1), bin packing, the min-
imization of open stacks problem (MOSP), and graph-clear
as benchmarks. I experimentally compared the DP models
with CAASDy against MIP and CP models with commercial
solvers. Table 1 shows that CAASDy solves more instances
in four problems and a larger portion of instances on average
than MIP and CP within the time and memory limits.

Anytime Solvers
CAASDy does not find any solution until it finds the optimal
solution. In contrast, general-purpose MIP and CP solvers
are usually anytime solvers, which often quickly find a fea-
sible solution and continuously improve it until the optimal-
ity is proved. I developed anytime solvers for DyPDL using
six anytime heuristic search algorithms (Kuroiwa and Beck
2023b) and evaluated them using the benchmark problems
extended with multi-commodity pick-and-delivery traveling
salesperson problem (m-PDTSP), talent scheduling, and the
single machine total weighted tardiness (1||

∑
wiTi). The

primal gap and primal integral (Berthold 2013) are used as
performance measures. The primal gap is the relative gap
between a solution cost to the optimal (or best-known) solu-
tion cost scaled from 0 to 1, and smaller is better. The primal
integral considers the change of the primal gap over time,
and smaller is better. Overall, the best solver is Complete
Anytime Beam Search (CABS) (Zhang 1998), which itera-
tively performs beam search with an exponentially increas-
ing beam width, in all the metrics. We show the result of
CABS in Table 1. It consistently outperforms CAASDy in
all problems and MIP and CP in the majority of problems.

Future Work
For the rest of my thesis, I will focus on improving DIDP
solvers by leveraging techniques developed in heuristic
search. First, I will develop parallel solvers based on paral-
lel heuristic search algorithms such as HDA* (Kishimoto,
Fukunaga, and Botea 2013). In addition, I am consider-
ing developing methods to automatically extract a heuristic
function from a model. Such methods are actively studied in
planning (e.g., merge-and-shrink (Helmert et al. 2014)) and
are useful when a user does not provide a good dual bound.

References
Berthold, T. 2013. Measuring the Impact of Primal Heuristics.
Oper. Res. Lett., 41: 611–614.
Edelkamp, S.; Jabbar, S.; and Lafuente, A. L. 2005. Cost-Algebraic
Heuristic Search. In Proc. AAAI, 1362–1367.
Freuder, E. 1997. In Pursuit of the Holy Grail. Constraints, 2:
57–61.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-shrink abstraction. J. ACM, 61(3): 1–63.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evaluation of
a simple, scalable, parallel best-first search strategy. Artif. Intell.,
195: 222–248.
Kuroiwa, R.; and Beck, J. C. 2023a. Domain-Independent Dy-
namic Programming: Generic State Space Search for Combinato-
rial Optimization. In Proc. ICAPS.
Kuroiwa, R.; and Beck, J. C. 2023b. Solving Domain-Independent
Dynamic Programming Problems with Anytime Heuristic Search.
In Proc. ICAPS.
Zhang, W. 1998. Complete Anytime Beam Search. In Proc. AAAI,
425–430.

193

