Proceedings of the Sixteenth International Symposium on Combinatorial Search (SoCS 2023)

Real-World Pickup and Delivery Problem with Transfers

Vaclav Sobotka, Hana Rudova

Faculty of Informatics, Masaryk University, Brno, Czech republic
sobotka@mail.muni.cz, hanka@fi.muni.cz

Abstract

The pickup and delivery problem with transfers generalizes
the classical pickup and delivery problem (PDP) by allowing
the vehicles to exchange request loads at designated trans-
fer points. Transfers often lead to substantial reductions in
transportation costs, yet they come with a significant burden
of additional computational complexity. Even meta-heuristic
methods are thus limited to instances of at most lower hun-
dreds of requests leaving the desirable benefits unreachable
for larger instances. Our approach bypasses the complexities
inherent to current methods by deciding about the transfers
apriori and thus reducing the problem to a PDP instance. To
make as informed decisions as possible, we analyze a broader
set of characteristics that may be used to carry out the apri-
ori decisions. We opt to derive and examine multiple such
PDP instances to cover different transfer choices. Our analy-
sis of the derived PDP instances then allows their efficient
processing in parallel. The proposed framework addresses
a large-scale freight transportation problem with real-world
characteristics and transfers where typical instances count
over 1,200 requests and 300 vehicles. We show the poten-
tial of the proposed framework on both real-world and syn-
thetic instances with up to 1,500 requests. The experiments
demonstrate that substantial savings may be achieved within
favorable runtimes even for very large instances.

Introduction

Vehicle routing problems (VRP) are broadly studied prob-
lems in combinatorial optimization. In order to consider
real-world transportation problems, a rich palette of VRP
variants has emerged. State-of-the-art classification and tax-
onomic review of VRPs can be found in (Vidal, Laporte, and
Matl 2020; Braekers, Ramaekers, and Van Nieuwenhuyse
2016; Toth et al. 2014). One of the interesting generaliza-
tions of VRP is the pickup and delivery problem with trans-
fers (PDPT) (Mitrovic-Minic and Laporte 2006).

In the classical pickup and delivery problem (PDP)
(Cherkesly and Gschwind 2022; Curtois et al. 2018;
Berbeglia et al. 2007; Li and Lim 2001), customer requests
consist of pickup and delivery locations where some amount
of load must be transported between them. PDPT addition-
ally allows for transferring request loads between vehicles in
dedicated transfer points. Such transfers potentially reduce

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

83

transportation costs due to load consolidation and more flex-
ible service of requests over long distances. The savings may
reach up to higher tens of percent, but, unfortunately, they
come together with a significant burden of additional com-
putational complexity. Consequently, state-of-the-art works
are limited to less than ten requests for exact methods and
lower hundreds of requests for heuristic approaches leaving
large-scale instances out of their reach.

We address a real-world variant of PDPT with large-scale
instances of around 1,200 requests and more than 300 vehi-
cles. Despite the order of magnitude larger number of re-
quests, we achieve significant savings by introducing the
transfers in both real-world and synthetic instances.

Let us summarize the key contributions of our work.

1. We analyze existing works on PDPT where the com-
plexity of the crucial transfer-handling mechanisms lim-
its their scaling and we recognize the potential of apriori
decided transfers to bypass these inherent limitations.

2. Inspired by the straightforward approach to transfers (Pe-
tersen and Ropke 2011), we propose an analytical ap-
proach by (1) identifying the transfer characteristics es-
sential for the apriori decisions, (2) proposing the strat-
egy for deriving a set of multiple complementary PDP
instances and (3) efficiently processing the set of PDP
instances in parallel in order to find the best-performing
PDP instance.

3. We provide a novel analysis of the effects of transferred
requests in large-scale instances and their potential to de-
crease the solution cost.

4. For large-scale real-world and synthetic instances, we ex-
perimentally show that our approach consistently outper-
forms the method from Petersen and Ropke (2011) by up
to 18.9 % and achieves savings of up to 36.1 % in com-
parison to solutions without transfers while maintaining
favorable scaling properties.

5. We provide the set of synthetic instances used in our ex-
periments together with the PDPT instance generator uti-
lizing real-world geographical data from OpenStreetMap
and characteristics of real-world cases.

6. By exchanging the underlying PDP solver, our methodol-
ogy has a high potential to address transfers in the context
of different problem variants and constraints.

Problem Description

The approached problem and real-world data were provided
to us by our industrial partner Wereldo.com (Wereldo 2023).
It targets large-scale freight transportation problem with the
possibility of transfers and multiple real-world characteris-
tics. The core of the problem at hand is the pickup and deliv-
ery problem with transfers, with instances of around 1,200
requests and 300 vehicles in the fleet.

As outlined, each customer request in PDPT is repre-
sented by its pickup and delivery locations. First, some ve-
hicle must pick up the request load at the pickup location. In
contrast to a standard pickup and delivery problem, however,
this vehicle may or may not deliver the load to the delivery
location. Instead, it is possible to visit a transfer point and
drop the load there. Sometime later, the load is transported
from the transfer point to the delivery location, usually by
a different vehicle.

Our problem includes vehicle capacities and time win-
dows. Capacities are limited both in terms of weight and vol-
ume of the load. Time windows have hard boundaries. The
vehicle fleet is heterogeneous in both capacities and costs.
The objective is to minimize transportation costs, i.e., the
sum of distances traveled by each vehicle weighted by the
vehicle’s price per kilometer.

Additional features are the limit on the route duration,
limit on the number of stops in a route, and service times.
Route duration refers to the on-road time of the given ve-
hicle. A stop refers to a physical stop of a vehicle with the
purpose of (un)loading. Importantly, if a route contains mul-
tiple subsequent (un)loading actions at the same location,
the whole sequence of actions is counted as a single stop.
Lastly, service time refers to the time necessary to handle
(un)loading. The service time is counted per stop, i.e., only
once per sequence of (un)loading actions at one location.

