A-ePA*SE: Anytime Edge-Based Parallel A* for Slow Evaluations

Hanlan Yang, Shohin Mukherjee, Maxim Likhachev
The Robotics Institute, CMU
hanlany@andrew.cmu.edu, {shohinm, maxim}@cs.cmu.edu

Abstract

Anytime search algorithms are useful for planning problems where a solution is desired under a limited time budget. Anytime algorithms first aim to provide a feasible solution quickly and then attempt to improve it until the time budget expires. On the other hand, parallel search algorithms utilize the multithreading capability of modern processors to speed up the search. One such algorithm, ePA*SE (Edge-Based Parallel A* for Slow Evaluations), parallelizes edge evaluations to achieve faster planning and is especially useful in domains with expensive-to-compute edges. In this work, we propose an extension that brings the anytime property to ePA*SE, resulting in A-ePA*SE. We evaluate A-ePA*SE experimentally and show that it is significantly more efficient than other anytime search methods. The open-source code for A-ePA*SE along with the baselines is available here: https://github.com/shohinm/parallel_search

Introduction

Graph search algorithms are widely used in robotics for planning which can be formulated as the shortest path problem on a graph (Kusnur et al. 2021; Mukherjee et al. 2021). Parallelized graph search algorithms have shown to be effective in robotics domains where action evaluation tends to be expensive. In particular, a parallelized planning algorithm ePA*SE (Edge-based Parallel A* for Slow Evaluations) was developed (Mukherjee, Aine, and Likhachev 2022a) that changes the basic unit of the search from state expansions to edge expansions. This decouples the evaluation of edges from the expansion of their common parent state, giving the search flexibility to figure out what edges need to be evaluated to solve the planning problem. Additionally, this provides a framework for the asynchronous parallelization of edge evaluations within the search.

Though parallelized planning algorithms achieve drastically lower planning times than their serial counterparts, for their applicability in real-time robotics, planning algorithms need to come up with a solution under a strict time budget. Though the optimal solution is preferable, that is often not the first priority. For such domains, anytime algorithms have been developed that first prioritize a quick feasible solution by allowing a high sub-optimality bound. This is typically done by incorporating a high inflation factor on the heuristic. They then attempt to improve the solution by incrementally decreasing the inflation factor and therefore tightening the sub-optimality bound until the time runs out. Therefore in this work, we bring the anytime property to ePA*SE. We show that the resulting algorithm, A-ePA*SE, achieves higher efficiency than existing anytime algorithms.

Related Work

Anytime algorithms A naive approach to make wA* anytime is to sequentially run several iterations of it from scratch while reducing the heuristic inflation. Anytime A* (Zhou and Hansen 2002) finds an initial solution using wA* and then continues the same search to improve the solution. A more elegant anytime algorithm Anytime Repairing A* (ARA*) (Likhachev, Gordon, and Thrun 2003) reuses previous search efforts to prevent redundant work by keeping track of states whose cost-to-come can be further reduced in future iterations. There are several other anytime algorithms (Natarajan et al. 2019; Aine et al. 2016), none of which utilize any parallelization.

Parallel algorithms Sampling-based methods like PRMs can be trivially parallelized (Amato and Dale 1999) by utilizing parallel processes cooperatively build the roadmap (Jacobs et al. 2012). Parallelized versions of RRT also exist in which multiple processes expand the search tree by sampling and adding multiple new states in parallel (Devaurs, Siméon, and Cortés 2011; Ichnowski and Alterovitz 2012; Jacobs et al. 2013; Park, Pan, and Manocha 2016). However, in many planning domains, sampling of states is not trivial, like in the case of domains that use a simulator in the loop (Liang et al. 2021). Parallelizing search-based methods are non-trivial because of their sequential nature. However, there have been several algorithms developed that achieve this. Parallel A* (Irani and Shih 1986) expands states in parallel while allowing re-expansions to maintain optimality, resulting in a high number of expansions. Several other approaches that parallelize state expansions suffer from this downside (Evett et al. 1995; Zhou and Zeng 2015; Burns et al. 2010), especially if they employ a weighted heuristic. In contrast, PA*SE (Phillips, Likhachev, and Koening 2014) parallelly expands states at most once, in a way that does not affect the bounds on the solution quality.
ePA*SE (Mukherjee, Aine, and Likhachev 2022a) improves PA*SE by changing the basic unit of the search from state expansions to edge expansions and then parallelizing this search over edges. GePA*SE (Mukherjee and Likhachev 2023) extends ePA*SE to domains where the actions are heterogenous in computational effort. A parallelized lazy planning algorithm, MPLP (Mukherjee, Aine, and Likhachev 2022b), achieves faster planning by running the search and evaluating edges asynchronously in parallel. There has also been work on parallelizing A* search on GPUs (Zhou and Zeng 2015; He et al. 2021) by utilizing multiple parallel priority queues. These algorithms have a fundamental limitation that stems from the SIMD (single-instruction-multiple-data) execution model of a GPU, which limits their applicability to domains with simple actions.

