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Abstract

Anytime search algorithms are useful for planning problems
where a solution is desired under a limited time budget.
Anytime algorithms first aim to provide a feasible solution
quickly and then attempt to improve it until the time bud-
get expires. On the other hand, parallel search algorithms uti-
lize the multithreading capability of modern processors to
speed up the search. One such algorithm, ePA*SE (Edge-
Based Parallel A* for Slow Evaluations), parallelizes edge
evaluations to achieve faster planning and is especially useful
in domains with expensive-to-compute edges. In this work,
we propose an extension that brings the anytime property
to ePA*SE, resulting in A-ePA*SE. We evaluate A-ePA*SE
experimentally and show that it is significantly more effi-
cient than other anytime search methods. The open-source
code for A-ePA*SE along with the baselines is available here:
https://github.com/shohinm/parallel search

Introduction
Graph search algorithms are widely used in robotics for
planning which can be formulated as the shortest path prob-
lem on a graph (Kusnur et al. 2021; Mukherjee et al. 2021).
Parallelized graph search algorithms have shown to be ef-
fective in robotics domains where action evaluation tends to
be expensive. In particular, a parallelized planning algorithm
ePA*SE (Edge-based Parallel A* for Slow Evaluations) was
developed (Mukherjee, Aine, and Likhachev 2022a) that
changes the basic unit of the search from state expansions
to edge expansions. This decouples the evaluation of edges
from the expansion of their common parent state, giving the
search the flexibility to figure out what edges need to be
evaluated to solve the planning problem. Additionally, this
provides a framework for the asynchronous parallelization
of edge evaluations within the search.

Though parallelized planning algorithms achieve drasti-
cally lower planning times than their serial counterparts, for
their applicability in real-time robotics, planning algorithms
need to come up with a solution under a strict time budget.
Though the optimal solution is preferable, that is often not
the first priority. For such domains, anytime algorithms have
been developed that first prioritize a quick feasible solution
by allowing a high sub-optimality bound. This is typically
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done by incorporating a high inflation factor on the heuris-
tic. They then attempt to improve the solution by incremen-
tally decreasing the inflation factor and therefore tighten-
ing the sub-optimality bound until the time runs out. There-
fore in this work, we bring the anytime property to ePA*SE.
We show that the resulting algorithm, A-ePA*SE, achieves
higher efficiency than existing anytime algorithms.

Related Work
Anytime algorithms A naive approach to make wA* any-
time is to sequentially run several iterations of it from
scratch while reducing the heuristic inflation. Anytime A*
(Zhou and Hansen 2002) finds an initial solution using wA*
and then continues the same search to improve the solution.
A more elegant anytime algorithm Anytime Repairing A*
(ARA*) (Likhachev, Gordon, and Thrun 2003) reuses pre-
vious search efforts to prevent redundant work by keeping
track of states whose cost-to-come can be further reduced
in future iterations. There are several other anytime algo-
rithms (Natarajan et al. 2019; Aine et al. 2016), none of
which utilize any parallelization.

Parallel algorithms Sampling-based methods like PRMs
can be trivially parallelized (Amato and Dale 1999)
by utilizing parallel processes cooperatively build the
roadmap (Jacobs et al. 2012). Parallelized versions of RRT
also exist in which multiple processes expand the search tree
by sampling and adding multiple new states in parallel (De-
vaurs, Siméon, and Cortés 2011; Ichnowski and Alterovitz
2012; Jacobs et al. 2013; Park, Pan, and Manocha 2016).
However, in many planning domains, sampling of states is
not trivial, like in the case of domains that use a simu-
lator in the loop (Liang et al. 2021). Parallelizing search-
based methods are non-trivial because of their sequential
nature. However, there have been several algorithms devel-
oped that achieve this. Parallel A* (Irani and Shih 1986)
expands states in parallel while allowing re-expansions to
maintain optimality, resulting in a high number of expan-
sions. Several other approaches that parallelize state expan-
sions suffer from this downside (Evett et al. 1995; Zhou and
Zeng 2015; Burns et al. 2010), especially if they employ a
weighted heuristic. In contrast, PA*SE (Phillips, Likhachev,
and Koenig 2014) parallelly expands states at most once, in
a way that does not affect the bounds on the solution quality.
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ePA*SE (Mukherjee, Aine, and Likhachev 2022a) improves
PA*SE by changing the basic unit of the search from state
expansions to edge expansions and then parallelizing this
search over edges. GePA*SE (Mukherjee and Likhachev
2023) extends ePA*SE to domains where the actions are het-
erogenous in computational effort. A parallelized lazy plan-
ning algorithm, MPLP (Mukherjee, Aine, and Likhachev
2022b), achieves faster planning by running the search and
evaluating edges asynchronously in parallel. There has also
been work on parallelizing A* search on GPUs (Zhou and
Zeng 2015; He et al. 2021) by utilizing multiple parallel pri-
ority queues. These algorithms have a fundamental limita-
tion that stems from the SIMD (single-instruction-multiple-
data) execution model of a GPU, which limits their applica-
bility to domains with simple actions.