Regarding transfer points, several logistical facilities are
available in strategic locations. Intermediate storage is pos-
sible, and thus, the transferring vehicles need not meet at the
transfer point. The load of one request must not be split.
Based on the discussions with our industrial partner, the
transfers incur no costs. The facilities operate 24/7. Both the
loading and unloading parts of transfers are subject to stan-
dard service times. Notably, there are multiple depots physi-
cally coinciding with the transfer points that serve as pickup
locations for a large portion of requests.

As the full formal model with proper description takes
around 5 pages, we do not reproduce it here due to the length
restrictions. For key aspects of PDPT modeling and com-
mon problem features, we refer interested readers to (Cortés,
Matamala, and Contardo 2010).

Related Works and Motivation

The main approaches used to address the transfers as well
as their scaling limitations are presented. A summary of the
reviewed works together with their properties is in Table 1.
With few exceptions, PDPT is mostly approached with
heuristics dominated by meta-heuristic methods. Exact al-
gorithms are proposed in (Cortés, Matamala, and Contardo
2010; Rais, Alvelos, and Carvalho 2014; Lyu and Yu 2022).

84

Interestingly, the largest PDPT instances solved to optimal-
ity by exact methods contain less than 10 requests clearly
indicating the intrinsic complexity of PDPT. We proceed by
discussing how the complexity of transfers severely limits
even the prevalent meta-heuristic methods. This realization
ultimately motivates our approach as we face instances of
more than 1,000 requests.

The pioneering work on PDPT (Mitrovic-Minic and La-
porte 2006) approaches the problem with an iterative heuris-
tic. Its core is a request insertion operation taking trans-
fers into consideration. First, the request is greedily inserted
without any transfer. Then, for each transfer point, the tour
from request pickup to the transfer point is inserted greedily.
This choice is fixed and the tour from the transfer point to
the request delivery is again greedily inserted. Analogously,
this is repeated starting with the transfer point to delivery
tour. Finally, the cheapest of all attempted insertions is real-
ized. Variants of this mechanism were also used in (Masson,
Lehuédé, and Péton 2013) in the form of ALNS operators.

A GRASP solver with an ALNS improvement phase
is introduced by (Qu and Bard 2012). In (Danloup, Al-
laoui, and Goncalves 2018), PDPT is approached with LNS
and GA solvers. Sampaio et al. (2021) address a crowd-
shipping problem with transfers by means of ALNS solver.
All these works share the mechanism of inserting requests
with the possibility of transfer. First, all the possibilities to
insert the tour from request pickup to a transfer point are
identified. The same is done for the tour from a transfer point
to request delivery. The options to serve the first and sec-
ond parts of the transfer are then matched against each other.
This is done for each transfer point, and the cheapest possi-
ble feasible variant is ultimately realized. It should be noted
that strategies for limiting the number of involved transfer
points or routes are present. However, their influence does
not change the significantly higher asymptotical complexity
of the full exploration of transfer options.

Voigt and Kuhn (2022) present an ALNS solver for
a problem with occasional drivers. The key request inser-
tion mechanism tests all combinations of vehicle pairs and
transfer points. If a transfer point is not visited in the first
route, it is inserted into the best position and fixed. The
pickup location is then inserted into the best position before
the transfer point visit. The second route is handled analog-
ically. This greedy approach is suitable since time windows
are not assumed, yet it results in a complexity comparable to
(Mitrovic-Minic and Laporte 2006).

A different type of transfer-handling strategy is present in
(Manier et al. 2019) and (Fu and Chow 2022). The core idea
shared by these works is to construct a solution without any
transfers first. Then, it is iteratively improved by introducing
transfers. In both works, pairs of vehicles capable of meeting
at a transfer point are considered. Then, it is tested whether
it is possible to transfer any request from one vehicle to an-
other via the given transfer point. After inspecting any valid
combinations of a vehicle pair, and transfer point for trans-
fers, the most improving transfer is realized greedily.

In summary, the described methods suffer from inherent
scaling limitations. Standard transfer-less insertion for a sin-
gle request in the pickup and delivery setup takes O(|V |- L?)

Work c W F T S R Solution method Objective

Mitrovic-Minic and X v v 5 v 100 Multi-phase iter. heur. distance

Laporte (2006)
Cortés et al. (2010) v v X 1 v 6 ILP, custom impl. total time
Petersen and v v X 1 cost 982 Apriori transfers + ALNS > . (distance, initial & up-time

Ropke (2011) veh. cost, cost of transfers, road toll)
Qu and Bard (2012) v v X 1 v 25 GRASP+ALNS lexicographic(|vehicles|, distance)
Masson et al. (2013) v v x 33 v 193 ALNS distance
Rais et al. (2014) v v v’ any v 7 ILP, Gurobi distance
Danloup et al. (2018) v v X 5 v 100 LNS, GA distance
Manier et al. (2019) v osoft v 6 limit 150 Multi-phase iter. heur. pareto(distance, tardiness)
Sampaio et al. (2021) X v X 5 v 100 ALNS distance
Fu and Chow (2022) v X X any none 300 Multi-phase iter. heur. D wei ghA(distance, veh. transfer time,

customer wait. time, total travel time)

Voigt and Kuhn (2022) X X v 4 v 100 ALNS distance + cost for occasional drivers
Lyu and Yu (2022) v v v 4 v 5 ILP, Gurobi distance
Our work v v v 4 v 1,500 Apriori transfers + ALNS >~ . veh.cost-per-km * distance

Table 1: Overview of PDPT properties in the reviewed literature. C — capacitated, W — time windows, F' — heterogeneous fleet,
T — no. transfer points, S — unlimited storage at transfer points, R max. no. requests.

operations (V is the set of vehicles, L is the maximum route
length in the number of locations). In contrast, even the
cheapest transfer-aware mechanism from (Mitrovic-Minic
and Laporte 2006) requires 4 - |T'| times more calculations
per one insertion operation (7 is the set of transfer points).
More sophisticated approaches have complexities of up to
O(|T| - |V|? - L*). Since such insertions are heavily iterated
throughout the search, the additional complexity critically
influences the overall performance. Consequently, the usual
size of addressed PDPT instances is around 100 requests or
less, with the largest addressed instances of around 300 re-
quests (see Table 1).

