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Introduction
Automated Planning and Scheduling are complementary
fields of study that are usually pursued separately. Whereas
planning deals with finding sequences of actions achieving a
specified goal, scheduling deals with the problem of allocat-
ing activities (or jobs) to limited resources. Looking from the
scheduling side, activities (or jobs) as well as their (partial)
ordering have to be (usually) explicitly specified up front.
Scheduling with alternatives that allows choosing which ac-
tivities to schedule has been studied in recent past (Čapek,
Šůcha, and Hanzálek 2012; Hanzálek, Čapek, and Šůcha
2017). However, it still requires an explicit specification
of alternatives and ordering of activities that, on the other
hand, is inherent to planning. Temporal planning (Fox and
Long 2003) offers a machinery for incorporating scheduling
into planning but this has to be done explicitly. One of the
frameworks that effectively combine planning and schedul-
ing is NASA’s EUROPA that is used in systems for space
and planetary exploration (see e.g. (Muscettola et al. 1998)).
Ruml, Do, and Fromherz (2005) aim at on-line planning
and scheduling in manufacturing and represent activities like
“planning” actions, which is, perhaps, the closest work to
our proposal.

This extended abstract formalises the concept of “com-
bined” planning and scheduling tasks, where we introduce
two types of activities – production and maintenance – rep-
resented similarly to actions in planning that are then sched-
uled on (limited) resources. We propose a high-level idea
how these tasks can be compiled to classical planning tasks.
Note that classical planning domains from the International
Planning Competition – Schedule or Woodworking – are ex-
amples of such “combined” tasks. Our idea is evaluated on
tasks concerning scheduling activities on reconfigurable ma-
chines (Borgo et al. 2016; Vahedi-Nouri et al. 2022).

Problem Specification
We can describe the environment by a set of state variables
V , where each variable v ∈ V has its own domain D(v).
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An assignment of a variable v ∈ V is a pair (v, val), where
val ∈ D(v). A (partial) variable assignment p over V is a
set of assignments of individual variables from V and p[v]
represents a value of v in p (or p[v] is undefined if v in not
part of p). Let vars(p) denote the set of variables that p con-
siders. A state is a complete variable assignment over V . We
say that a (partial) variable assignment q holds in a (partial)
variable assignment p, denoted as p |= q, if and only if for
each v being a part of q it is the case that q[v] = p[v].

Then, we define a set of attributes L that determine con-
figuration of resources R (e.g. machines). A resource r ∈ R
has its attributes, denoted as attr(r) ⊆ L.

We consider two types of activities, namely production
activities and maintenance activities, where the former rep-
resent “jobs” that have to be run on resources while the
latter change attributes of the resources. A production ac-
tivity is a quadruple a = (dur(a), attr(a), pre(a), eff (a)),
where dur(a) represents the duration of a, attr(a) ⊆ L rep-
resents a set of attributes that a requires, and pre(a) and
eff (a) are partial variable assignments over V representing
a’s precondition and effects, respectively. Production activi-
ties produce specified “products” that might be required by
other (production) activities or might be goals.

A maintenance activity is a quadruple m =
(dur(m), res(m), rem(m), add(m)), where dur(a)
represents the duration of m, res(m) ⊆ R represents a set
of resources on which m can be performed, rem(m) ⊆ L
and add(m) ⊆ L are sets of attributes that are removed or
added, respectively.

We define a planning-scheduling task (or PS task, for
short) as a tuple P = (V,L,A,R,M, I,G), where V is a
set of state variables, L is a set of attributes, A is a set of
production activities, R is a set of resources (each with ini-
tial attributes), M is a set of maintenance activities, I is an
initial state (over V ) and G is a partial assignment over V
representing the goal.

