
Terraforming—Environment Manipulation during Disruptions
for Multi-Agent Pickup and Delivery

David Vainshtein, Yaakov Sherma, Kiril Solovey, Oren Salzman *

Technion - Israel Institute of Technology, Haifa, Israel
dudiwa@cs.technion.ac.il, yaakovsherma@cs.technion.ac.il, kirilsol@technion.ac.il, osalzman@cs.technion.ac.il

Abstract

In automated warehouses, teams of mobile robots fulfill the
packaging process by transferring inventory pods to desig-
nated workstations while navigating narrow aisles formed by
tightly packed pods. This problem is typically modelled as a
Multi-Agent Pickup and Delivery (MAPD) problem, which
is then solved by repeatedly planning collision-free paths for
agents on a fixed graph, as in the Rolling-Horizon Colli-
sion Resolution (RHCR) algorithm. However, existing ap-
proaches make the limiting assumption that agents are only
allowed to move pods that correspond to their current task,
while considering the other pods as stationary obstacles (even
though all pods are movable). This behavior can result in un-
necessarily long paths which could otherwise be avoided by
opening additional corridors via pod manipulation. To this
end, we explore the implications of allowing agents the flexi-
bility of dynamically relocating pods. We call this new prob-
lem Terraforming MAPD (tMAPD) and develop an RHCR-
based approach to tackle it. As the extra flexibility of ter-
raforming comes at a significant computational cost, we uti-
lize this capability judiciously by identifying situations where
it could make a significant impact on the solution quality. In
particular, we invoke terraforming in response to disruptions
that often occur in automated warehouses, e.g., when an item
is dropped from a pod or when agents malfunction. Empiri-
cally, using our approach for tMAPD, where disruptions are
modeled via a stochastic process, we improve throughput by
over 10%, reduce the maximum service time (the difference
between the drop-off time and the pickup time of a pod) by
more than 50%, without drastically increasing the runtime,
compared to the MAPD setting.

1 Introduction
Multi-Agent Path Finding (MAPF) is a popular algorith-
mic framework that captures complex tasks involving mo-
bile agents that need to plan individual routes while avoiding
collisions during plan execution (Stern et al. 2019; Salzman

*This research was supported in part by the Israeli Ministry
of Science & Technology grants No. 3-16079 and 3-17385, the
United States-Israel Binational Science Foundation (BSF) grants
no. 2019703 and 2021643, the Amazon Research Award, and
Ravitz Foundation.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) MAPF problem (b) Static obstacles (c) Terraforming

Figure 1: Comparing MAPF and tMAPF for a toy problem
with agents a1, a2, a3 (circles), and a row of obstacles (grey
squares). (a) MAPF problem assigning agents to their goal
locations (squares). Here, agent a3 is a free agent which does
not carry a pod. (b) MAPF solution where agents must avoid
collisions with obstacles and each other. Here, agent a3 can-
not help the other two agents as all obstacles are static.
(c) tMAPF solution where a3 displaces the movable obsta-
cle o3 to open a passage.

and Stern 2020). This abstraction has been successfully ap-
plied to a variety of settings (see, e.g., Wurman, D’Andrea,
and Mountz (2008); Belov et al. (2020); Li et al. (2021a);
Greshler et al. (2021); Choudhury et al. (2021)). However, in
some cases this formulation may not be expressive enough
to fully capture the underlying task, which can lead to sub-
optimal performance.

This is especially true in the context of automated ware-
houses where we are given a stream of tasks, and the goal is
to maximize the system’s throughput. In this setting, formu-
lated as a Multi-Agent Pickup and Delivery (MAPD) prob-
lem, inventory pods that hold goods are transported by a
large team of mobile agents: agents pick up pods, carry them
to designated drop-off locations, where goods are manually
removed from the pods (to be packaged for customers); each
pod is then carried back by a robot to a (possibly different)
storage location (Wurman, D’Andrea, and Mountz 2008).
MAPD is typically solved via a sequence of MAPF queries,
as in the RHCR algorithm and its successors (Ma et al.
2017; Liu et al. 2019; Li et al. 2021b; Madar, Solovey, and
Salzman 2022). Existing variants of MAPF and MAPD tend
to impose the following limiting and artificial constraint:
pods that are not currently carried to or from a drop-off loca-
tion are modeled as static obstacles, which cannot be moved.
Such approaches overlook the fact that pods can be manipu-
lated to clear the way for agents and reduce execution time.

Proceedings of the Sixteenth International Symposium on Combinatorial Search (SoCS 2023)

92

To this end, we explore the implications of allowing
agents the extra flexibility of manipulating the environment
by moving obstacles (i.e., dynamically relocating pod’s loca-
tions in warehouse applications). Specifically, we introduce
a new MAPD variant (depicted in Fig. 1) which we term
“Terraforming MAPD” (tMAPD).1 Unfortunately, the extra
flexibility of environment manipulation comes at a computa-
tional price—solving a tMAPD problem takes significantly
longer than a MAPD problem. Roughly speaking, this is be-
cause a planner needs to (i) consider which static obstacles
to displace and (ii) which agent should perform said dis-
placements. Thus, in this work we suggest to use terraform-
ing only when unexpected disruptions are experienced.

In real-life settings disruptions may occur when an item
is dropped from a pod or when agents experience malfunc-
tions. Such events require a safety perimeter to be enforced,
cutting off routes and requiring agents to replan in order to
detour the disruption area. In the extreme case, agents may
become completely trapped by surrounding disruptions, ren-
dering them unable to carry out their tasks. As we will see,
such events are excellent candidates for environment manip-
ulation: A disruption can be used to guide a planner which
obstacles to consider as candidates to be moved allowing
the planner to heuristically focus its computation. More im-
portantly, solutions computed by a planner that can manipu-
late the environment are often of much higher quality when
compared to planners that do not have this extra flexibility
making the additional computational effort worthwhile.

