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The PDDL+ Plan Fixing Framework
Automated planning is a field of artificial intelligence that
aims to develop methods for synthesising decisions capable
of transforming a given state, i.e., the initial state, into a de-
sired state, i.e., the goal state, according to a given model of
the world. Hybrid systems, which involve both discrete and
continuous dynamics, are often encountered in real-world
applications. The planning community designed PDDL+ to
model this class of systems (Fox and Long 2006), which
combines an action-oriented representation of an agent with
an explicit representation of the environment and its exoge-
nous dynamics. A PDDL+ problem involves finding a se-
quence of time-stamped actions along a continuous timeline
that conforms to the changes prescribed by events and pro-
cesses while meeting the preconditions for executing actions
and achieving the desired goal state.

In real-world planning applications, plans can fail as cir-
cumstances may change over time, and it is crucial to ef-
ficiently fix issues in case of failures. In PDDL+, due to
the complexity of the plan generation process, it is essen-
tial to reuse as much as possible of an existing plan, rather
than generate a new one from scratch. To support the use
of PDDL+ in planning applications, Percassi, Scala, and Val-
lati (2023b) provide an overarching definition of the plan
fixing problem (FIXABILITY), which allows for a range of
variations, including rescheduling and validation, for a given
plan.

A PDDL+ plan is defined as πt = ⟨π, te⟩, where π =
⟨⟨a1, t1⟩, .., ⟨an, tn⟩⟩ is a sequence of time-stamped actions,
while te is the duration of the plan (makespan).

The template for FIXABILITY is the tuple ⟨Π, πt, C⟩,
where Π is a PDDL+ problem, πt is the plan to be fixed (po-
tentially invalid for Π), and C is a set of constraints. The aim
is to find a fixed plan π′

t that is valid for Π and complies with
C. Intuitively, C defines the spectrum of manipulations for
transforming πt into π′

t. Depending on the constraints im-
posed through C, we can obtain different FIXABILITY spe-
cialisations.

The simplest case occurs when C = ∅, resulting in
FIXABILITY∅; solving this problem is equivalent to gener-
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ating a plan, as every valid plan for Π is also a valid solution
for FIXABILITY∅. If we require that (i) every action instance
of πt must appear in π′

t, and (ii) no other actions can be
added, we obtain FIXABILITYI , in which C = CI = C∈∪C ̸∈,
where C∈ and C ̸∈ enforce (i) and (ii), respectively. If, in
addition to CI , we want π′

t to preserve the original order-
ing of πt, the resulting problem is FIXABILITYS , which has
C = CI ∪ CS , where CS is the set of constraints responsi-
ble for enforcing the ordering. Alternatively, it is possible to
require that each action instance ⟨ai, ti⟩ of πt be executed
within a time window centred on ti and wider as ω ∈ Q≥0,
i.e., [ti − ω

2 , ti +
ω
2 ]; this gives rise to FIXABILITYW , where

C = CI ∪ CW(ω), with CW(ω) imposing the time window
for each action instance of πt. Finally, the constraints CI ,
CS , and CW can be combined, inducing FIXABILITYWS .

The problems described so far try to fix a plan compat-
ibly with C by considering an unbounded temporal hori-
zon. We can define a temporally bounded variant of them
by requiring that the fixed plan is found within a finite
horizon determined by a parameter σ ∈ Q≥0. So, given
Z ∈ {I,S,W,WS}, we define FIXABILITY≤

Z where C =
CZ ∪ {⟨t′e ≤ te + σ⟩}.

All of these problems, except for FIXABILITY∅, require
CI ⊆ C, which implies that the actions of π′

t must be
exclusively those of πt. In this sense, FIXABILITYZ and
FIXABILITY≤

Z with Z ∈ {I,S,W,WS} are plan reschedul-
ing problems, in which the actions can be moved along the
temporal dimension but cannot be deleted or added.