Method

Problem Formulation

Let a finite graph \(G = (V, E) \) be defined as a set of vertices \(V \) and directed edges \(E \). Each vertex \(v \in V \) represents a state \(s \) in the state space of the domain \(S \). An edge \(e \in E \) connecting two vertices \(v_1 \) and \(v_2 \) in the graph represents an action \(a \in A \) that takes the agent from corresponding states \(s_1 \) to \(s_2 \). In this work, we assume that all actions are deterministic. Hence an edge \(e \) can be represented as a pair \((s, a)\), where \(s \) is the state at which action \(a \) is executed. For an edge \(e \), we will refer to the corresponding state and action as \(e.s \) and \(e.a \) respectively. \(s_0 \) is the start state and \(G \) is the goal region. \(c : E \rightarrow [0, \infty) \) is the cost associated with an edge. \(g(s) \) or \(g.-value \) is the cost of the best path to \(s \) from \(s_0 \) found by the algorithm so far and \(h(s) \) is a consistent heuristic (Russell 2010). Additionally, there exists a forward-backward consistent (Phillips, Likhachev, and Koenig 2014) pairwise heuristic function \(h(s, s') \) that provides an estimate of the cost between any pair of states. A path \(\pi \) is defined by an ordered sequence of edges \(e(\pi) = (s, a)_1 \ldots (s, a)_N \), the cost of which is denoted as \(c(\pi) = \sum c(e_i) \). The objective is to find a path \(\pi \) from \(s_0 \) to a state in the goal region \(G \) within a time budget \(T \). There is a computational budget of \(N_t \) threads available.

ePA*SE

In A*, during a state expansion, all its successors are generated and are inserted/repositioned in the open list. In ePA*SE, the open list (OPEN) is a priority queue of edges (not states) that the search has generated but not expanded, where the edge with the smallest key/priority is placed in the front of the queue. The priority of an edge \(e = (s, a) \) in OPEN is \(f((s, a)) = g(s) + h(s) \). Expansion of an edge \((s, a)\) involves evaluating the edge to generate the successor \(s' \) and adding/updating (but not evaluating) the edges originating from \(s' \) into OPEN with the same priority of \(g(s') + h(s') \). Henceforth, whenever \(g(s') \) changes, the positions of all of the outgoing edges from \(s' \) need to be updated in OPEN. To avoid this, ePA*SE replaces all the outgoing edges from \(s' \) by a single dummy edge \((s', a^d)\), where \(a^d \) stands for a dummy action until the dummy edge is expanded. Every time \(g(s') \) changes, only the dummy edge has to be repositioned. Unlike what happens when a real edge is expanded, when the dummy edge \((s', a^d)\) is expanded, it is replaced by the outgoing real edges from \(s' \) in OPEN. This is also when the state \(s' \) is considered to be under expansion. The real edges are expanded when they are popped from OPEN by an edge expansion thread. This means that every edge gets delegated to a separate thread for expansion. \(s' \) is marked expanded (Line 29, Alg. 3) when all outgoing edges are expanded.