The only work solving larger instances of up to 1,000 re-
quests is (Petersen and Ropke 2011). They reduce the large
PDPT instances into PDP instances by taking the transfer-or-
not decisions apriori. The decisions are driven by a simple
distance-based heuristic rule. Unfortunately, the work con-
centrates on the transfer aspects only marginally and its main
focus is on parallel solving of the obtained PDP instance. We
recognize the prospects of this direction especially in by-
passing the complexities of transfers and we aim to explore
and demonstrate its full potential.

Proposed Method

Our method follows the discussed direction of deciding
about the transfer apriori and then solving the problem as
PDP. For each request, it must be decided whether to trans-
fer it and if so, a transfer point must be selected. A request to
be transferred is then split into two new requests, one for the
trip from the pickup to transfer point and second for the trip
from the transfer point to delivery. Consequently, the apriori
decisions induce a PDP instance together with a mapping
between the original and derived requests. Any solution to
this PDP instance together with the mapping forms a solu-
tion to the original PDPT instance.

In comparison to (Petersen and Ropke 2011) we introduce

85

conceptual improvements in two areas. First, we choose to
derive and examine multiple PDP instances rather than a sin-
gle one. This allows us to explore different decisions about
the transfers resulting in higher quality of results. Moreover,
as we do not rely on a one-shot decision driven by a tuned
threshold as Petersen and Ropke (2011), the method is more
resilient against slight changes in the character of the in-
stances at hand. The second area of our improvements is
a systematic exploration of different characteristics of re-
quests and transfers used for carrying out the apriori deci-
sions and identification of the important ones. Overall, the
main points of our method are (1) the construction of the in-
stance bundle with multiple different derived PDP instances
based on different sets of apriori decisions, and (2) efficient
parallel processing of the instance bundle. The key concerns
of (1) are to identify the characteristics that influence the
suitability of a potential transfer and to build the instance
bundle so that its instances complement each other. With (2),
the goal is to avoid the need to fully solve every single in-
stance in the bundle as this naive approach would be simply
too time-consuming.

Transfer Schemes

Transfer scheme (rather than request) is the basic decision
unit taken into consideration. With R being the set of re-
quests in the PDPT instance and 7" being the set of trans-
fer points, denote the elements of the set R x T as transfer
schemes. A particular transfer scheme represents the possi-
bility of serving the request 7 € R with a transfer via the
transfer point ¢ € 7. Note that a transfer scheme may be
infeasible due to time constraints.

In order to make an apriori decision about transfers, each
request 7 € IR must be either chosen to be served directly
(without a transfer), or a particular feasible transfer scheme
must be selected for . Then a PDP instance based on this
decision may be obtained as follows. With the exception of

requests, all properties of the given instance are copied. Re-
quests chosen to be served directly are copied without any
change. For the remaining requests, their selected transfer
scheme is applied.

The transfer scheme (r, t) is applied by replacing the re-
quest r from the original instance with two new requests 1
and r,. The request 71 covers the tour from the pickup loca-
tion of r to the transfer point ¢, whereas 5 covers the tour
from ¢ to the delivery location of r. Service times of 1 and
ro at t are taken from properties of ¢. The time windows at
the pickup and delivery locations are inhereted directly from
r. The time windows at ¢ have no lower bound for r; and no
upper bound for r, since ¢ operates 24/7. The upper bound
of time window of 7y at ¢ is the same as the lower bound of
time window of r9 at t. The value is calculated as follows.
First, the earliest possible arrival at ¢ is calculated based on
the lower bound of pickup time window, service times and
travel times. Symmetrically, the latest possible arrival at ¢ is
calculated yielding a time interval of possible valid arrivals
at t. The value in question is the center of this interval, i.e.,
the available slack is distributed evenly between 71 and r5.

Transfer Scheme Properties

In order to make reasonable apriori decisions about trans-
fers, it is advisable to exploit as much available infor-
mation as possible. The transfer scheme can be seen as
a multi-dimensional object where each dimension represents
a particular property potentially relevant to such decision-
making. We worked with seven such properties some of
which turned out to be redundant during parameter tuning.
Detour compares the tour from pickup via transfer point
to delivery with the pickup-to-delivery tour in terms of dis-
tances. Absolute detour is the difference between these two
distances while the relative detour is their ratio. Intuitively,
transfer schemes with lower detours are naturally more fa-
vorable as their application tends to be cheaper.
Pickup-to-delivery distance is simply the direct distance
between the pickup and delivery location of a given request.
Requests with rather long pickup-to-delivery distances are
generally more expensive to serve as it tends to be harder
for a vehicle to serve such requests together with other re-
quests. Splitting such a request into two reduces the risk of
being served by a dedicated vehicle and situations in which
an empty vehicle undertakes a very long return to its depot.
Uniformity measures how evenly the visit to the trans-
fer point divides the tour from pickup via transfer point
to delivery. While rather even divisions tend to produce
two similarly long requests, asymmetric divisions create one
short and one long (potentially longer than the original) re-
quest. The more even divisions should be preferred as they
do not produce yet another long-distance request. Unifor-

mity is calculated as ”[P_’TI[D});TIQ]‘ I %:;i_g]j] — Pl where

[P—TP] and [T P—D)] denote the distances from request
pickup to transfer point and from transfer point to request
delivery, respectively. F' is the ideal half of the complete dis-
tance upon transfer, i.e., (([P—TP] + [T P—D])/2.

Slack represents the time-tightness of a given transfer
scheme. Slack is calculated as the available time between the

86

earliest pickup and the latest delivery reduced by the mini-
mum time required to cover the given distances and service
times at pickup, transfer point, and delivery locations. Ap-
plying transfer schemes with larger slacks is expected to in-
troduce less inflexibility and is thus preferable to more time-
tight alternatives.

