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Abstract

Finding multiple high-quality plans is essential in many plan-
ning applications, and top-k planning asks for finding the k
best plans, naturally extending cost-optimal classical plan-
ning. Several attempts have been made to formulate top-k
classical planning as a k-shortest paths finding problem and
apply K∗ search, which alternates between A∗ and Epp-
stein’s algorithm. However, earlier work had shortcomings,
among which were failing to handle inconsistent heuristics
and degraded performance in Eppstein’s algorithm imple-
mentations. As a result, existing evaluation results severely
underrate the performance of the K∗ based approach to top-k
planning. In this paper, we present a new top-k planner based
on a novel variant of K∗ search. We address the following
three aspects. First, we show an alternative implementation
of Eppstein’s algorithm for classical planning, which resolves
a major bottleneck in earlier attempts. Second, we present a
new strategy for alternating A∗ and Eppstein’s algorithm, that
improves the performance of K∗ on the classical planning
benchmarks. Last, we introduce a simple mitigation of the
limitation of K∗ to tasks with a single goal state, allowing us
to preserve heuristic informativeness in face of imposed task
reformulation. Empirical evaluation results show that the pro-
posed approach achieves the state-of-the-art performance on
the classical planning benchmarks. The code is available at
https://github.com/IBM/kstar.

Introduction
Enumerating the k-best solutions is desirable for designing
many optimization algorithms and it is essential for vari-
ous real-world applications (Eppstein 2014). Top-k planning
(Riabov, Sohrabi, and Udrea 2014; Katz et al. 2018) enumer-
ates the k best plans in cost optimal classical planning prob-
lems, and top-k planners have been deployed in many plan-
ning applications such as hypothesis generation (Sohrabi,
Riabov, and Udrea 2016), scenario planning (Sohrabi et al.
2018), and machine learning pipeline generation (Katz et al.
2020), to name a few. To date, top-k planners implement one
of the following three approaches: (1) adapting K∗ (Aljazzar
and Leue 2011) for classical planning (Riabov, Sohrabi, and
Udrea 2014; Katz et al. 2018), (2) iteratively reformulating
the input task to forbid found plans (FI) (Riabov, Sohrabi,
and Udrea 2014; Katz et al. 2018), or (3) extending symbolic
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search (SymK) (Speck, Mattmüller, and Nebel 2020). In this
paper, we focus on top-k planning with K∗ search which
finds k shortest non-simple paths from a source node to a
terminal node in a search graph by alternating between A∗

(Hart, Nilsson, and Raphael 1968) for exploring the search
graph GA∗ and Eppstein’s k shortest paths algorithm (EA)
(Eppstein 1998) for enumerating k shortest non-simple paths
in GA∗ . The merit of EA is in its asymptotic time complex-
ity: O(n log n+m+ k), where n is the number of nodes
and m is the number of edges in a search graph, namely
constant time overhead per path compared to finding a sin-
gle shortest path. However, such a remarkable performance
is achievable only after using complicated heap-based data
structures, often limiting broader usage. This makes sim-
pler alternatives, such as m-best search (Dechter, Flerova,
and Marinescu 2012) appealing in complex search spaces. In
practice, Jiménez and Marzal (1999) reported that EA may
spend a significant amount of time for initializing necessary
data structures, and Jiménez and Marzal (2003) improved
the running time by building them in a lazy manner. The in-
tensive memory requirement for storing all explored edges,
as well as all nodes, is another shortcoming which K∗ (Al-
jazzar and Leue 2011) alleviates by expanding search graphs
on the fly using A∗.

In classical top-k planning, Riabov, Sohrabi, and Udrea
(2014) implemented a blind K∗ search in the SPPL plan-
ner (Riabov and Liu 2005). Later, Katz et al. (2018) imple-
mented another variant of K∗ based top-k planner that sup-
ports consistent heuristics in the Fast Downward plan-
ning system (Helmert 2006a). When we examine earlier
evaluation results, we see that existing K∗ based top-k plan-
ners could not utilize inconsistent heuristics such as LM-
cut (Helmert and Domshlak 2009), which are known to be
among the most informative and best-performing ones. In
addition, Katz et al. (2018) reported non-anytime behavior
of K∗ based planners, namely, finding all request k plans
within a short time or failing to find any. Further, Speck,
Mattmüller, and Nebel (2020) reported that the performance
improvement of K∗ based planners due to iPDB heuris-
tics (Haslum et al. 2007) compared with the blind heuristics
was less than two percents in coverage. Although evalua-
tion results may vary depending on the evaluation settings
and benchmark sets used, the existing results clearly moti-
vate revisiting K∗ search for top-k planning. In this paper,
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we address the following three aspects:
• an alternative implementation of lazy EA using linked

lists to utilize pointer-based operations,
• a new switching strategy between A∗ and EA that re-

flects the in-depth evaluation of various combinations of
hyperparameters that trigger switching between the two,

• a simple method that preserves heuristics informative-
ness despite the need to reformulate the input classical
planning task as a single-goal state task.