A single thread runs the main planning loop (Alg. 2) and pulls out edges from OPEN, and delegates their expansion to an edge expansion thread (Alg.3). To maintain optimality, an edge can only be expanded if it is independent of all edges ahead of it in OPEN and the edges currently being expanded, i.e., in set BE (Mukherjee, Aine, and Likhachev 2022a). An edge \(e \) is independent of another edge \(e' \) if the expansion of \(e' \) cannot possibly reduce \(g(e, s) \). Formally, this independence check is expressed by Inequalities 1 and 2. w-ePA*SE is a bounded suboptimal variant of ePA*SE that trades off optimality for faster planning by introducing two inflation factors. \(w \geq 1 \) inflates the priority of edges in OPEN i.e. \(f((s, a)) = g(s) + wh(s), e \geq 1 \) used in Inequalities 1 and 2 relaxes the independence rule. As long as \(e \geq w \), the solution cost is bounded by \(e.c\). We let \(w = w \) in this work, so we have one variable to control the suboptimality bound.

\[
g(e, s) - g(e', s) \leq eh(e', s, e, s) \quad \forall e' \in \text{OPEN} \quad |f(e')| < f(e) \quad (1)
\]

\[
g(e, s) - g(s') \leq eh(s', e, s) \quad \forall s' \in BE \quad (2)
\]

A-ePA*SE

Inspired by ARA*, we extend w-ePA*SE to a parallelized anytime repairing algorithm A-ePA*SE by inheriting three algorithmic techniques:

1. Define locally inconsistent states as the states whose \(g.-values \) change while they are in CLOSED \(\cup \) BE during the current IMPROVEPATH execution (Likhachev, Gordon, and Thrun 2003). A-ePA*SE keeps track of locally inconsistent states by maintaining an inconsistent list \(INCON \) (Line 25, Alg. 3).

2. After every \(i^{th} \) IMPROVEPATH call exits, A-ePA*SE initializes OPEN for the next search iteration \(i + 1 \) as \(\text{OPEN}_{i+1} = \text{OPEN}_i \cup \text{INCON} \). (Line 15, Alg.1).

Algorithm 1: A-ePA*SE: Plan

1: \(A \leftarrow \) action space, \(N_t \leftarrow \) thread budget, \(T \leftarrow \) time budget
2: \(w_0 \leftarrow \) initial heuristic weight, \(\Delta w \leftarrow \) delta heuristic weight
3: \(G \leftarrow \) graph, \(s_0 \leftarrow \) start state, \(G \leftarrow \) goal region
4: terminate \(\leftarrow \) False
5: procedure PLAN
6: \(\text{INCON} \leftarrow \emptyset \)
7: \(\forall s \in G, g, q \leftarrow \infty \)
8: \(s_0, q \leftarrow 0, w = w_0 \)
9: insert \((s_0, a^d)\) in OPEN \(\triangleright \) Dummy edge from \(s_0 \)
10: while \(w \gg 1 \) and not \(\text{TIMEOUT}(T) \) do
11: \(\text{INCON} = \emptyset, \text{CLOSED} = \emptyset \)
12: IMPROVEPATH(w)
13: Publish current \(w \) bounded sub-optimal solution
14: \(w = w - \Delta w \)
15: \(\text{OPEN} = \text{OPEN} \cup \text{INCON} \)
16: Re-balance OPEN with new \(w \)
17: terminate \(\leftarrow \) True
Algorithm 2: A-ePA*SE: Improve Path

1: procedure IMPROVEPATH
2: LOCK
3: while $f(s_0) > \min_{s \in \text{OPEN}}(f(s))$ do
4: if OPEN = \emptyset and BE = \emptyset then
5: UNLOCK
6: return \emptyset
7: remove an edge (s, a) from OPEN that has the smallest $f((s, a))$ among all states in OPEN that satisfy Equations 1 and 2
8: if such an edge does not exist then
9: UNLOCK
10: wait until OPEN or BE change
11: LOCK
12: continue
13: if $s \in \mathcal{G}$ and $f(s_{\delta}) > f(s)$ then
14: $s_{\delta} = s$
15: plan = BACKTRACK(s)
16: UNLOCK
17: while (s, a) has not been assigned a thread do
18: for $i = 1 : |N|$ do
19: if thread i is available then
20: if thread i has not been spawned then
21: Spawn EDGEEXPANDTHREAD(i)
22: Assign (s, a) to thread i
23: LOCK
24: UNLOCK
25: return plan