Weight and volume tend to restrict the usefulness of trans-
fers. When transfers are used to a larger extent, there is the
potential to efficiently collect multiple request loads into
a transfer point and subsequently deliver them. The useful-
ness of such consolidation relies on how efficiently the loads
may be collected and later delivered in larger groups. In this
regard, less capacity-restricted requests are more likely to
aggregate into large groups.

Instance Bundle Construction

During preliminary experiments with apriori decided trans-
fers, we identified that the achieved savings heavily de-
pended on the general number of transfers applied. While
too few transfers usually resulted in even worse solution
qualities, adding more and more transfers generally greatly
helped up to a certain point. Then, the trend sooner or later
flipped and additional transfers became harmful. Eventually,
too many transfers led to worse results than those achieved
without transfers. This observation is further discussed in
Section Experiments. We exploit this observation by using
the following strategy to create the instance bundle.

The first instance in the bundle applies only the most suit-
able transfer schemes. Each following instance applies all
the transfer schemes as its predecessor plus an additional
group of less suitable transfer schemes. Ultimately, the last
instance in the bundle forces all transfer schemes to be ap-
plied. The strategy outlined above is described in the proce-
dure INSTANCEBUNDLE in Figure 1.

The goal of lines 2 and 3 is to get the set of transfer
schemes to be further processed. All candidates are filtered
by removing transfer schemes with less than an hour of slack
(including the infeasible). Also, transfer schemes with rel-
ative detours larger than 2.0 and absolute detours exceed-
ing half of the longest pickup-to-delivery distance are dis-
carded. The point of the limitation of the relative detour is to
disallow transfer schemes that necessarily produce requests
with longer pickup-to-delivery distance than the request be-
ing split. The point of the absolute detour limitation is to
further restrict the detours for long-distance requests.

Line 4 clusters the reasonable transfer schemes based on
the dimensions (properties of transfer schemes) D and their
respective weights W (given as a parameter). As a result,
we obtain a set of K disjoint clusters grouping transfer
schemes with similar properties. These clusters then serve as
the groups, by which we incrementally add more and more
transfer schemes to be applied when building the next in-
stance in the bundle. Lines 5 and 6 order the clusters based
on their suitability to be applied. This step defines a rea-
sonable order of priority so that the more promising trans-
fer schemes are fixed to be transferred first. Next, lines 7
and 8 filter the clusters so that there is at most one transfer
scheme for each request in the instance. More details about
the clustering (line 4), scoring (lines 5 and 6), and filtering

1: procedure INSTANCEBUNDLE(R, T, D, W, K)
R requests, T transfer points, D dimensions,
W weights, K number of clusters

S+ RxT

remove excessive-detour/infeasible schemes from .S
C < CLUSTERSCHEMES(S, D, W, K)
score(C') <— SCORE(centroids(C), D, W)

sort clusters in C by score(C) ascending
eliminate same-request schemes across clusters
eliminate same-request schemes inside clusters
N (bundle of instances)

10: fori=1to K do

11: I + I U {DERIVEINSTANCE(R, J;_, C))}
12: return/

1: procedure SCORE(Schemes, Dimensions, Weights)
foreach d € Dimensions, s € Schemes do

a(s,d) « rank of s among Schemes using d
foreach s € Schemes do

score(s) <= D pimensions WV eights(d) x a(s, d)
return score(Schemes)

D AR bl

AN ARl

Figure 1: Pseudo-codes of the instance bundle construction
and transfer scheme scoring.

(lines 7 and 8) are given in the following parts of this sec-
tion. Finally, lines 9 to 11 take the clusters in the established
order and derive the bundle so that the ¢-th instance takes the
7 most suitable clusters and applies all their contained trans-
fer schemes. Recall that the requests not included in any of
the ¢ applied clusters are simply copied without any transfer.

Transfer scheme clusters The clustering described in the
procedure CLUSTERSCHEMES is performed by means of
standard methods, e.g., hierarchical agglomerative cluster-
ing or k-means (Aggarwal and Reddy 2014, p. 101, 89) algo-
rithms. Euclidean distance is used as the similarity measure.
The transfer scheme is understood as a multi-dimensional
object where the particular dimensions are represented by
the discussed properties. As a preprocessing step, all the di-
mensions d € D from the input S are first standardized and
scaled by dimension weights W. Then, the required K clus-
ters are computed. The values of W and K passed to the
clustering procedure are hyperparameters of our method.
The clusters obtained in this way cannot be, however,
used as the increments for the bundle construction directly.
If a subset of clusters is selected and all the contained trans-
fer schemes would need to be applied, there may be multi-
ple transfer schemes for a single request. Such conflicts are
greedily prevented on lines 7 and 8 and require the possibil-
ity to compare the transfer suitability of clusters and trans-
fer schemes in general. Line 7 takes each request and dis-
cards its relevant transfer schemes in all but the most suitable
cluster. After resolving ambiguities across clusters, potential
conflicts inside clusters are addressed similarly in line 8. In
the case of more transfer schemes of the same request within
one cluster, they get compared in the same way as the clus-
ters, and only the most suitable transfer scheme is kept. As
a result, each request is unambiguously set to be transferred

87

via a single transfer point, or not at all.

Transfer scheme suitability scoring The transfer scheme
clusters need to be ordered based on their transfer suitabil-
ity. This is done by representing the clusters by their cen-
troids (average transfer schemes) which are then compared
based on the discussed transfer scheme properties. The pseu-
docode of the procedure SCORE is in Figure 1.

The score used for the ordering is a weighted sum of ranks
across each dimension d € D. During the ranking, potential
ties are resolved by assigning the same lowest possible rank
to all of the tied elements. The dimension weights W are
parameters of the algorithm and are the same as the weights
used for dimension scaling during the clustering phase.

