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Abstract

The Boolean Satisfiability Problem (SAT) can be framed as
a binary classification task. Recently, numerous machine and
deep learning techniques have been successfully deployed to
predict whether a CNF has a solution. However, these ap-
proaches do not provide a variables assignment when the in-
stance is satisfiable and have not been used as part of SAT
solvers. In this work, we investigate the possibility of using
a machine-learning SAT/UNSAT classifier to assign a truth
value to a variable. A heuristic solver can be created by itera-
tively assigning one variable to the value that leads to higher
predicted satisfiability. We test our approach with and with-
out probing features and compare it to a heuristic assign-
ment based on the variable’s purity. We consider as objective
the maximisation of the number of literals fixed before mak-
ing the CNF unsatisfiable. The preliminary results show that
this iterative procedure can consistently fix variables without
compromising the formula’s satisfiability, finding a complete
assignment in almost all test instances.

Introduction
The Boolean Satisfiability Problem (SAT) is seminal in com-
puter science. This problem can be treated as a binary clas-
sification task. Learning algorithms trained either on sta-
tistical features extracted at the instance level or on differ-
ent representations of the CNF instances have been proved
able to successfully predict satisfiability with great accu-
racy (Devlin and O’Sullivan 2008), (Dalla, Visentin, and
O’Sullivan 2021). Some of these are based on statistical
features, such as (Xu et al. 2008), also used on differ-
ent tasks, e.g. category classification, solver selection and
algorithm configuration. Machine learning applications in
SAT solving have been widely researched in the last few
years, with three main areas of research: creating standalone
SAT solvers with pure machine learning methods(e.g. (Sel-
sam et al. 2018)), replacing some components of exist-
ing conflict-driven clause learning (CDCL) solvers with
learning-directed heuristics(e.g. (Vaezipoor et al. 2020),
(Liang et al. 2018)) and modifying the local search solvers
with learning-aided modules (e.g. (Zhang et al. 2020)).

This paper uses a SAT/UNSAT classification technique to
guide the assignment of a literal in a branching solution. This
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approach iteratively assigns variables by predicting the sat-
isfiability of the reduced formula. This work can be used as
a heuristic SAT solver or as a pre-processing approach that
reduces the size of the CNF by assigning variables without
compromising its satisfiability.

Methodology

Iterative approach. We define a branching heuristic in
which the variable fixed during the branch is selected ac-
cording to a statistical measure of purity, while its truth value
is assigned using a machine learning heuristic based on a
SAT/UNSAT classifier. This heuristic can be iteratively ap-
plied to fix all the variables of a SAT instance.

A summary of the solving pipeline is shown below:
1. Of the free variables, select the one with the highest pu-

rity score.
2. Create two reduced formulas, one for each possible

Boolean assignment. We define as shadow CNFs these
partially fixed instances.

3. Extract statistical features from these CNFs.
4. Use a random forest to predict the satisfiability of the two

shadow CNFs.
5. Branch on the assignment that has the higher predicted

SAT probability.
6. (Only in training and evaluation) Using Glucose 4 SAT

Solver, check if the reduced CNF is still satisfiable; oth-
erwise, stop.

7. Iterate the process until all the variables are fixed or until
the partial assignment is shown to be invalid.

Training the Random Forest. The random forest is trained
on hand-crafted instances from the CBS dataset from
SATlib. The dataset comprises 1000 random-3-SAT CNFs
with controlled backbone size, each with 100 variables and
403 clauses. We probed 80 instances in order to generate
a labelled dataset with a variety of sizes and balanced dis-
tribution between SAT and UNSAT. The probing is similar
to the previous pipeline: a variable is selected, two reduced
shadow CNFs are generated, SATzilla features are computed
and stored as training inputs and the output of a SAT solver
is stored as the target value. The branching can be directed
by the solutions computed by the SAT solver to obtain a
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labelled dataset with SAT/UNSAT balance. A random for-
est classifier is then hyperparametrised and trained on this
dataset. Finally, the classifier is deployed in step 5. of the
iterative approach. We evaluate a model trained in the sta-
tistical SATzilla features (ML and one that also includes the
probing features (ML+probing).

Variable Selection
We use as variable selection (point 1. of the iterative ap-
proach) an approach that focuses on purity inspired by the
Davis-Putnam Pure Literal Rule. While the strict purity of a
literal is a binary characteristic, it is possible to implement
a new measure that evaluates how close a literal is to purity
and its importance for the formula resolution. The goal is to
select a variable that, if assigned incorrectly, makes the re-
sulting formula unsatisfiable. Among the unfixed variables,
we select the one with the higher score computed with the
following formula:

score(v) = |f(l)− f(¬l)| (1)
where l is the literal in which the variable v appears posi-
tively, and ¬l is the negated literal. Function f is a measure
of the literal relevance and purity:

f(l) =
number appearances(l) ∗ cov(l)

avg clause size(l)
(2)

We included the average clause size in which the literal ap-
pears as an approximation of the literal importance; if a lit-
eral is part of smaller clauses, its assignment becomes more
important for satisfiability. Another measure of how impor-
tant a literal is to instance satisfaction is its covariance with
the negations of crucial literals. For example, if a literal l
shares a binary clause with literal k, but ¬k is in a unit
clause, then it’s imperative to assign l = True to prevent
the contradiction of a unit clause. This concept can be gen-
eralised to clauses of any size by distributing the weight of
a literal to the covariant literals of its negation. To represent
this, let the K be the set of literals which share a clause with
l.

cov(l) =
∑
k∈K

f(¬k)
number appearances(k)

(3)

Results
We consider two different baselines: a random assignment
(Random) and the assignment that makes most of the lit-
erals of that variable true (Majority), e.g. we fix the vari-
able to false if the literal mostly appears negated. We run the
approaches on 50 randomly selected CBS instances unseen
during the random forest training phase. Figure 1 shows the
number of variables fixed before making the instance un-
satisfiable. At every step, a SAT solver assesses if the last
assignment compromises the satisfiability of the formula.
The random performs poorly, early making an invalid as-
signment. A simple Majority heuristic strongly outperforms
the classifier based on statistical features, assigning to com-
pletion 28% of the test instances. The ML approach with
probing can solve all the test set to completion, with the ex-
ception of an early invalid assignment.

Figure 1: Percentage of variables fixed maintaining the in-
stance satisfiability

Discussion and Further Work
This preliminary work investigates the usage of SAT/UN-
SAT machine learning classifiers as branching heuristics.
Early experiments show that this approach can successfully
guide the exploration of the search tree.

Further investigations on alternative variable selection
heuristics, classifiers, and extracted features should be con-
ducted to improve the performance. The generalisation capa-
bilities should be assessed by increasing the size and variety
of the test set. Further, the pipeline itself could be improved
including the implementation of backtracking.
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