Method
Problem Formulation Let a finite graph G = (V, E) be
defined as a set of vertices V and directed edges E . Each
vertex v ∈ V represents a state s in the state space of the
domain S . An edge e ∈ E connecting two vertices v1 and v2
in the graph represents an action a ∈ A that takes the agent
from corresponding states s1 to s2. In this work, we assume
that all actions are deterministic. Hence an edge e can be
represented as a pair (s,a), where s is the state at which
action a is executed. For an edge e, we will refer to the cor-
responding state and action as e.s and e.a respectively. s0 is
the start state and G is the goal region. c : E → [0,∞] is
the cost associated with an edge. g(s) or g-value is the cost
of the best path to s from s0 found by the algorithm so far
and h(s) is a consistent heuristic (Russell 2010). Addition-
ally, there exists a forward-backward consistent (Phillips,
Likhachev, and Koenig 2014) pairwise heuristic function
h(s, s′) that provides an estimate of the cost between any
pair of states. A path π is defined by an ordered sequence
of edges eNi=1 = (s,a)Ni=1, the cost of which is denoted as
c(π) =

∑N
i=1 c(ei). The objective is to find a path π from s0

to a state in the goal region G within a time budget T . There
is a computational budget of Nt threads available.

ePA*SE In A*, during a state expansion, all its succes-
sors are generated and are inserted/repositioned in the open
list. In ePA*SE, the open list (OPEN) is a priority queue
of edges (not states) that the search has generated but not
expanded, where the edge with the smallest key/priority is
placed in the front of the queue. The priority of an edge
e = (s,a) in OPEN is f ((s,a)) = g(s) + h(s). Expansion
of an edge (s,a) involves evaluating the edge to generate
the successor s′ and adding/updating (but not evaluating) the
edges originating from s′ into OPEN with the same priority
of g(s′) + h(s′). Henceforth, whenever g(s′) changes, the
positions of all of the outgoing edges from s′ need to be up-
dated in OPEN. To avoid this, ePA*SE replaces all the out-
going edges from s′ by a single dummy edge (s′,ad), where
ad stands for a dummy action until the dummy edge is ex-
panded. Every time g(s′) changes, only the dummy edge has
to be repositioned. Unlike what happens when a real edge is
expanded, when the dummy edge (s′,ad) is expanded, it is
replaced by the outgoing real edges from s′ in OPEN. This is

also when the state s′ is considered to be under expansion.
The real edges are expanded when they are popped from
OPEN by an edge expansion thread. This means that every
edge gets delegated to a separate thread for expansion. s′ is
marked expanded (Line 29, Alg. 3) when all outgoing edges
are expanded.

