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Introduction

Multi-Agent Path Finding (MA-PF) seeks to find collision-
free paths for multiple agents from their respective start lo-
cations to their respective goal locations. This paper investi-
gates a generalization of MA-PF called Multi-Agent Team-
wise Cooperative Path Finding (MA-TC-PF) (Fig. 1), which
differs from MA-PF (Stern et al. 2019) by introducing the
notion of teams: Each agent belongs to at least one team, and
teams are not required to be mutually disjoint to each other.
Each team has its own objective to be minimized such as
flowtime (i.e., min-sum) or makespan (i.e., min-max), and
MA-TC-PF seeks to minimize an objective vector, where
each component of the vector corresponds to the objective
of a team. In general, there is more than one team, and MA-
TC-PF is thus a multi-objective planning problem. The goal
of MA-TC-PF is to find a maximal set of cost-unique Pareto-
optimal solutions, whose corresponding objective vectors
form the Pareto-optimal front. A solution is Pareto-optimal
if one cannot improve over one objective without deteriorat-
ing another objective. When there is only one team that in-
cludes all agents, MA-TC-PF becomes MA-PF. MA-TC-PF
also differs from the existing Multi-Agent Multi-Objective
Path Finding (MA-MO-PF) (Ren, Rathinam, and Choset
2022) since an action of each agent incurs a scalar cost as
opposed to a vector cost in MA-MO-PF. To solve MA-TC-
PF, we modify CBS (Sharon et al. 2015) and M* (Wagner
and Choset 2015) and name the new algorithms TC-CBS
and TC-M* respectively. TC-CBS is incomplete (elaborated
later) for certain cases of MA-TC-PF, while TC-M* is com-
plete for all possible cases. Both algorithms are guaranteed
to find the entire Pareto-optimal front for the cases where
they are complete. For the rest of the paper, we assume
the reader is familiar with CBS (Sharon et al. 2015) and
M* (Wagner and Choset 2015), and we focus on TC-CBS.
More details can be found in (Ren et al. 2023).1
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Figure 1: An example of MA-TC-PF with two teams, where
team 1 includes the yellow (Y) and blue (B) agents while
team 2 includes the blue (B) and red (R) agents. Team 1
aims to minimize the maximum arrival times of both agents,
while team 2 aims to minimize the sum of arrival times.

Method
TC-CBS Algorithm: The proposed Teamwise Coopera-
tive Conflict-Based Search (TC-CBS) algorithm follows a
similar workflow as CBS. The main differences are: First,
given a (high-level) node Pk (hereafter referred to as “node”)
and its corresponding joint path πk (a set of individual paths
of each agent), TC-CBS computes an objective vector g⃗(πk)
based on the teams, instead of computing a scalar cost value
g as in CBS. Consequently, nodes in OPEN are prioritized in
the lexicographic (abbreviated as lex.) order based on their
cost vectors, and in each iteration, a lex. min node is popped
from OPEN for processing. Second, since there are multi-
ple Pareto-optimal solutions in general, TC-CBS stores the
cost vector of all the Pareto-optimal solutions found during
the search in a set C. Each vector in C identifies a unique
node and thus a cost-unique solution. Third, to find all cost-
unique Pareto-optimal solutions, TC-CBS terminates when
OPEN depletes, while CBS terminates when the first solu-
tion is found. Additionally, whenever a node Pk is popped
from OPEN or newly generated, Pk is tested for filtering,
i.e., Pk is discarded if the objective vector in Pk is domi-
nated (Ren, Rathinam, and Choset 2022) by or equal to any
existing objective vectors in C.

Discussion and Properties of TC-CBS: A problem in-
stance is feasible if there exists a solution. Given a fea-
sible instance, TC-CBS is complete if it terminates in fi-
nite time. A MA-TC-PF problem is called fully coopera-
tive if every team contains all the agents. For fully coop-
erative MA-TC-PF, TC-CBS is guaranteed to be complete,
and is guaranteed to find all cost-unique Pareto-optimal so-
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Figure 2: An example where TC-CBS is incomplete. The
grey area shows the vectors dominated by the green solution.

Figure 3: Numerical results of TC-CBS and TC-M* for fully
cooperative MA-TC-PF problems with min-sum and min-
max as the two objectives. The horizontal axis shows the
number of agents (N ), the left vertical axis shows the suc-
cess rates (Succ. Rates) while the right axis shows the num-
ber of conflicts resolved (#Conflicts). Two maps are: 16x16
Empty and 32x32 Random.

lutions. For MA-TC-PF that is not fully cooperative (i.e.,
there exists a team that does not contain all the agents), TC-
CBS is incomplete: TC-CBS fails to terminate in finite time
even if the problem instance is feasible. In short, the condi-
tion for TC-CBS being complete is: there is a finite number
of joint paths whose objective vectors are non-dominated
by the Pareto-optimal front (similar to Lemma 4 in (Ren,
Rathinam, and Choset 2022)). This condition may not hold
for MA-TC-PF that is not fully cooperative. An example
is shown in Fig. 2: there are two agents I = {i, j} and
two teams T1 = {i}, T2 = {j}; the objective vector is
(gT1 , gT2) = (gi, gj). Consider the case where a conflict
(i = 1, j = 2, v, t) is detected, and is split into constraints
(i, v, t) and (j, v, t), which results in two new nodes (red
and green). For either of the two nodes, one agent’s path
cost may increase (as a constraint is added), while the other
agent’s path cost remains the same. Consider the case where
the green node leads to the only Pareto-optimal solution, and
the red node still contains conflicts. As a result, there can
be an infinite number of joint paths whose objective vectors
are non-dominated by the Pareto-optimal front, and TC-CBS
never terminates since OPEN never depletes.

Experimental Results
MA-PF with Both Min-sum and Min-max Objectives
We start with fully cooperative MA-TC-PF problems with
two teams and each team includes all agents. One team has
the min-sum objective while the other team has the min-max
objective. As shown in Fig. 3, TC-CBS achieves higher suc-
cess rates than TC-M*, and is tested with up to 20 agents.
Although TC-CBS is incomplete for general MA-TC-PF

Figure 4: Each agent (circle) needs to move to its goal (star),
and the aim is to find all trade-offs between agents. In this
example, Solution 7 (highlighted in blue in the table) has the
minimum sum of individual arrival times.

problems, it runs faster than TC-M* in general. We report
the corresponding statistics of the number of Pareto-optimal
solutions over succeeded instances here: for both Empty
16x16 and Random 32x32 maps and all Ns that are tested,
the minimum and median number of solutions is one, and
the maximum number of solutions is up to three. It indicates
that, in these instances, the min-sum and min-max objectives
can often be optimized at the same time.

Example: Explanation for MA-PF Solutions MA-TC-
PF has the potential to answer explanatory questions about
MA-PF solutions. As shown in Fig 4, there are four agents
and each agent is itself a team. Each team (i.e., agent)
aims to minimize its own arrival time. The table in Fig 4
shows all cost-unique Pareto-optimal solutions which in-
dicate possible trade-offs between the teams. Consider a
possible question raised by the user of MA-PF planners:
among all conflict-free solutions, can agent 1’s arrival time
be reduced without worsening the min-sum objective of all
agents? The table provides the answer to the question, which
is NO in this example. Answering explanatory questions
may increase trust of users and transparency of intelligent
systems.
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