The PDDL+ validation problem (VALIDATION) evaluates
whether a plan πt is valid with respect to Π. VALIDATION
can be expressed within the FIXABILITY framework as the
tuple ⟨Π, πt, C⟩, where πt is the plan to be validated and
C = CI ∪ CS ∪ CW(ω = 0) ∪ {⟨t′e = te⟩}. In qualitative
terms, C requires that π′

t must exclusively contain the action
instances of πt (CI), executed in the same order (CS ) and
at the same timestamps. This last constraint is enforced by
requiring that the actions be executed in a zero-width time
window (CW(ω = 0)). Finally, it is required that π′

t and πt

have the same duration ({⟨t′e = te⟩}).
Percassi, Scala, and Vallati (2022) demonstrated how to

convert plan validation into a PDDL+ problem, allowing any
PDDL+ planner to be used for validating plans, regardless
of the selected semantics, continuous or discrete (Percassi,
Scala, and Vallati 2023a). This methodology relies on a re-
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FIX
⟨Π, πt, C⟩ Constraints C Complexity FIX as PDDL+

Planning
FIX∅ ∅ Undecidable Π
FIXI CI

NP-HARD

Ππt
RI

FIXS CI ∪ CS Ππt
RS

FIXW CI ∪ CW(ω) Ππt
RW

FIXWS CI ∪ CW(ω) ∪ CS Ππt
RWS

FIX≤
Z CZ ∪ {⟨t′e ≤ te + σ⟩}NP-COMPLETE Ππt

R≤
Z

VAL
CI ∪ CW(0)∪

CS ∪ {⟨t′e = te⟩} P Ππt
V0

Table 1: Theoretical results about FIXABILITY (shortened as
FIX) and VALIDATION (shortened as VAL) problems.

formulation, namely V0, which generates a problem Ππt

V0

from a given VALIDATION task ⟨Π, πt⟩. This problem ad-
mits a solution iff πt is a valid plan for Π. The key concept
is to create a novel PDDL+ problem where only the actions
of πt can be executed. These actions must be carried out
based on the plan’s specifications, which means they must
be performed at their time-stamps and in the same order.

Since VALIDATION can be seen as a special case
of the general FIXABILITY problem, we can approach
plan rescheduling problems by relaxing action precon-
ditions and goals (if needed) from Ππt

V0
. Therefore, for

each plan rescheduling problem FIXABILITYZ , with Z ∈
{I,S,W,WS}, it is possible to define a translation Ππt

RZ

which admits a solution π′
t iff πt is fixable under the con-

straints CZ .
The results presented by Percassi, Scala, and Vallati

(2023b) demonstrate that VALIDATION belongs to P, while
the most constrained plan rescheduling problem, namely
FIXABILITY≤

WS , is NP-HARD. Additionally, it has been
proven that FIXABILITY≤

I is in NP. By combining the
fact that FIXABILITYI is NP-HARD and FIXABILITY≤

WS
is in NP, it can be concluded that all problems between
FIXABILITY≤

WS and FIXABILITY≤
I are NP-COMPLETE.

Table 1 provides a summary of the defined problems and
their complexity results.

Experimental Results
We present some results for assessing the computational ef-
fort of rescheduling plans according to FIXABILITYI and
FIXABILITYWS , obtained by planning over the reformulated
problems generated by RI and RWS , i.e., Ππt

RI
and Ππt

RWS
,

compared to replanning from scratch (REPLAN). We tested
two heuristics, i.e., hadd and hmax , implemented in ENHSP20
(Scala et al. 2020), and UPMURPHI (Penna, Magazzeni, and
Mercorio 2012). As benchmarks, we considered those used
by Percassi, Scala, and Vallati (2023b). The invalid plans to
be fixed were generated by injecting uniformly distributed
noise on the timestamps of valid plans. All experiments were
run on an Intel Xeon Gold 6140M CPU with 2.30 GHz, with
a cutoff time of 1, 800 seconds, and 8GB of RAM.

Figure 1 shows the number of expanded nodes for gen-
erating a plan and fixing an invalid plan. Intuitively, when

Figure 1: Expanded Nodes of replanning from scratch
(REPLAN) versus plan fixing for RI and RWS .

rescheduling a plan without additional constraints (RI), the
situation is mixed, while when the possibility of manipulat-
ing the plan is limited (RWS ), plan fixing is advantageous.

Discussion
We have presented the concept of PDDL+ FIXABILITY,
which subsumes a range of problems such as plan reschedul-
ing and validation, whose solutions can support the us-
age of PDDL+ in complex real-world scenarios. To solve
FIXABILITY problems, we introduced a set of translations
that allow leveraging existing planning engines. Future work
will focus on expanding FIXABILITY specialisations to ad-
ditional cases, such as supporting the deletion or addition of
actions.
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