A single thread runs the main planning loop (Alg. 2) and
pulls out edges from OPEN, and delegates their expansion to
an edge expansion thread (Alg.3). To maintain optimality, an
edge can only be expanded if it is independent of all edges
ahead of it in OPEN and the edges currently being expanded,
i.e., in set BE (Mukherjee, Aine, and Likhachev 2022a). An
edge e is independent of another edge e′ if the expansion
of e′ cannot possibly reduce g(e.s). Formally, this indepen-
dence check is expressed by Inequalities 1 and 2. w-ePA*SE
is a bounded suboptimal variant of ePA*SE that trades off
optimality for faster planning by introducing two inflation
factors. w ≥ 1 inflates the priority of edges in OPEN i.e.
f ((s,a)) = g(s) + wh(s). ϵ ≥ 1 used in Inequalities 1
and 2 relaxes the independence rule. As long as ϵ ≥ w, the
solution cost is bounded by ϵ · c∗. We let ϵ = w in this work,
so we have one variable to control the suboptimality bound.

g(e.s)− g(e′.s) ≤ ϵh(e′.s, e.s)

∀e′ ∈ OPEN | f (e′) < f (e)
(1)

g(e.s)− g(s′) ≤ ϵh(s′, e.s) ∀s′ ∈ BE (2)
A-ePA*SE Inspired by ARA*, we extend w-ePA*SE to a
parallelized anytime repairing algorithm A-ePA*SE by in-
heriting three algorithmic techniques:
1. Define locally inconsistent states as the states whose g-

values change while they are in CLOSED ∪ BE during
the current IMPROVEPATH execution ((Likhachev, Gor-
don, and Thrun 2003)). A-ePA*SE keeps track of lo-
cally inconsistent states by maintaining an inconsistent
list INCON (Line 25, Alg. 3).

2. After every ith IMPROVEPATH call exits, A-ePA*SE ini-
tializes OPEN for the next search iteration i + 1 as
OPENi+1 = OPENi ∪ INCON . (Line 15, Alg.1).

Algorithm 1: A-ePA*SE: Plan
1: A ← action space , Nt ← thread budget, T ← time budget
2: w0 ← initial heuristic weight, ∆w ← delta heuristic weight
3: G← graph, s0 ← start state , G ← goal region
4: terminate← False
5: procedure PLAN
6: INCON← ∅
7: ∀s ∈ G, s.g ←∞
8: s0.g ← 0, w = w0

9: insert (s0,ad) in OPEN ▷ Dummy edge from s0
10: while w >= 1 and not TIMEOUT (T ) do
11: INCON = ∅,CLOSED = ∅
12: IMPROVEPATH(w)
13: Publish current w bounded sub-optimal solution
14: w = w −∆w
15: OPEN = OPEN ∪ INCON
16: Re-balance OPEN with new w
17: terminate = True
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Algorithm 2: A-ePA*SE: Improve Path
1: procedure IMPROVEPATH
2: LOCK
3: while f(sg) > mins∈OPEN(f(s)) do
4: if OPEN = ∅ and BE = ∅ then
5: UNLOCK
6: return ∅
7: remove an edge (s,a) from OPEN that has the

smallest f((s,a)) among all states in OPEN that
satisfy Equations 1 and 2

8: if such an edge does not exist then
9: UNLOCK

10: wait until OPEN or BE change
11: LOCK
12: continue
13: if s ∈ G and f(sg) > f(s) then
14: sg = s
15: plan = BACKTRACK(s)
16: UNLOCK
17: while (s,a) has not been assigned a thread do
18: for i = 1 : Nt do
19: if thread i is available then
20: if thread i has not been spawned then
21: Spawn EDGEEXPANDTHREAD(i)

22: Assign (s,a) to thread i

23: LOCK
24: UNLOCK
25: return plan

3. A-ePA*SE changes the termination condition of a search
iteration (Line 3, Alg.2).

A-ePA*SE extends w-ePA*SE with an additional outer
control loop (Alg. 1) that sequentially reduces w. In the first
iteration, IMPROVEPATH is called with w0. This is equiva-
lent to running w-ePA*SE except for the algorithmic change
described in technique 1. When IMPROVEPATH returns, the
current w-suboptimal solution is published (Line 13, Alg. 1).
Before every subsequent call to IMPROVEPATH, w is re-
duced by ∆w and OPEN is updated as described in tech-
nique 2. It is possible that no or very few states in OPEN
satisfy the termination check stated in technique 3 and
IMPROVEPATH returns right away or after a few expansions.
This reusing of previous search effort is the fundamental
source of efficiency gains for A-ePA*SE as compared to run-
ning w-ePA*SE from scratch with a reduced w. A-ePA*SE
terminates when either 1) the time budget expires, and the
current best solution is returned or 2) IMPROVEPATH finds a
provably optimal solution with w = 1.