We develop an algorithmic approach to tackle the tMAPD
problem with disruptions, which casts the question of
which obstacles should be moved and by whom to MAPF-
like problems. Those ideas, which are combined with an
RHCR-based approach, which we call Terraforming RHCR
(tRHCR), dramatically reduce the size of the huge decision
space and allow to efficiently solve the tMAPD problem.
We evaluate the benefit of tRHCR on warehouse environ-
ments that are affected by disruptions, empirically demon-
strating an improvement in throughput by over 10% and a
reduction of the maximum service time (the difference be-
tween the drop-off time and the pickup time of a pod) by
more than 50%, without drastically increasing the runtime,
as compared with a standard MAPD approach.

2 Related Work
Research on MAPF has produced a wide variety of ap-
proaches, ranging from network flow (Yu and LaValle 2012),
to satisfiability (Surynek et al. 2016), answer set program-
ming (Erdem et al. 2013) and tree-search methods (Barer
et al. 2014; Boyarski et al. 2015; Sharon et al. 2015; Li
et al. 2019). With the focus of this work on the latter group,
the method of the most relevance to ours is Priority-Based
Search (PBS) (Ma et al. 2019a) which offers a balance be-
tween solution quality and fast computation when solving

1The concept of “Terraforming” emerged in science fiction at
the dawn of the space race, as a means of space exploration, in
which a planet’s inhospitable environment is altered to facilitate
life. For additional details, see, e.g., https://sfdictionary.com/view/
125/terraforming.

the MAPD problem (Ma et al. 2017; Li et al. 2021b). In our
work we utilize PBS (detailed in Sec. 4) both as our baseline
MAPF solver and as the basis for our tMAPD algorithm.

The most closely-related work to our new terraforming
problem formulation is by Bellusci, Basilico, and Amigoni
(2020), in which a configurable environment is optimized
alongside path-finding efforts of MAPF. Referred to as the
Configurable MAPF (C-MAPF) problem, it allows for the
reconfiguration of the environment, subject to constraints
imposed on the graph itself. An important distinction from
our work is that solving the C-MAPF problem consists of
searching for a fixed graph resulting in minimal graph alter-
ations, as well as a set of valid paths dictating where each
agent should go. In contrast, the environment in tMAPD has
the capacity to dynamically change as agents execute their
paths and obstacles are temporarily cleared to make way.

Also related to our work is a generalization of MAPF
called k-robust MAPF (Atzmon et al. 2018) that produces
paths guaranteed to be collision-free even when agents are
delayed by up to k timesteps. The concept of robustness is
demonstrated as an effective mechanism for avoiding colli-
sions in the context of sudden delays that occur with proba-
bility p per each move of each agent (Atzmon et al. 2020).
In our work, although the probability of future per-agent de-
lays p can be modeled, we account for disruptions that block
sections of the graph not occupied by an agent and their du-
ration is not known in advance.

Finally, we mention that the state-of-the-art approach
for MAPD is the Rolling-Horizon Collision Resolution
(RHCR) algorithm (Li et al. 2021b). RHCR iteratively
plans a set of partial paths for a group of agents up to a
specified time-horizon, decomposing MAPD into a series
of MAPF queries that are solved iteratively. The choice of
MAPF solver is very often PBS as it offers a balance of
solution quality and fast computation time. In our work we
extend RHCR to incorporate terraforming and to account
for unexpected disruptions that affect the graph itself.

3 Problem Formulation
In this section we start by defining the MAPF problem and
the continue to define the Multi-Agent Pickup and Delivery
(MAPD) problem and introduce the notion of disruptions in
the context of MAPD. Finally, we define the tMAPD prob-
lem, which is used in our approach to efficiently handle dis-
ruptions within MAPD settings.

3.1 Multi-Agent Path Finding (MAPF)
We define the MAPF problem as a tuple
⟨G,A,Vstart,Vgoal,O⟩, where the environment G = (V, E)
is an undirected graph and A = {a1, . . . , an} is the set of
agents. Here, Vstart = {s1, . . . , sn} and Vgoal = {g1, . . . , gn}
are the agents’ start and goal vertices, respectively. Agents
move between vertices along graph edges and are allowed to
wait in place. For each agent ai, its actions occur in discrete
timesteps of unit cost, resulting in a path πi comprised of
a sequence of vertices πi = ⟨si, . . . , gi⟩ that is associated
with a cost |πi| of the total number of actions.

A solution to the MAPF problem is a set of collision-
free paths π = {π1, . . . , πn} such that no two agents share

93

the same vertex at the same timestep πi[t] ̸= πj [t], nor
are they allowed to cross over the same edge in opposing
directions (πi[t], πi[t + 1]) ̸= (πj [t + 1], πj [t]). The cost
of the solution π is called its flowtime and is defined as
the sum of individual path costs. Namely, |π| =

∑
i |πi|

with |πi| denoting the cost (number of timesteps) of the so-
lution of agent i. Note that other cost functions exist, such
as makespan (Stern et al. 2019) that corresponds to the max-
imum path cost among all agents, i.e., max{|πi|}i.

In typical MAPF formulations, static obstacles that block
certain agent positions are implicitly represented by omitting
blocked vertices and edges from the graph G. In our setting
however, we facilitate interactions between agents and ob-
stacles by explicitly denoting vertices that the agents cannot
visit as a set of obstacles O = {o1, . . . , on} ⊂ V .