Instance Bundle Processing

With tens of PDP instances in the bundle, it is clearly unac-
ceptable to naively perform a full run of PDP solver for each
of the instances. This is especially important as our main
motivation is to allow for addressing very large problem in-
stances within acceptable runtimes. Fortunately, it is possi-
ble to drastically reduce the naive time requirements.

Instance pruning In principle, the whole procedure can
be seen as a search on two levels. First, the search in terms
of the transfers is about choosing the PDP instance from
the bundle with as little achievable solution cost as possible.
Second, we search for optimal routing for a particular PDP
instance. In order to compare the instances, it is essential to
run the PDP solver on them. However, the key observation
is that a relatively short PDP search is enough to discrimi-
nate which instances have the perspective of yielding high-
quality solutions.

This observation is used to prune instances in the bun-
dle in two waves. First, very short runs (several hundreds
of iterations) of the PDP search are performed on all in-
stances in the bundle. Then, only a certain number of best-
performing instances are kept. In the second wave, the PDP
search is restarted for the surviving instances from their
best-achieved solution and a longer search is performed.
Then, only a handful of the best-performing instances are
kept. These candidates are then again restarted to their best-
achieved solutions and the search continues for a longer
time. In the end, the solutions from this last phase together
with their transfer decisions form the output of the solver.

Faster convergence We observed that the PDP solver con-
verges notably faster and with more stable results in in-
stances where some transfer schemes have been applied.
This behavior is likely a result of the more constrained char-
acter of such instances stemming from the applied transfers.
Based on this observation, the last phase of the search may
be relatively short without damaging the quality of the over-
all results.

Parallelization Processing the instance bundle consists of
many relatively long and independent tasks. This makes it
a perfect fit for a trivial parallelization. Thus, the perfor-
mance of this approach may be conveniently scaled in an
almost linear manner by simply providing additional CPUs.

Experiments

This section evaluates the proposed transfer handling frame-
work. The framework was implemented in Python 3.9. The
internal PDP solver is an implementation of adaptive large
neighborhood search (ALNS) from (Ropke and Pisinger
2006) written in Go (go1.15.15 linux/amd64) which is used
by the company in practice (Sassmann et al. 2023). The
computational experiments were conducted on virtualized
infrastructure under CentOS8, Intel Xeon Skylake 2.3 GHz,
8 CPUs, and 16 GB RAM.

Datasets

The evaluation used both real-world and synthetic instances.
The synthetic instances were generated by our instance gen-
erator that utilizes geographical backgrounds from Open-
StreetMap© (OSM) (OSM 2022). Characteristics extracted
from the original data were used for the instance genera-
tion. The generator and synthetic instances are available at
https://sites.google.com/view/real-world-pdpt/.

Instances The real-world data consists of 5 instances,
each covering one full day of transportation requests. The
instances contain around 1,200 requests, a fleet of 323 ve-
hicles, and 4 transfer points. The synthetic instances were
generated based on 3 different countries (Czechia, Hungary,
Slovakia) with 500, 1,000, and 1,500 requests. Different se-
tups with 2, 3, and 4 transfer points are considered.

Several characteristics are shared by all requests or vehi-
cles in real-world instances. All service times are 15 minutes
long, and the routes are limited to at most 15 stops and 11
hours of duration. An important property of the dataset is
that around 85 % of request is delivery-only (the pickup lo-
cations are in one of the transfer points serving as depots).
Since the transfer points operate 24/7, the pickup time win-
dows of the delivery-only requests are typically limited only
by the delivery deadline. The vehicle fleet is heterogeneous
both in capacities as well as in operational costs. Regarding
capacities, a significant portion of the fleet (68.1 %) is com-
posed of large trucks capable of accommodating 66 or 72
pallets and up to 24 tons of load. The remaining 6 vehicle
types are very different, with capacities from 4 to 25 pal-
lets. Around 70 % of the vehicles have cost of K per kilome-
ter. The majority of the remaining vehicles has cost around
3.0 K since these vehicles are contracted from a third party
to complement the regular fleet.

OpenStreetMap instance generator Our aim is to gen-
erate instances with reasonable spatial properties as in real-
world data. In order to achieve this, the spatial distributions
are extracted from the OSM geographical datasets for whole
countries. Moreover, the positions for the transfer points are
chosen so that they reasonably cover the serviced region
rather than picking fixed or random locations.

The OSM datasets serve to extract candidate locations for
pickups and deliveries of the requests. In order to mimic
the real-world data, industrial zones were used as the image
for pickup locations, and the delivery locations were repre-
sented by supermarkets. These extracted locations together
with transfer points form the pool from which pickup and
delivery locations of the generated requests are sampled.

88

In real infrastructure, the placement of transfer points is
far from arbitrary. In fact, deciding where to build a new
logistical facility is a strategic decision. In order to reflect
this, we place the transfer points by solving a variant of
the facility location problem (Drezner and Hamacher 2002)
by means of integer linear programming. Thus, the transfer
point placement is reasonable with respect to the serviced
spatial distribution of customer locations.

With the pool of candidate locations and transfer point
placement strategy at hand, the generator creates new in-
stances by sampling pairs of pickup and delivery locations.
Then, the properties of the requests are randomly chosen
based on fully configurable distributions. The instances con-
tain multiple depots coinciding with the transfer point loca-
tions. Vehicles are evenly distributed across the depots. The
vehicle types and their properties available in the generator
were identified together with our industrial partner.

Parameter Tuning

The parameters form two groups. The first group controls
how the instance bundle is processed. Its parameters govern
the size of the bundle, the number of iterations in each phase,
pruning between phases, and possible replication factors of
the calculations. The second group is the weights W used
for scoring and rescaling during the clustering phase.

Bundle processing parameters The choice of these pa-
rameters is mainly empirical since it requires balancing the
tradeoffs between result stability and the required compu-
tational costs. For the initial phase, we choose 40 instances
in the bundle solved in 2 replicas for 500 iterations. For the
middle phase, we filter 16 best-performing instances and run
them for additional 1,500 iterations in a single replica. The
final phase takes 4 best instances and runs them for addi-
tional 5,000 iterations in 2 replicas. Generally, the parame-
terization should allow for full utilization of all 8 CPUs.