The following properties hold for A-ePA*SE, and their
proof sketches are provided in (Yang, Mukherjee, and
Likhachev 2023).

Theorem 1 (Anytime correctness) Each time the
IMPROVEPATH function exits, the following holds: the
cost of a greedy path from s0 to sg is no larger than
λg∗(sg), where λ = max(ϵ, w).

Theorem 2 (Anytime efficiency) Within each call to
IMPROVEPATH a state s is expanded only if it was al-
ready locally inconsistent before the call to IMPROVEPATH

Algorithm 3: A-ePA*SE: Edge Expansion
1: procedure EDGEEXPANDTHREAD(i)
2: while not terminate do
3: if thread i has been assigned an edge (s,a) then
4: EXPAND ((s,a))

5: procedure EXPAND((s,a))
6: LOCK
7: if a = ad then
8: insert s in BE
9: for a ∈ A do

10: f ((s,a)) = g(s) + h(s)
11: insert (s,a) in OPEN with f ((s,a))

12: else
13: UNLOCK
14: if NOTEVALUATED ((s,a)) then
15: s′, c ((s,a))← GENERATESUCCESSOR ((s,a))
16: else
17: s′, c ((s,a))← GETSUCCESSOR ((s,a))

18: LOCK
19: if g(s′) > g(s) + c ((s,a)) then
20: g(s′) = g(s) + c ((s,a))
21: f

(
(s′,ad)

)
= g(s′) + wh(s′)

22: if s′ /∈ CLOSED ∪ BE then
23: update (s′,ad) in OPEN with f

(
(s′,ad)

)
24: else
25: update (s′,ad) in INCON with f

(
(s′,ad)

)
26: n successors generated(s)+ = 1
27: if n successors generated(s) = |A| then
28: remove s from BE
29: insert s in CLOSED
30: UNLOCK

or its g-value was lowered during the current execution of
IMPROVEPATH.

Evaluation
We use 5 scaled MovingAI 2D maps (Sturtevant 2012), with
state space being 2D grid coordinates shown in Fig. 1. The
agent has a square footprint with a side length of 32 units.
The action space comprises moving along 8 directions by
25 cell units. To check action feasibility, we collision-check
the footprint at interpolated states with a 1-unit discretiza-
tion. For each map, we sample 50 random start-goal pairs
and verify that there exists a solution by running wA* with
a large timeout. All algorithms use Euclidean distance as the
heuristic. We run the experiments with two cost maps: 1) Eu-
clidean cost and 2) Euclidean cost multiplied with a random
factor map generated by sampling a uniform distribution be-
tween 1 and 100. In the random cost map, there is a ten-
dency for the solution to be improved more gradually with

Figure 1: MovingAI maps with the computed path.
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Euclidean Cost Random Cost Euclidean Cost Random Cost

t̂init t̂opt t̂term t̂init t̂opt t̂term ŝinit ŝopt ŝterm ŝinit ŝopt ŝterm

ARA* 19 (0.92) 47 50 41 (0.90) 99 178 2.7 3.6 2.9 3.2 3.7 3.9
ePA*SE 11 11 11 38 38 38 1.8 1.0 0.7 4.2 1.8 0.9

A-ePA*SE-naive 6 (0.95) 159 200 10 (0.95) 396 767 1.0 9.2 11.9 1.0 13.1 16.4
A-ePA*SE 6 (0.95) 14 16 10 (0.95) 27 44 1.0 1.0 1.0 1.0 1.0 1.0

Table 1: Left: Mean time (ms) to find the initial feasible solution (t̂init), discover optimal solution (t̂opt) and prove optimal
solution (t̂term). Numbers in parenthesis in the t̂init columns are the initial optimality ratios. Right: Speedup of A-ePA*SE
over the baselines. The speedup of A-ePA*SE over itself is 1.0.