3.2 Multi-Agent Pickup and Delivery (MAPD)

We now describe the standard setting of MAPD where we
are tasked with continuously planning for agents as they
handle tasks assigned from a task queue T . In this work we
assume for simplicity that tasks arrive as an online stream,
meaning we do not have access to future tasks.

Each task τi ∈ T consists of a pair ⟨pi, di⟩ where pi ∈
O, di ∈ V are its pickup and delivery locations, respec-
tively. When an agent is assigned a task, it must (i) arrive
at the obstacle’s pickup location pi, (ii) carry and deliver it
to the delivery location di and (iii) return it to the pickup
location pi. When an agent does not carry an obstacle (i.e.,
during step (i) or when it is not assigned with a task), we say
that it is a free agent. When an agent does carry an obstacle
(i.e., during steps (ii) and (iii)), we say that it is a task agent.
Let τ = ⟨p, d⟩ be a task assigned to agent a. We define the
pickup time of τ as the first time step that a arrives at p. Sim-
ilarly, we define the drop-off time of τ as the first time step
that a returns to p after delivering the obstacle to d (namely,
after the obstacle has been restored to its original location).
The service time of τ in our setting is then defined to be the
difference between its drop-off time and its pickup time.

As we can see, an assigned task τ has several states: en-
route to pickup, delivery and restore. Therefore, it will be
convenient to define a goal mapping λ to keep track of each
agent’s current goal. In other words, λ(a, t, τ) points to the
next goal of agent a (being p or d) at timestep t.

Solution quality. A common measure of solution quality
for a MAPD problem is throughput (Stern et al. 2019), de-
fined as the average number of tasks completed per unit of
time, which measures the amortized cost of completing all
tasks. However, it is often important to consider costs that
relate to individual tasks. Thus, we define the ideal ser-
vice time to be the length of the shortest path between a
task’s pickup and delivery location (and back), while avoid-
ing static obstacles and assuming there are no other agents.
The task’s service time ratio is then defined as the ratio be-
tween the task’s actual service time and the task’s ideal ser-
vice time. Note that the closer the average service time ratio
is to one, the closer the system is to its optimal throughput.

3.3 Terraforming MAPD with Disruptions
A tMAPD problem is defined identically to a MAPD prob-
lem with the difference that we allow free agents to move
obstacles. That is, agents that are not currently carrying ob-
stacles, can pick-up and drop-off obstacles with the purpose
of opening passageways and reducing congestion. Addition-
ally, we consider a setting where disruptions exist in the en-
vironment. Here, we define a disruptionD = ⟨v, tstart, tend⟩
as the blockage of a vertex v ∈ V between timestep tstart
and tend. I.e., given such a disruption, no agent can pass
through v between tstart and tend. We assume that dis-
ruptions are unpredictable: at every timestep t the planner
only has access to the currently active disruptions through a
function OBSERVE. The function specifies all vertices VD
that are blocked at t (i.e., vertices of disruptions where
t ∈ [tstart, tend]). This implies that the MAPD planner does
not have access to (i) future disruptions or (ii) the time tend
for which an active disruption will end. In our setting, dis-
ruptions occur only along paths traversed by agents thus
modelling realistic disruptions in warehouses such as items
dropped from a pod or when agents malfunction.2

4 Algorithmic Background
In preparation to our approach for tMAPD, we first describe
the PBS algorithm as a solver for the (classical) MAPF
problem. We then describe how PBS can be used to solve
the (standard) MAPD problem, as is often done in practice.

4.1 Priority-Based Search
We provide an overview of PBS together with an adaptation
termed windowed PBS (W-PBS) for MAPF and refer the
reader to Ma et al. (2019a) for further details. Pseudocode of
W-PBS is detailed in Alg. 1.3 At its core PBS takes a hierar-
chical approach using a high- and low-level search in which
PBS maintains priorities between agents at the high-level
and searches for agent paths that abide to these priorities in
the low-level.

More specifically, in the high-level search, PBS explores
a priority tree (PT), where a given node N of the PT en-
codes a (partial) priority set PN = {ah ≺ ai, aj ≺ al, . . . }.
A priority ai ≺ aj means that agent ai has precedence over
agent aj whenever a low-level search is invoked (see below).
In this case, we say that ai has a higher priority than aj .
In addition to the ordering, each PT node maintains single-
agent paths that represent the current MAPF solution (possi-
bly containing collisions. The PBS algorithm (Alg. 1) starts
the high-level search with the tree root whose priority set is
empty, and assigns to each agent its shortest path (Lines 2-
6). Whenever PBS expands a node N (Line 8), it invokes a
low-level search to compute a new set of paths which abide
by the priority set PN . If a collision between agents, e.g., ai
and aj , is encountered in the new paths, PBS generates
two child PT nodes N1, N2 with the updated priority sets

2Our disruption model shares similarities to existing models in
other domains such as railway planning (Mohanty et al. 2020).

3Blue text in Alg. 1 will be used to explain the adaptation of
W-PBS to terraforming in Sec. 5 and should be ignored for now.