Based on our preliminary experiments, a bundle of 40 in-
stances turned out to be sufficiently broad. Second, running
each instance in the bundle for 500 iterations in 2 replicas
was identified to be enough to discard poorly performing in-
stances. Attempts to prolong the initial phase even for the
largest instances did not yield any significant qualitative im-
provements and, thus, are not worth the additional resources.

The purpose of the middle phase is to prolong the search
on the reasonably performing instances. We observe that
a significant portion of the improvements occurs during the
first 2,000 iterations of the search. Result qualities in this
stage of search are thus relatively close to the final results
and may be used for more precise and strict pruning.

The goal of the final phase is to search for a longer time on
a handful of the most promising instances. As discussed, the
instances containing transferred requests tend to converge
faster as they are more constrained. Consequently, additional
5,000 iterations of the search proved to be sufficient. Again,
further prolongation results in marginal benefits at the ex-
pense of much longer runtimes.

Weights of transfer scheme properties Systematic tun-
ing of the weights revealed two important insights. First,
contrary to our initial experience, only 3 of the properties

turned out to affect the results positively. Second, the ra-
tio between the weights of the relevant properties does not
play a meaningful role. Consequently, the final choice of the
weights is 1 for the relative detour, pickup-delivery distance,
and uniformity, while the remaining weights are set to 0.

Preliminary experiments suggested that relative detour
and pickup-delivery distance consistently play important
roles, and some properties may be redundant. Thus, the tun-
ing proceeded in two stages. First, a grid search with pos-
sible values 0 or 1 was performed on the properties that
were suspected to be redundant. Only the properties whose
weights positively correlated with the achieved savings were
kept. Second, another round of grid search with possible val-
ues 0, 0.5, and 1 was performed on the remaining properties.
Its purpose was to assess whether the key factor is only the
presence of the weights or whether the ratio of their values
has a significant impact on the overall results.

Both the gird searches were conducted on a set of 9
separately generated 500 request instances with 3 differ-
ent geographies and setups with 2, 3, and 4 transfer points.
The measured response variable was the sum of savings
across the 9 instances. These savings were measured in
percent with respect to the baseline results for the respec-
tive instance in order to mitigate cost differences between
instances. Further results from the tuning are available at
https://sites.google.com/view/real-world-pdpt/.

Benefits of Transfers

The goal of the experimental evaluation is to analyze the po-
tential savings that can be achieved by allowing to transfer
requests. To the best of our knowledge, the only work han-
dling the transfers apriori (Petersen and Ropke 2011) does
not report this information. Thus, we adapt their method for
more than one transfer point and evaluate the transfer bene-
fits for both the adaptation and our PDPT framework.

Petersen and Ropke adaptation Petersen and Ropke
(2011) use a few simple rules to decide whether to split
a request into two or not. First, any realized transfer must
be feasible, i.e., it must be possible to serve both the cre-
ated requests without violating any time constraints. Sec-
ond, requests with a large temporal gap between the latest
pickup and earliest delivery are transferred. Lastly, requests
that may be transferred with relative detours smaller than
some threshold are transferred.

To allow for solving instances with more than one trans-
fer point, we adapt these rules as follows. First, the transfer
point with the lower detour is always preferred when decid-
ing how to transfer a request. Second, we drop the rule tar-
geting the large temporal gaps as such gaps do not appear in
our dataset due to typical time window patterns. The relative
detour threshold was subject to tuning.

For the purpose of the tuning, we performed a grid search
with 40 threshold values uniformly spread on the interval
(1.0,2.0). Each threshold value was evaluated 5 times, and
the best-performing threshold value was then chosen. Each
combination of country and transfer point placement was
tuned on a separate instance. For synthetic instances, new
tuning instances with 500 requests were generated. The real-

89

Instance Cy Cs Cs 537 S5 S
Real 1 1,318 1,146 929 13.1 295 189
Real 2 1,176 1,038 944 11.7 19.8 9.1
Real 3 1,137 1,021 846 102 255 17.1
Real 4 1,293 1,114 924 138 285 17.1
Real 5 1,054 - 825 - 217 -

CZ 5002 1,556 1,148 1,134 262 27.1 1.2

CZ 500 3 1,427 1,174 1,082 17.7 242 7.9

CZ 5004 1,670 1,186 1,113 29.0 333 6.1

HG 500 2 1,108 1,023 944 76 14.8 7.8

HG 500 3 1,578 1,406 1,284 109 18.6 8.7

HG 500 4 1,435 1,228 1,091 144 240 11.1

SK 500 2 1,318 997 980 24.4 257 1.8

SK 500 3 1,177 941 874 20.0 257 7.2

SK 500 4 1,211 1,084 954 105 21.2 120

CZ1,0002 2,684 2,166 2,032 193 243 6.2
CZ1,0003 2,283 1,773 1,659 224 274 6.5
Cz1,0004 2,574 2218 1977 13.8 232 109
HG1,0002 2418 1926 1,839 204 240 45
HG 1,0003 27765 2484 2,131 10.1 229 142
HG 1,0004 20885 2,758 2451 44 151 11.1
SK1,0002 2,033 1,614 1,563 206 23.1 3.1
SK 1,0003 2,359 1,812 1,675 232 29.0 7.6
SK 1,0004 2,796 2328 1910 16.7 31.7 179
CZ1,5002 3,668 3,026 2778 17.5 243 8.2
CZ1,5003 3,538 2,678 2,482 243 299 7.4
CZ1,5004 4,823 3,484 3,082 278 36.1 115
HG 1,5002 3,095 2,757 2559 109 173 7.2
HG 1,5003 3,902 3,652 3,037 64 222 168
HG 1,5004 4,050 3,577 3,025 11.7 253 154
SK 1,5002 2975 2428 2346 184 21.2 34
SK 1,5003 3,263 2,607 2,315 20.1 29.0 11.2
SK 1,5004 3,540 3,076 2,630 13.1 257 145

Table 2: Cost comparison of experimental setups (1), (2),
and (3). C; are avg. costs of setup ¢ over 10 repeated runs (in
thousands). S;» are transfer savings of setup ¢ over j (in %).
Instance code format: country, #requests, #transfer points.

world geography was tuned on the instance Real 5. This in-
stance was not then evaluated with the adapted approach.
The resulting solver derives a single instance by applying
all feasible transfer schemes with relative detours lower than
the threshold. The instance is solved in 8 replicas in paral-
lel under the default settings of our PDP solver (for 25,000
iterations). The best solution out of the 8 replicas is reported.