the decrease in w. In the case of Euclidean cost, the solution
tends to improve only from one topology to another with a w
decrease, yielding fewer intermediate suboptimal solutions.
We compare A-ePA*SE with three baselines: 1) ARA* 2)
ePA*SE and 3) A-ePA*SE-naive, which runs w-ePA*SE se-
quentially with decreasing w. For the anytime algorithms,
w0 is set to 50, and ∆w is set to 0.5. All experiments were
carried out on an AMD Threadripper Pro 5995WX worksta-
tion with a thread budget of 120. In all cases, we keep a high
time budget, so none of the algorithms timeout.

Table 1 left shows raw planning times for three stages.
t̂init is the mean time to generate the first solution, t̂opt is the
mean time to first discover the optimal solution in hindsight,
and t̂term is the mean time to provably generate the optimal
solution by the final IMPROVEPATH call with w = 1. Ta-
ble 1 right presents the average speedup of A-ePA*SE over
the baselines (tbaseline/tA−ePA∗SE). This is generated by
computing the speedup for each run and then averaging them
over all runs and all maps. A-ePA*SE-naive and A-ePA*SE
compute the initial solution faster than ARA* due to paral-
lelization and than ePA*SE due to the high inflation on the
heuristic. A-ePA*SE computes the provably optimal solu-
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Figure 2: Top: The mean optimality ratio an algorithm
achieves at a specific time point. Bottom: Planning times of
the baselines divided by that of A-ePA*SE to achieve the
same mean optimality ratio.

tion quicker than A-ePA*SE-naive and ARA*, but slower
than ePA*SE. This is expected since ePA*SE runs a single
optimal search. However, A-ePA*SE can discover the opti-
mal solution in hindsight faster than ePA*SE in the random
cost map. This means that even if the time budget runs out
before the A-ePA*SE runs its final iteration with w = 1 to
provably generate the optimal plan and the robot executes
the best plan so far, it may still end up behaving optimally.

Fig. 2 (top) shows the optimality ratio (optimal cost / ac-
tual cost) achieved by an anytime algorithm at a specific time
point. For every problem, we calculate the optimality ratio
at every time point when IMPROVEPATH returns. We then
discretize time and assign each time point with the best op-
timality ratio achieved so far. This is then averaged across
all maps and problems separately for the two different cost
maps. To show the relative performance, Fig. 2 (bottom) di-
vides the time it takes the baselines to achieve a given op-
timality ratio by the time of A-ePA*SE to achieve the same
optimality ratio. Specifically, the plot represents how many
times slower an algorithm is than A-ePA*SE in computing
a solution with a certain optimality factor represented by
the x-axis. We see that ARA* takes significantly longer to
reach the same optimality ratio as compared to A-ePA*SE.
A-ePA*SE-naive does as good as A-ePA*SE for lower op-
timality ratios, but it takes significantly longer to achieve
optimality because it does not reuse previous search effort.
A-ePA*SE outperforms ARA* as predicted due to the effi-
ciency gained from parallelization.

Summary The experimental evaluation demonstrates the
advantages of A-ePA*SE over the baselines.
• Compared to ARA*, both Fig. 2 and Table. 1 indicate

that A-ePA*SE outperforms ARA* in planning time.
• As shown in Table 1, A-ePA*SE and A-ePA*SE-naive

both find the initial solution at around 0.95 optimal-
ity. This implies that, on average, the solution cost im-
provement primarily happens in the 0.95-1.0 optimality
range, making it the range of interest for analysis. Fig. 2
(zoomed in) shows that A-ePA*SE improves the optimal-
ity ratio quicker than A-ePA*SE-naive in that range.

• Compared to ePA*SE, A-ePA*SE has an anytime behav-
ior where it quickly computes a feasible solution and then
improves it over time. Additionally, it computes the opti-
mal solution in hindsight (t̂opt) faster than ePA*SE in the
random cost map, which is a useful insight in the real-
time robotics context.
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