94

Algorithm 1: TW-PBS

Input: Graph G, agents A, movable obstacles Õ,
goal mapping λ, planning window ω

Returns: A collision-free plan π

1 A ← A∪ Õ // treat Õ as demi-agents
2 R.priorities← ∅ // root state
3 R.paths← findPaths(G, A, λ, R.priorities, ω)
4 R.cost ← getTerraFlowtime(R.paths)
5 R.collisions← detectCollisions(R.paths)
6 insert(R, OPEN)

7 while OPEN not empty do
8 N ← pop(OPEN) // searched via DFS
9 ⟨ai, aj , l, t⟩ ← getCollisions(N)

10 if N.collisions is empty then
11 return N.paths

12 for p ∈ ⟨ai ≺ aj⟩, ⟨aj ≺ ai⟩ do
13 P ← N.priorities ∪ {p}
14 N ′ ← clone(N)
15 N ′.paths← findPaths(G, A, λ, P, ω)
16 N ′.cost← getTerraFlowtime(N ′.paths)
17 N ′.collisions←

detectCollisions(N ′.paths)
18 N ′.priorities← P
19 insert(N ′, OPEN)

PN1 = PN ∪ {ai ≺ aj}, PN2 = PN ∪ {aj ≺ ai}, respec-
tively (Line 12). The high-level search chooses to expand at
each iteration a PT node in a depth-first search manner. The
high-level search terminates when a valid solution is found
at some node N (Line 10), or when no more nodes for ex-
pansion remain, in which case, PBS declares failure.

The low-level search of PBS proceeds in the following
manner. For a given PT node N , PBS performs a topological
sort of the agents according to PN from high priority to low,
and plans individual-agent paths based on the ordering. For
a given topological ordering (a′1, . . . , a

′
k′) ⊂ A, for some

1 ≤ k′ ≤ k, the low-level iterates over the k′ agents in
the topological ordering, and updates their paths such that
they do not collide with any higher-priority agents. Note that
agents that do not appear on this list maintain their original
plans. It then checks all agents for any remaining collisions.

As we will see shortly, to speed up planning times, it is
often convenient to consider collisions only for the first ω
timesteps. As previously mentioned, this variant is called
windowed-PBS or W-PBS for short.

4.2 Solving MAPD using RHCR
The common approach to solve MAPD problems (Li et al.
2021b; Okumura, Tamura, and Défago 2021) is by itera-
tively (i) assigning tasks to free agents, (ii) deriving target
locations from these tasks and setting starting locations to
be the agents’ current locations and (iii) running a MAPF
solver to compute collision-free paths for all the agents. The
first step, task assignment, can be solved in a variety of meth-
ods (see, e.g., (Ma et al. 2017, 2019b)) but in this work we

limit ourselves to greedy task assignment. Specifically, we
compute the graph distance (i.e., the number of edges in a
shortest path) of each agent to each goal and assign tasks
greedily according to these distances. The last step, solving
a MAPF problem, is typically done by computing collision-
free paths up to a certain time-horizon hence running a win-
dowed MAPF solver such as W-PBS. These aspects form
the RHCR algorithm (Li et al. 2021b) which demonstrates
state-of-the-art performance by re-planning agent paths in
regular periods of h simulation timesteps and resolving
inter-agent collisions occurring within a time window w,
such that w ≥ h. The use of bounded-horizon PBS (i.e.,
W-PBS) yields high throughput at a reduced computation
effort, albeit without completeness or optimality guarantees.

A detail that is crucial to iteratively applying W-PBS as
tasks arrive in an online manner, is the careful handling of
priority ordering. Namely, whenever an agent is assigned a
new task, or completes a sub-task, its path is replanned with
its priority ordering wiped, to ensure it will not give auto-
matic precedence over other agents based on past interac-
tions. After each time step, the planning horizon is extended
and paths are replanned until all tasks are complete.

5 Algorithmic Framework
In this section we present our algorithmic framework for in-
corporating terraforming into MAPD. Our approach follows
the RHCR approach (Sec. 4.2) to solve MAPD, i.e., we as-
sign new tasks to agents and then decompose the problem
into a sequence of MAPF instances to use W-PBS to solve
these individual queries. Subsequently, we observe the en-
vironment to detect if there are disruptions. When disrup-
tions are observed, we start by planning new paths for agents
(without terraforming). We then consider if it is worthwhile
to invoke terraforming to manipulate the environment. To
do so, we initiate a simplified terraforming MAPF (tMAPF)
problem (defined below) where the set of movable obstacles
is in the local neighborhood of the disruption, and the mov-
able obstacles are self-propelled, i.e., can move without the
intervention of agents. This simplification allows us to de-
fer the question of who manipulates an obstacle to a later
stage, and momentarily only reason about whether obstacles
should be moved at all. The solution to this tMAPF problem
does not fully account for the cost of moving the obstacles
and is used to evaluate which obstacles (if any) should be
displaced. Subsequently, new tasks are defined and assigned
to agents corresponding to obstacles that should be displaced
as specified by the tMAPF solution.

For simplicity, we assume that terraforming tasks are
structured similarly to standard tasks (i.e., there is a delivery
location to which the obstacle will temporarily be moved to).
Thus, in addition to the pickup location of each task, which
corresponds to the location of an obstacle, a delivery loca-
tion must be determined. To this end, we assume there is a
defined subset of vertices within the graph V̂ ⊂ V , exclu-
sively reserved for this purpose. When a new terraforming
task is created, the nearest vertex from this subset is selected
as the task’s delivery location.

The rest of the section formalizes and details our ap-
proach. Specifically, we start with detailing the high-level

95

Algorithm 2: getTerraformingTasks

Input: Graph G = (V, E), affected agents Ã,
self-propelled obstacles Õ, goal mapping λ,
planning window ω,
terraforming reserved locations V̂

Returns: A set of Terraforming tasks T̃
1 πMOVABLE ← TW-PBS(G, Ã, Õ, λ, ω)
2 ÕMOVED ← getObstaclesToMove(πMOVABLE)

3 T̃ ← convertToTasks(ÕMOVED, V̂)
4 return T̃

approach for tMAPD, which we call tRHCR, and then con-
tinue to describe the individual components such as an adap-
tation of W-PBS to terraforming.