3. A-ePA*SE changes the termination condition of a search iteration (Line 3, Alg.2).

A-ePA*SE extends w-ePA*SE with an additional outer control loop (Alg. 1) that sequentially reduces w. In the first iteration, IMPROVEPATH is called with w_0. This is equivalent to running w-ePA*SE except for the algorithmic change described in technique 1. When IMPROVEPATH returns, the current w-suboptimal solution is published (Line 13, Alg. 1). Before every subsequent call to IMPROVEPATH, w is reduced by Δw and OPEN is updated as described in technique 2. It is possible that no or very few states in OPEN satisfy the termination check stated in technique 3 and IMPROVEPATH returns right away or after a few expansions. This reusing of previous search effort is the fundamental source of efficiency gains for A-ePA*SE as compared to running w-ePA*SE from scratch with a reduced w. A-ePA*SE terminates when either 1) the time budget expires, and the current best solution is returned or 2) IMPROVEPATH finds a provably optimal solution with $w = 1$.

The following properties hold for A-ePA*SE, and their proof sketches are provided in (Yang, Mukherjee, and Likhachev 2023).

Theorem 1 (Anytime correctness) Each time the IMPROVEPATH function exits, the following holds: the cost of a greedy path from s_0 to s_9 is no larger than $\lambda g^*(s_9)$, where $\lambda = \max(\epsilon, w)$.

Theorem 2 (Anytime efficiency) Within each call to IMPROVEPATH a state s is expanded only if it was already locally inconsistent before the call to IMPROVEPATH or its g-value was lowered during the current execution of IMPROVEPATH.

Algorithm 3: A-ePA*SE: Edge Expansion

1: procedure EDGEEXPANDTHREAD(i)
2: while not terminate do
3: if thread i has been assigned an edge (s, a) then
4: EXPAND ((s, a))
5: procedure EXPAND((s, a))
6: LOCK
7: if $a = a^\delta$ then
8: insert s in BE
9: for $a \in A$ do
10: $f((s, a)) = g(s) + h(s)$
11: insert (s, a) in OPEN with $f((s, a))$
12: else
13: UNLOCK
14: if NOTEVALUATED((s, a)) then
15: $s', c((s, a)) \leftarrow \text{GENERATESUCCESSOR}((s, a))$
16: else
17: $s', c((s, a)) \leftarrow \text{GETSUCCESSOR}((s, a))$
18: LOCK
19: if $g(s') > g(s) + c((s, a))$ then
20: $g(s') = g(s) + c((s, a))$
21: $f((s', a^\delta)) = g(s') + wh(s')$
22: if $s' \notin \text{CLOSED} \cup \text{BE}$ then
23: update (s', a^δ) in OPEN with $f((s', a^\delta))$
24: else
25: update (s', a^δ) in INCON with $f((s', a^\delta))$
26: n_successors_generated(s) += 1
27: if n_successors_generated(s) = $|A|$ then
28: remove s from BE
29: insert s in CLOSED
30: UNLOCK

Evaluation

We use 5 scaled MovingAI 2D maps (Sturtevant 2012), with state space being 2D grid coordinates shown in Fig. 1. The agent has a square footprint with a side length of 32 units. The action space comprises moving along 8 directions by a large timeout. All algorithms use Euclidean distance as the heuristic. We run the experiments with two cost maps: 1) Euclidean cost and 2) Euclidean cost multiplied with a random heuristic. We sample 50 random start-goal pairs for each map. For each map, we sample 50 random start-goal pairs and verify that there exists a solution by running wA* with a large timeout. All algorithms use Euclidean distance as the heuristic. We run the experiments with two cost maps: 1) Euclidean cost and 2) Euclidean cost multiplied with a random heuristic. We sample 50 random start-goal pairs and verify that there exists a solution by running wA* with a large timeout. All algorithms use Euclidean distance as the heuristic.

Figure 1: MovingAI maps with the computed path.
the decrease in w. In the case of Euclidean cost, the solution tends to improve only from one topology to another with a w decrease, yielding fewer intermediate suboptimal solutions. We compare A-ePA*SE with three baselines: 1) ARA* 2) ePA*SE and 3) A-ePA*SE-naive, which runs w-ePA*SE sequentially with decreasing w. For the anytime algorithms, w_0 is set to 50, and Δw is set to 0.5. All experiments were carried out on an AMD Threadripper Pro 5995WX workstation with a thread budget of 120. In all cases, we keep a high time budget, so none of the algorithms timeout.