Experiment results All instances were evaluated 10 times
in each of the following settings. We consider (1) base-
line without transfers (PDP), (2) adaptation of Petersen and
Ropke (2011) (PDPT), and (3) our method (PDPT). Primar-
ily, we compare the transportation costs (objective) among
the setups. We also inspect the covered distances, the num-
ber of used vehicles, and runtimes.

The main results of our experiments are summarized in
Table 2. Overall, the introduction of transfers resulted in a
substantial reduction in costs for all of the tested instances.

CPU time User time
Instances Ty T Ts U, Us
Real 3,161 30,165 13,975 3,820 2,006
Synth. 500 999 8,843 3,958 1,120 580
Synth. 1,000 2,252 21,948 9,850 2,780 1,395
Synth. 1,500 3,737 33,190 15,785 4,200 2,295

Table 3: Average runtimes (in seconds) for different instance
sizes. Total CPU times are reported for setups (1), (2), and
(3). User times are reported for parallel setups (2) and (3).

The savings ranged between 4.4 % and 29.0 % under the
setup (2) and between 14.8 % and 36.1 % under the setup
(3). Our method systematically outperforms (2) with differ-
ences ranging from 1.2 % up to 18.9 % with 9.8 % on aver-
age. Moreover, the differences are more prominent as the
number of transfer points grows. Our approach is clearly
better in identifying the more suitable transfer point for a re-
quest as it considers more characteristics (not only detour).

Both setups (2) and (3) significantly reduce the traveled
distances with respect to baseline (1). The savings of (2)
range between 5.7 % and 17.8 % with 10.4 % on average.
Our approach (3) reduced the distances between 7.9 % to
18.6 % with an average of 12.4 %. We note that differences
between savings in transportation costs and distances are
due to the transfers reducing the dependency on the much
more expensive vehicles contracted from a third party. The
introduction of transfers also greatly influenced the number
of vehicles used in comparison to (1). Under setup (2), the
number of vehicles in solutions grew by 1.6 % on average.
The worst increase was 9.3 % while some instances ended
with decreases of up to 5.0 % of vehicles. In contrast, the
number of vehicles under setup (3) always decreased in in-
terval between 1.0 % to 12.2 % with an average of 6.1 % re-
sulting in better utilization of resources.

Next, we compare the runtimes of all three setups both
in terms of total CPU time, i.e., the sum of all computations
across all utilized CPUs, and user time, i.e., the time of com-
putation perceived by the user. Setup (1) utilizes 1 CPU, and
setups (2) and (3) use 8 CPUs. We note that we could run
(1) in 8 replicas to match the available resources across all
setups. This would, however, improve the results marginally
at the expense of unnecessary computations. The results are
summarized in Table 3. Regarding total CPU time, the re-
quirements of the parallel setups (2) and (3) are naturally
higher than for the single-CPU setup (1). To compare the
parallel setups, our approach requires roughly half the CPU
time than (2). In terms of user time, our approach requires
around 60 % user time in comparison to (1). Overall, our
approach returns significantly better results than (2) almost
twice as fast as (1) thanks to efficient parallelization.

Lastly, Figure 2 provides insights into the dependency
of the number of transfers and solution costs. Each plot is
for a single PDPT instance. A point in the plot represents
one run on a derived PDP instance. All runs of our method
on all derived PDP instances (from one original PDPT in-
stance) from all 10 repeated calculations are included. The
reason behind the convex trend is the tradeoff between load

90

]
55 . . 3'-;i ;l'!l
£5 L2111 PR B 1 | A
2= i . :!i' ii §.r
oF M I :-g s ’I' I BN B
hiy it jyitieals
v~ 1.0 - e o s S
0
FE
*
T T
5 150
No. transferred requests (instance size 500)
] o
1.3 - 8
S 1, . il
Sun 1.2 - o = .! ' | B
£5 7 <3 .:,’m- ki
2= 1 -1 T | |
32 L v T AL
o : NN B B
= - 3 M g8 &
G 1.0 i by)
2 0.9 joporose
T T
50 150) 250
No. transferred requests (instance size 500)
!
EA 12 = !
cg 111 . P
FEa i il l:!l
SE 10 A =TaRirr—ni
e FILL N MR
8= 59 il jg Hinl bk Rl
o : L] SN ol ¢
*e " q1.
0.8 T T T T
50 200 350 500

No. transferred requests (instance size 1,200)

Figure 2: Cost dependency on no. transferred requests. Blue,
yellow and red points are runs from the initial, middle, and
final phases. The green line is the best cost without transfers.

consolidation and the introduced inflexibilities, both due to
transfers. When applied en masse, transfers bring the ad-
vantage of extensive load consolidation resulting in substan-
tial cost savings. With too many and gradually less suitable
transfer schemes applied, however, the inflexibilities of forc-
ing transfers eventually overweight the consolidation advan-
tages. In contrast, too few transfers yield worse results than
no transfers at all since they introduce inflexibilities without
providing enough consolidation benefits.