5.1 Terraforming RHCR
We are ready to detail our algorithmic framework tRHCR
for tMAPD (Alg. 3). Recall that at every timestep and while
tasks remain (Line 2), we assign tasks to agents (Line 3) and
replan paths for agents that obtain new tasks or agents whose
path requires re-planning to ensure a sufficient planning
horizon (Line 4). We then observe for disruptions (Line 5),
which is where our approach deviates from RHCR.4

As mentioned, disruption detection is done using the OB-
SERVE function, which returns a set VD ⊂ V of all newly
detected disruption locations at the current timestep t (recall
that we do not have access to the termination time of the
disruptions). When disruptions occur (Lines 6-15), we start
by computing the set of agents Ã that are affected by the
disruptions using the routine getAffectedAgents (see details
below). Informally, an agent ai is considered to be affected
if its path gets blocked due to a disruption. Additionally, we
include any agent aj that gives ai precedence (i.e., ai ≺ aj)
as aj may have altered its desired path due to a restriction
imposed by ai’s path. We then call W-PBS (Line 8) to re-
plan paths for the affected agents while preserving the paths
of those unaffected. Note that Terraforming does not take
place at this stage.

To consider Terraforming, we start (Line 9) by computing
a set of candidate obstacles Õ that are evaluated for displace-
ment. The set Õ is defined to be all obstacles within a graph
distance of r ≥ 1 from a disruption, where r is called the
terraforming radius.5 Namely,

Õ := {o ∈ O | ∃v ∈ VD s.t. ∥o, v∥ ≤ r}.

In the next step, we identify which obstacles from Õ could
be potentially displaced in order to clear the way for the
affected agents Ã and where those should be displaced to.

4Note that if path planning took place after observing new dis-
ruptions, all agents would avoid these disruptions. By planning
paths before checking for disruptions, agents are unaware of new
obstructions and assume their desired path will be available allow-
ing us to identify which agents are affected by new disruptions.

5In the case of a grid, the graph distance (the number of edges in
a shortest path connecting two vertices) is the Manhattan distance.

Algorithm 3: tRHCR
Input: Graph G = (V, E), agents A, obstacles O,

tasks stream T , terraforming radius r,
planning window ω,
terraforming reserved locations V̂

Returns: A collision-free MAPD plan πMAPD

1 t← 0
2 while T is not empty or agents have tasks do
3 λ← assignTasks(A, T)
4 π ←W-PBS(G,A, λ, ω)
5 VD ← OBSERVE(G, t)
6 if VD is not empty then
7 Ã ← getAffectedAgents(π, VD)
8 π ←W-PBS(G \ VD, Ã, λ, ω)
9 Õ ← candidateObstacles(O, VD, r)

10 T̃ ← getTerraformingTasks(G, Ã, Õ, λ, ω, V̂)

11 λ̃← assignTasks(A, T̃ · T)
12 πTERRA ←W-PBS(G,A, λ̃, ω)
13 if |πTERRA| < |π| then
14 π ← πTERRA

15 T ← T̃ · T

16 πMAPD.append actions from π at timestep t
17 t← t+ 1

This is done by calling the getTerraforimingTasks subrou-
tine in Line 10 (detailed in Sec. 5.2), which returns a new
set of tasks T̃ that specify which obstacles from Õ should
be moved, and where to move it.

In the next step (Line 11), we compute a new assign-
ment λ̃ for the agents A. Here we assign both the new
tasks T̃ which may require agents to move obstacles in Õ
and the original tasks T (we use T̃ ·T to denote the concate-
nation of the two task sets). Note that the new tasks T̃ are as-
signed before the existing tasks T and that only the first |A|
tasks are assigned. After the new assignment was defined, a
new MAPF problem is defined and solved (Line 12) to ob-
tain a solution πTERRA. Finally, we choose π to be the lowest-
cost solution among the options of not using and using ter-
raforming (Lines 13-14).

5.2 Details for getTerraformingTasks
We provide details on the getTerraformingTasks subrou-
tine. First, we describe the tMAPF instance it solves within,
our solution approach for tMAPF, which we call TW-PBS,
and the steps in Alg. 2.

tMAPF. We define the tMAPF problem as a generaliza-
tion to the MAPF problem, where in addition to the graph G,
agents A and goal mapping λ, the input includes a subset of
obstacles Õ ⊂ O as movable obstacles. An obstacle o ∈ Õ
needs to be restored to its original position to avoid a perma-
nent alteration of the environment. Recall that we make the
simplifying assumption that the movable obstacles Õ ⊂ O

96

(a) t (b) t+ 2 (c) tMAPF instance (d) πTERRA (e) t+ 5

Figure 2: tRHCR visualization (see description in Sec. 5.3).

are self-propelled, i.e., they can move on their own if neces-
sary. Hence we will refer to them as “demi-agents”.

Intuitively, demi-agents are considered as already waiting
at their goal location and regular agents may collide with
them. This will cause either the colliding agent to recom-
pute its path or cause the demi-agent to move in order to
allow the agent to pass. The difference between costs with
and without terraforming lies in how we compute the cost
of a demi-agent’s path. In contrast to a (regular) agent’s
path π whose cost |π| is the number of timesteps taken to
execute π, for a demi-agent’s path π̃, we define its cost |π̃|
as the number of movements taken by the demi-agent (i.e.,
wait actions do not incur a cost, so that idle obstacles do not
incur a penalty cost). Without this modification, performing
terraforming would not be worthwhile as all movable obsta-
cles would incur cost, regardless of whether they moved or
not. To this end, with a slight abuse of notation, we denote
the cost of a solution as |π| =

∑
i∈A |πi| +

∑
j∈Õ |π̃j | and

refer to it as the terra-flowtime.