Let π = {(t1, x1, r1), . . . , (tn, xn, rn)} be a set of triples
(timestamp,activity,resource), where xi ∈ A∪M and ri ∈ R
(1 ≤ i ≤ n). We say that π is consistent if for each
xi, xj (i ̸= j) it is the case that if [ti, ti + dur(xi)] and
[tj , tj + dur(xj)] are not disjoint, then ri ̸= rj and if
xi, xj ∈ A, then vars(xi) ∩ vars(xj) = ∅. The state
trajectory respecting I and π is a sequence of states de-
fined recursively such that s(0) = I and for each v ∈ V ,
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s(t + 1)[v] = eff (xi)[v] if there exists xi ∈ A such that
t + 1 = ti + dur(xi), or s(t + 1)[v] = s(t)[v] other-
wise. Analogously, for each resource r ∈ R we define a
configuration trajectory as a sequence of attributes starting
with the initial attributes attr(r)(0) and where attr(r)(t +
1) = (attr(r)(t) \ rem(xi)) ∪ add(xi) if there exists
xi ∈ M such that ri = r and ti + dur(xi) = t + 1, or
attr(r)(t+ 1) = attr(r)(t) otherwise. We say that a main-
tenance activity m ∈ M is applicable on a resource r in
time t iff rem(m) ⊆ attr(r)(t). We also say that a produc-
tion activity a ∈ A is applicable on a resource r in time t
iff s(t) |= pre(a) and attr(a) ⊆ attr(r)(t). We say that
π is a solution of a PS-task P iff π is consistent, for each
(ti, xi, ri) it is the case that xi is applicable on ri in ti, and
s(maxni=1(ti + dur(xi))) |= G.

Solutions of PS-tasks can be optimised for a given ob-
jective function that might be, for example, makespan, or
total cost of activities (might depend on resources and start-
ing/finishing time).

Towards Compiling PS Tasks to Classical Planning
The high-level idea how to represent a PS task as a plan-
ning task is to merge the “planning” environment with the
resource-specific attributes. Both types of activities can be
represented as actions. Temporal aspects of the problem can
be represented by “timestamp” objects alongside with pred-
icates responsible for arithmetic and logical operations. For
each resource, we keep track of the timestamp in which the
last scheduled activity (so far) finished. On top of that, we
have to assure that (implicit) ordering of (production) activ-
ities, given by the fact that one activity achieves a precondi-
tion for another activity, respect time constraints by keeping
track in which timestamp a certain fact has been achieved.
Then, we specify “synchronising” actions that synchronises
timestamp for an activity as maximum of timestamps of its
precondition facts and the current timestamp of the machine
on which the activity is planned to be scheduled.

We would like to note that in contrast to temporal plan-
ning (PDDL-based), such an approach allows for straight-
forward incorporation of time-based constraints (e.g. dead-
lines). On top of that, classical planning is often lever-
aged to solve temporal planning tasks (in PDDL 2.1 seman-
tics) (Celorrio, Jonsson, and Palacios 2015).

Reconfigurable Machines: A Case Study
For our preliminary evaluation of our idea we considered
production planning of Reconfigurable Machines that are
becoming more widespread (Borgo et al. 2016). Production
activities require a specific (machine) configuration that can
be changed by maintenance activities. Some production ac-
tivities require an input from another production activity. As
planners we considered FastDownward (Helmert 2006) with
FF and hcea heuristics, k-BFWS (Lipovetzky and Geffner
2017) and Powerlifted (B. Corrêa and Seipp 2022) that rea-
sons over lifted representations. Timeout is 3600 seconds.

The results in Table 1 show that we can solve tasks with
140 activities in several seconds by the lifted planner (as
grounding seems to struggle with timestamp objects). Spe-
cialized approaches are capable of solving more complex

AxMxC FastDownward BFWS Powerlifted
40x2x4 44.2(3.7) 25.8(3.05) 0.08
80x2x4 305(108) 576(23.6) 0.5

100x2x4 434.85(126) 2551.2(70.09) 0.8
120x2x4 1027(446) TIMEOUT 1.5
140x2x4 TIMEOUT TIMEOUT 4.9

Table 1: Planning time (in seconds), where search time is
shown in brackets. AxMxC stands for the number of produc-
tion activities, machines and configurations, respectively.

problems (Vahedi-Nouri et al. 2022), e.g. 110x16x7 in 892
seconds. In spite of encouraging results achieved by the
Powerlifted planner, for more complex cases we might still
need more effective means to reason with timestamp objects,
which we plan for future work.
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