Conclusion

In this paper, we propose a novel approach for addressing
transfers in very large problems. Our method based on apri-
ori decided transfers is demonstrated to achieve substantial
savings while keeping favorable scaling properties for very
large instances of up to 1,500 requests. To the best of our
knowledge, we are the first to analyze the savings both in
the context of large-scale instances as well as by deciding the
transfers apriori. Experimental results achieved savings due
to the introduced transfers between 14.8 % and 36.1 % con-
sistently outperforming the method adapted from Petersen
and Ropke (2011). Lastly, we provide our PDPT instance
generator using OpenStreetMap geographical data and the
synthetic instances used in the experiments for further use.

Acknowledgements

Computational resources were provided by the e-INFRA CZ
project (ID:90140), supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

References

Aggarwal, C. C.; and Reddy, C. K. 2014. Data clustering:
Algorithms and Applications. CRC Press, Taylor & Francis
Group.

Berbeglia, G.; Cordeau, J.-F.; Gribkovskaia, I.; and Laporte,
G. 2007. Static pickup and delivery problems: A classifi-
cation scheme and survey. TOP: An Official Journal of the
Spanish Society of Statistics and Operations Research., 15:
1-31.

Braekers, K.; Ramaekers, K.; and Van Nieuwenhuyse, I.
2016. The vehicle routing problem: State of the art clas-
sification and review. Computers & Industrial Engineering,
99: 300-313.

Cherkesly, M.; and Gschwind, T. 2022. The pickup and
delivery problem with time windows, multiple stacks, and
handling operations. European Journal of Operational Re-
search, 301(2): 647-666.

Cortés, C. E.; Matamala, M.; and Contardo, C. 2010. The
pickup and delivery problem with transfers: Formulation and
a branch-and-cut solution method. European Journal of Op-
erational Research, 200(3): 711-724.

Curtois, T.; Landa-Silva, D.; Qu, Y.; and Laesanklang, W.
2018. Large neighbourhood search with adaptive guided
ejection search for the pickup and delivery problem with
time windows. EURO Journal on Transportation and Lo-
gistics, 7(2): 151-192.

Danloup, N.; Allaoui, H.; and Goncalves, G. 2018. A com-
parison of two meta-heuristics for the pickup and delivery
problem with transshipment. Computers and Operations Re-
search, 100: 155-171.

Drezner, Z.; and Hamacher, H. W., eds. 2002. Facility loca-
tion. Applications and theory. Berlin: Springer.

Fu, Z.; and Chow, J. Y. 2022. The pickup and delivery prob-
lem with synchronized en-route transfers for microtransit
planning. Transportation Research Part E: Logistics and
Transportation Review, 157: 102562.

Li, H.; and Lim, A. 2001. A metaheuristic for the pickup
and delivery problem with time windows. In Proceedings
13th IEEE International Conference on Tools with Artificial
Intelligence. ICTAI 2001, 160-167.

Lyu, Z.; and Yu, A.J. 2022. The pickup and delivery prob-
lem with transshipments: Critical review of two existing
models and a new formulation. European Journal of Op-
erational Research, 305(1): 260-270.

Manier, H.; Godart, A.; Bloch, C.; and Manier, M.-A. 2019.
A greedy based algorithm for a bi-objective Pickup and De-
livery Problem with Transfers. In Conference on Systems,
Man and Cybernetics (SMC), 3229-3234. IEEE.

Masson, R.; Lehuédé, F.; and Péton, O. 2013. An Adap-
tive Large Neighborhood Search for the Pickup and Deliv-
ery Problem with Transfers. Transportation Science, 47(3):
344-355.

91

Mitrovic-Minic, S.; and Laporte, G. 2006. The pickup and
delivery problem with time windows and transshipment. In-
formation Systems and Operational Research, 44(3): 217-
227.

OSM. 2022. OpenStreetMap. https://www.openstreetmap.
org/copyright. Accessed: 2022-11-30.

Petersen, H. L.; and Ropke, S. 2011. The Pickup and De-
livery Problem with Cross-Docking Opportunity. In Bose,
J. W.; Hu, H.; Jahn, C.; Shi, X.; Stahlbock, R.; and Vo8,
S., eds., Computational Logistics, volume Lecture Notes in
Computer Science, vol 6971, 101-113. Springer Berlin Hei-
delberg.

Qu, Y;; and Bard, J. F. 2012. A GRASP with adaptive large
neighborhood search for pickup and delivery problems with
transshipment. Computers and Operations Research, 39:
2439-2456.

Rais, A.; Alvelos, F.; and Carvalho, M. S. 2014. New mixed
integer-programming model for the pickup-and-delivery
problem with transshipment. European Journal of Opera-
tional Research, 235: 530-539.

Ropke, S.; and Pisinger, D. 2006. An Adaptive Large Neigh-
borhood Search Heuristic for the Pickup and Delivery Prob-
lem with Time Windows. Transportation Science, 40: 455—
472.

Sampaio, A.; Savelsbergh, M.; Veelenturf, L. P.; and
Van Woensel, T. 2021. Delivery systems with crowd-
sourced drivers: A pickup and delivery problem with trans-
fers. Networks, 76(2): 232-255.

Sassmann, V.; Rudovd, H.; Gabonnay, M.; and Sobotka, V.
2023. Real-World Vehicle Routing Using Adaptive Large
Neighborhood Search. In Pérez Céceres, L.; and Stiitzle, T.,
eds., Evolutionary Computation in Combinatorial Optimiza-
tion, 34—49. Springer Nature Switzerland.

Toth, P.; Vigo, D.; for Industrial, S.; and Mathematics, A.
2014. Vehicle Routing: Problems, Methods, and Applica-
tions. Society for Industrial and Applied Mathematics.
Vidal, T.; Laporte, G.; and Matl, P. 2020. A concise guide to
existing and emerging vehicle routing problem variants. Eu-
ropean Journal of Operational Research, 286(2): 401-416.
Voigt, S.; and Kuhn, H. 2022. Crowdsourced logistics: The
pickup and delivery problem with transshipments and occa-
sional drivers. Networks, 79(3): 403—426.

Wereldo. 2023. Wereldo.com. Accessed May 12, 2023.
https://www.wereldo.com/.