Solving tMAPF with TW-PBS. Alg. 1 outlines the pseu-
docode of TW-PBS with the differences from W-PBS high-
lighted in bold. Specifically, the set of movable obstacles Õ
are treated as “demi-agents” and added to the set of agentsA
to create the set of agents the algorithm considers (Line 1).
When the cost of a node is computed (Line 4 and 16), in-
stead of computing the (standard) flowtime via the function
getFlowtime, we compute the terraforming flowtime via the
function getTerraFlowtime that does not account for mov-
able obstacles’ wait actions.

Wrapping up. We finalize the details of Alg. 2. We start
(Line 1) by solving the tMAPF problem that allows obsta-
cles to move upon collision with agents and let πMOVABLE be
the solution to this problem. We then extract the set of ob-
stacles ÕMOVED that are required to move as part of πMOVABLE

(Line 2) and use them to define a new set of tasks T̃
(Line 3), defined as follows. For each obstacle that needs
to be moved o ∈ ÕMOVED, we generate a new task ⟨o, ℓ⟩,
where o ∈ O (the obstacle’s location) is the task’s pickup
location and ℓ ∈ V̂ is the delivery location. ℓ is chosen to be
the point nearest to the pickup location o in the reserved lo-
cation set. Upon being assigned the task, an agent will move

the obstacle to perform terraforming, before returning it to
its original location. The newly generated set of tasks T̃ is
then returned as output (Line 4). Note that the computed path
of a self-propelled obstacle in the tMAPF problem is not
used, but rather it only serves as a hint on whether it pays off
to move the obstacle in the first place.

5.3 Additional Details
We give additional details on algorithmic building blocks
described in Sec. 5.1 and an example of the algorithm’s flow.

Affected agents. The function getAffectedAgents (in-
voked in Alg. 3, Line 7 computes the set of agents Ã that
are affected by the disruptions. An agent is considered to
be affected by a disruption if (i) their path is blocked by a
disruption or if (ii) an agent with higher priority is affected
by the disruption. The second condition is important to al-
low agents whose path was constrained by higher-priority
agents to re-plan their path after the higher-priority agents
replanned their own paths.

This set can be computed straightforwardly by adding all
agents ai ∈ A whose path πi ∈ π intersects a vertex in VD.
All these agents are pushed into a stack S and as long as S is
not empty, the algorithm pops an agent a, collects all agents
with higher priority and if they are not in Ã, adds them to Ã
and to the stack S.

Example. We provide in Fig. 2 a visualization of tRHCR.
Fig. 2a: at time t we have two task agents (a2 and a4)
and two free agents (a1 and a3). Agents a1 and a3 are as-
signed new tasks (Alg. 3, Line 3) and W-PBS is used to
plan suitable paths (Alg. 3, Line 4). For each agent, we
trace its path to its next goal (pick up pi or delivery di).
Fig. 2b: at time t + 2 (i.e., after two timesteps), a disrup-
tion is detected (Alg. 3, Line 5) due to an item dropped by
agent a4 along its path. The affected agents (Line 7) are a1
and a2, as the disruption blocks their paths. We then use W-
PBS to replan paths for the affected agents (Alg. 3, Line 8)
which would produce lengthy detours around the disrup-
tion. Subsequently, a set of candidate obstacles to be moved
(Line 9) is computed for r = 3, illustrated with bold bound-
ary. Then follows a call to getTerraformingTasks (Line 10).
Fig. 2c: to compute the terraforming tasks (Alg. 2), we form

97

(a) (b) (c)

Figure 3: Warehouses used in our empirical evaluation. (a), (b) and (c) depict the MEDIUM, LARGE and LARGE2WIDE envi-
ronments, with 80 task agents (colorful dots). Here, rows of pods (gray rectangles) form long narrow aisles and goals (colorful
rectangles) are selected from nearby workstations around the borders of each map.

a tMAPF instance that includes the affected agents and the
(self-propelled) candidate obstacles (Line 1). Paths com-
puted are traced with a line. Note that one self-propelled ob-
stacle o1 moved which is returned by getObstaclesToMove
(Line 2). Next, we create a terraforming task (Line 3), where
the pickup location is the location of obstacle o1 and the de-
livery location is the closest location that is reserved for ter-
raforming: the reserved locations V̂ , are highlighted in or-
ange at the top of the map. Fig. 2d: Returning to Alg. 3,
Line 10 with the new terraforming task (Alg. 2), we assign
this new task to agent a3 (Line 11) hence postponing its cur-
rent task. The new plan πTERRA (Line 12) is outlined with the
extraction of the obstacle and agents making use of the open-
ing. Fig. 2e: At time t+ 5 (after three additional timesteps),
agents a1, a2 and a3 continue towards their delivery loca-
tion. Agent a3 carries the obstacle away to maintain existing
pathways clear and keep the shortcut open. Agent a4 reaches
its respective task-delivery location and its next goal will be
returning the obstacle’s pickup location.

6 Evaluation
We evaluate our approach using maps inspired by au-
tonomous warehouses: a MEDIUM 24×47 map (Felner et al.
2018; Li et al. 2019), a LARGE 32× 75 map (Li et al. 2020)
and a LARGE2WIDE 32 × 75 map similar to LARGE but
with corridors that are 2-obstacle wide (see Fig. 3).

Unless stated otherwise, for each map we (i) run 25 ran-
dom instances each with 600 randomly generated pickup
and delivery tasks, (ii) use terraforming radius of r = 8 and
100 agents, (iii) consider two causes of disruptions (an im-
mobilized agent and a dropped item) where each type may
occur along an agent path with probability of 0.5% per sim-
ulation step and block a location for a random time interval
in the range of [40, 60] simulation steps.6 Finally, our algo-
rithms are implemented in Python and tested on an Ubuntu
machine with 16GB RAM and a 2.7GHz Intel i7 CPU.