Table 1 left shows raw planning times for three stages. t_{init} is the mean time to generate the first solution, t_{opt} is the mean time to first discover the optimal solution in hindsight, and t_{term} is the mean time to provably generate the optimal solution by the final IMPROVEPATH call with $w = 1$. Table 1 right presents the average speedup of A-ePA*SE over the baselines ($t_{\text{baseline}}/t_{\text{A-ePA*SE}}$). This is generated by computing the speedup for each run and then averaging them over all runs and all maps. A-ePA*SE-naive and A-ePA*SE compute the initial solution faster than ARA* due to parallelization and than ePA*SE due to the high inflation on the heuristic. A-ePA*SE computes the provably optimal solution quicker than A-ePA*SE-naive and ARA*, but slower than ePA*SE. This is expected since ePA*SE runs a single optimal search. However, A-ePA*SE can discover the optimal solution in hindsight faster than ePA*SE in the random cost map. This means that even if the time budget runs out before the A-ePA*SE runs its final iteration with $w = 1$ to provably generate the optimal plan and the robot executes the best plan so far, it may still end up behaving optimally.

Fig. 2 (top) shows the optimality ratio (optimal cost / actual cost) achieved by an anytime algorithm at a specific time point. For every problem, we calculate the optimality ratio at every time point when IMPROVEPATH returns. We then discretize time and assign each time point with the best optimality ratio achieved so far. This is then averaged across all maps and problems separately for the two different cost maps. To show the relative performance, Fig. 2 (bottom) divides the time it takes the baselines to achieve a given optimality ratio by the time of A-ePA*SE to achieve the same optimality ratio. Specifically, the plot represents how many times slower an algorithm is than A-ePA*SE in computing a solution with a certain optimality factor represented by the x-axis. We see that ARA* takes significantly longer to reach the same optimality ratio as compared to A-ePA*SE. A-ePA*SE-naive does as good as A-ePA*SE for lower optimality ratios, but it takes significantly longer to achieve optimality because it does not reuse previous search effort. A-ePA*SE outperforms ARA* as predicted due to the efficiency gained from parallelization.

Summary The experimental evaluation demonstrates the advantages of A-ePA*SE over the baselines.

- Compared to ARA*, both Fig. 2 and Table 1 indicate that A-ePA*SE outperforms ARA* in planning time.
- As shown in Table 1, A-ePA*SE and A-ePA*SE-naive both find the initial solution at around 0.95 optimality. This implies that, on average, the solution cost improvement primarily happens in the 0.95-1.0 optimality range, making it the range of interest for analysis. Fig. 2 (zoomed in) shows that A-ePA*SE improves the optimality ratio quicker than A-ePA*SE-naive in that range.
- Compared to ePA*SE, A-ePA*SE has an anytime behavior where it quickly computes a feasible solution and then improves it over time. Additionally, it computes the optimal solution in hindsight (t_{opt}) faster than ePA*SE in the random cost map, which is a useful insight in the real-time robotics context.

<table>
<thead>
<tr>
<th></th>
<th>Euclidean Cost</th>
<th>Random Cost</th>
<th>Euclidean Cost</th>
<th>Random Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_{init}</td>
<td>t_{opt}</td>
<td>t_{term}</td>
<td>t_{init}</td>
</tr>
<tr>
<td>ARA*</td>
<td>19 (0.92)</td>
<td>47</td>
<td>50</td>
<td>41 (0.90)</td>
</tr>
<tr>
<td>ePA*SE</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>A-ePA*SE-naive</td>
<td>6 (0.95)</td>
<td>159</td>
<td>200</td>
<td>10 (0.95)</td>
</tr>
<tr>
<td>A-ePA*SE</td>
<td>6 (0.95)</td>
<td>14</td>
<td>16</td>
<td>10 (0.95)</td>
</tr>
</tbody>
</table>
Acknowledgements

This work was supported by the ARL-sponsored A2I2 program, contract W911NF-18-2-0218, and ONR grant N00014-18-1-2775.

References