Throughput. We report a comparison of the throughput,
which is the average number of tasks completed per simula-
tion step, for RHCR and tRHCR. We present (Fig. 4a) the
average throughput on each map for a varying number of
agents. Note that for all maps and values of |A|, terraforming
increases the average throughput by between 7% and 11%.

6These numbers were verified by Amazon representative in pri-
vate communication as being realistic values.

Runtime with and without disruptions. The lion’s share
of our RHCR algorithms (with and without terraforming) is
the MAPF planner which in our case is either W-PBS or
TW-PBS. To this end, we report (Fig. 5, top) the running
time of each iteration of RHCR and tRHCR, for a sample
scenario with 100 agents in the LARGE environment.

When no disruptions occur, the two algorithms are essen-
tially identical and indeed their running time is roughly the
same (it is not identical as terraforming causes agents’ path
to differ affecting future timesteps of the simulation). When
disruptions occur (vertical dashed lines in Fig. 5, top), then
planning times for TW-PBS increases by an order of mag-
nitude. This is not surprising as the number of agents (in-
cluding candidate obstacles as “demi-agents”) that TW-PBS
considers (which is the number of affected agents and can-
didate obstacles) is substantially larger than the number of
agents that W-PBS considers (which is only the number of
affected agents). This can be seen in the bottom of Fig. 5 in
which TW-PBS is applied on up to 10× more agents than
W-PBS. Having said that, when amortizing the running time
of TW-PBS over the entire simulation, the average com-
putation time, is still within the arguably tolerable range
of 40ms per planning window, compared with the aver-
age runtime of W-PBS of 5ms. Moreover, the improvement
in throughput as previously discussed and demonstrated in
Fig. 4a can make the extra runtime worthwhile.

Maximum task service time ratio. Recall that the service
time is the number of timesteps elapsed between a task’s
pick-up time and its completion (drop-off) time, whereas the
ideal service time is the shortest service time attainable for a
task when no other agents (or disruptions) interfere with its
execution. For each task, the ratio between the former and
the latter is a measure of task delay. We compare (Fig. 5,
middle) the maximal service time ratio for both RHCR and
tRHCR. Note that Fig. 5 shows the service time of the most-
delayed task, while the average tasks’ delay is reflected in
the throughout as shown in Fig. 4a. This allows to pinpoint
where the increase in throughput (Fig. 4a) comes from and
to justify the need to perform the expensive operation of ter-
raforming when disruptions occur (Fig. 5, top).

Indeed, we can see that the maximal service time ratio
for RHCR is roughly 2× to 3× larger than the maximal ser-
vice time ratio of tRHCR. This is expected as agents that are
blocked by disruptions require detouring obstructed vertices
and in doing so increase their service time. To a greater ex-
tent, agents that become trapped by surrounding disruptions

98

(a) (b) (c)
Figure 4: (a) Throughput of MAPD scenarios with disruptions, comparing the RHCR-based baseline approach to tRHCR.
Top and bottom plots show the absolute throughput and improvement (i.e., ratio of tRHCR’s throughput with the RHCR-
based throughput), respectively. Here, error bars denote one standard deviation. (b) Evaluation of Terraforming radius r on
throughput improvement (top) and average runtime (bottom) per simulation timestep of tRHCR. Shaded margins in the top
figure corresponding to one standard deviation. (c) Throughput as a function of disruption rate of dropped items.

can only wait in place until an opening is cleared. In con-
trast, terraforming creates pathways (when beneficial) and
shortcuts that decrease the service time of blocked agents.

Terraforming radius evaluation. Recall that the ter-
raforming radius r is used to compute the set of candidate
movable obstacles Õ (Alg. 3, Line 9). The number of candi-
date movable obstacles |Õ|, and thus the complexity of TW-
PBS, grows proportionally with r. However, the potential
improvement in solution quality grows with r as well since
terraforming has more options to displace obstacles. Thus,
we evaluate both the throughput improvement (Fig. 4b, top)
and the algorithm’s runtime (Fig. 4b, bottom) as a function
of the terraforming radius. We can see the tradeoff between
the increased computation time and the improved through-
put that happens as r increases. Empirically r = 8 balances
between the two in all environments.

Evaluating item drop rate. We evaluate the effect of dis-
ruption rates on throughput. Specifically, we consider vary-
ing rates of disruptions caused by a dropped item, and main-
tain agent breakdown rate of 0.5% per timestep (we fix dis-
ruption rates caused by agent breakdowns because higher
disruption rates do not leave enough agents to perform ter-
raforming and to complete tasks). Results, summarized in
Fig. 4c show that as disruption rates caused by dropped
items increase, so does the throughput improvement, which
peaks at 0.5% disruptions per timestep. This improvement
then decreases as (i) there may be more disruptions than can
be handled by free agents or (ii) alternative paths offered by
obstacle displacements become blocked as well.

7 Discussion and Future Work
In this work we explored the potential benefits of terraform-
ing within MAPD, with emphasis on mitigating the impact
of unforeseen disruptions. The extreme case of an agent
becoming trapped by disruptions offers the most convinc-
ing motivation for terraforming. Without terraforming, such
agents cannot make any progress while terraforming allows
to maintain (and even improve) throughput by having nearby

Figure 5: (Top) Runtime (in ms) of RHCR and tRHCR
per simulation timestep with disruptions marked by dashed
lines. (Middle) The maximal task service time ratio for both
RHCR and tRHCR when disruptions occur (lower is bet-
ter). (Bottom) The number of agents affected by disruptions
(Alg. 3, Line 8), the number of candidate obstacles submit-
ted to TW-PBS (Alg. 3, Line 9) and the number of trapped
agents due to disruptions.

agents create shortcuts and reduce per-task execution time.

To harness the full potential of tMAPF, we envision its
application to MAPD where agents en-route to collect an
item can optimize the environment through local changes
that serve multiple agents, regardless of disruptions. As fu-
ture work we wish to consider an approach that facilitates
subtle environment manipulation with little associated cost,
but with enough foresight as to yield a significant benefit to
nearby agents, which could provide a substantial boost to
overall throughput. Furthermore, we plan to formally ana-
lyze the new variant’s complexity in future work.

99

References
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust multi-agent path finding. In
Symposium on Combinatorial Search (SoCS).
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2020. Robust multi-agent path finding and
executing. Journal of Artificial Intelligence Research, 67:
549–579.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal Variants of the Conflict-Based Search Algorithm for
the Multi-Agent Pathfinding Problem. In European Con-
ference on Artificial Intelligence (ECAI), volume 263, 961–
962.
Bellusci, M.; Basilico, N.; and Amigoni, F. 2020. Multi-
Agent Path Finding in Configurable Environments. In Au-
tonomous Agents and MultiAgent Systems (AAMAS), 159–
167.
Belov, G.; Du, W.; de la Banda, M. G.; Harabor, D.; Koenig,
S.; and Wei, X. 2020. From Multi-Agent Pathfinding to 3D
Pipe Routing. In Harabor, D.; and Vallati, M., eds., Sympo-
sium on Combinatorial Search (SoCS), 11–19.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In International Joint Conferences on Artificial Intelli-
gence (IJCAI), 740–746.
Choudhury, S.; Solovey, K.; Kochenderfer, M. J.; and
Pavone, M. 2021. Efficient Large-Scale Multi-Drone Deliv-
ery using Transit Networks. Journal of Artificial Intelligence
Research, 70: 757–788.
Erdem, E.; Kisa, D. G.; Oztok, U.; and Schüller, P. 2013.
A general formal framework for pathfinding problems with
multiple agents. In Association for the Advancement of Ar-
tificial Intelligence (AAAI).
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Ku-
mar, T. S.; and Koenig, S. 2018. Adding heuristics to
conflict-based search for multi-agent path finding. Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 28: 83–87.
Greshler, N.; Gordon, O.; Salzman, O.; and Shimkin, N.
2021. Cooperative Multi-Agent Path Finding: Beyond Path
Planning and Avoidance. In Symposium on Multi-Robot and
Multi-Agent Systems (MRS), 20–28.
Li, J.; Chen, Z.; Zheng, Y.; Chan, S.; Harabor, D.; Stuckey,
P. J.; Ma, H.; and Koenig, S. 2021a. Scalable Rail Plan-
ning and Replanning: Winning the 2020 Flatland Challenge.
In International Conference on Automated Planning and
Scheduling (ICAPS), 477–485.
Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New techniques for pairwise symmetry
breaking in multi-agent path finding. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
volume 30, 193–201.
Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019. Disjoint splitting for multi-agent path find-
ing with conflict-based search. In International Confer-

ence on Automated Planning and Scheduling (ICAPS), vol-
ume 29, 279–283.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J.; Kumar, S.; and
Koenig, S. 2021b. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Association for the Advance-
ment of Artificial Intelligence (AAAI).
Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and path
planning for multi-agent pickup and delivery. Autonomous
Agents and MultiAgent Systems (AAMAS), 12: 206–208.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019a. Searching with consistent prioritization for multi-
agent path finding. In Association for the Advancement of
Artificial Intelligence (AAAI), volume 33, 7643–7650.
Ma, H.; Hönig, W.; Kumar, T. S.; Ayanian, N.; and Koenig,
S. 2019b. Lifelong path planning with kinematic constraints
for multi-agent pickup and delivery. In Association for the
Advancement of Artificial Intelligence (AAAI), volume 33,
7651–7658.
Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Life-
long multi-agent path finding for online pickup and delivery
tasks. In Autonomous Agents and MultiAgent Systems (AA-
MAS), 837–845.
Madar, N.; Solovey, K.; and Salzman, O. 2022. Leveraging
Experience in Lifelong Multi-Agent Pathfinding. In Sympo-
sium on Combinatorial Search (SoCS), 118–126.
Mohanty, S.; Nygren, E.; Laurent, F.; Schneider, M.;
Scheller, C.; Bhattacharya, N.; Watson, J.; Egli, A.; Eichen-
berger, C.; Baumberger, C.; et al. 2020. Flatland-rl: Multi-
agent reinforcement learning on trains. arXiv preprint
arXiv:2012.05893.
Okumura, K.; Tamura, Y.; and Défago, X. 2021. Itera-
tive Refinement for Real-Time Multi-Robot Path Planning.
In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 9690–9697.
Salzman, O.; and Stern, R. 2020. Research Challenges and
Opportunities in Multi-Agent Path Finding and Multi-Agent
Pickup and Delivery Problems. In Autonomous Agents and
MultiAgent Systems (AAMAS), 1711–1715.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, S.; et al.
2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. Symposium on Combinatorial Search (SoCS),
10: 151–158.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
Efficient SAT approach to multi-agent path finding under the
sum of costs objective. In European Conference on Artificial
Intelligence (ECAI), 810–818. IOS Press.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. AI Magazine, 29(1): 9.
Yu, J.; and LaValle, S. M. 2012. Multi-agent Path Planning
and Network Flow. In Workshop on the Algorithmic Foun-
dations of Robotics (WAFR), volume 86, 157–173. Springer.

100