We implemented a new K∗ based top-k planner in the
Fast Downward planning system release 20.6 (Helmert
2006a), and evaluated on all benchmarks from optimal
tracks of International Planning Competitions 1998–2018
along with state-of-the-art top-k planners, FI (Katz et al.
2018) and SymK (Speck, Geiser, and Mattmüller 2020). The
evaluation results show that the K∗ based approach was in-
deed underrated in the earlier evaluations, and we see that
the K∗ based approach performs better than FI and SymK.

Background
This section introduces top-k planning and necessary nota-
tions and basic concepts in K∗ search for top-k planning.

Top-k Classical Planning
A planning task Π = ⟨V ,O, s0, s⋆⟩ in SAS+ formalism
(Bäckström and Nebel 1995) consists of a finite set of finite-
domain state variables V , a finite set of actions O, an initial
state s0, and the goal s⋆. Each variable v ∈ V is associ-
ated with a finite domain dom(v) of values. An assignment
of a value d ∈ dom(v) to a variable v ∈ V denoted by a
pair ⟨v, d⟩ is called fact, and the set of all facts is denoted
by F . A partial assignment p maps a subset of variables
vars(p) ⊆ V to values in their domains. For a variable
v ∈ V and a partial assignment p, the value of v in p is
denoted by p[v] if v ∈ vars(p) and we say p[v] is undefined
otherwise. A full assignment s is called a state, and the set of
all states is denoted by S . State s is consistent with a partial
assignment p if they agree on all variables in vars(p), de-
noted by p ⊆ s. Each action o inO is a pair ⟨pre(o), eff (o)⟩,
where pre(o) and eff (o) are partial assignments called pre-
condition and effect, respectively. Furthermore, o has an as-
sociated non-negative cost denoted by C(o) ∈ R0+. An ac-
tion o is applicable in state s if pre(o) ⊆ s. Applying o in s
results in a state denoted by sJoK, where sJoK[v] = eff (o)[v]
for all v ∈ vars(eff ), and sJoK[v] = s[v] for all other vari-
ables. An action sequence π = ⟨o1, . . . , on⟩ is applicable in
state s if there are states ⟨s0, . . . , sn⟩ such that oi is appli-
cable in si−1 and si−1JoiK = si for 0 ≤ i ≤ n. We denote
sn by sJπK. An action sequence with s⋆ ⊆ s0JπK is called a
plan. The cost of a plan π, denoted by C(π) is the sum of the
costs of the actions in the plan. The set of all plans is denoted
by PΠ, and an optimal plan is a plan in PΠ with the mini-
mum cost. Next, we present the top-k planning problem, as
defined by Sohrabi et al.; Katz et al. (2016; 2018).
Definition 1 (top-k planning problem) Given a classical
planning task Π and a natural number k, top-k planning
problem is the task of finding a set of plans P ⊆ PΠ that
satisfy the following properties:

• For all plans π ∈ P , if there exists a plan π′ ∈ PΠ such
that C(π′) < C(π), then π′ ∈ P ,

• |P | ≤ k, and if |P | < k, then P = PΠ.
We say a top-k planning problem ⟨Π, k⟩ is solvable if |P | =
k and unsolvable if |P | < k. Note that cost-optimal planning
is a special case of top-k planning for k = 1.

Single Goal State Reformulation One of the limitations
of K∗ that has not been discussed in the planning lit-
erature is its restriction to graphs with a single terminal
node. In classical planning, tasks can have many goal states
if the goal s⋆ is a partial assignment. In such cases, we
can reformulate Π into a planning task with a single goal
state. Katz et al. (2018) showed such a reformulated task
as Πg = ⟨Vg,Og, sg0, s

g
⋆⟩, where Vg = V ∪ {vg} with

a binary indicator variable vg for reaching a goal state,
Og = {⟨pre(o) ∪ ⟨vg, 0⟩, eff (o)⟩|o ∈ O} ∪ {og} with a
goal-achieving action og such that pre(og) = s⋆ ∪ {⟨vg, 0⟩}
and eff (og) = {⟨vi, t[vi]⟩|vi ∈ vars(t)} ∪ {⟨vg, 1⟩} for an
arbitrary full state t, sg0 = s0 ∪ {⟨vg, 0⟩}, and sg⋆ = eff (og).

In words, the auxiliary goal-achieving zero-cost action
can be applied only once upon reaching the original goal,
changing the state to the new goal state. After that, no ac-
tion is applicable in the new goal state, and therefore there
is a one-to-one correspondence between the plans of Π and
those of Πg . It is worth noting that such task transformations
indeed impact the quality of domain-independent heuristics.
In the rest of the paper, we will assume that all planning
tasks are reformulated as a single goal-state task and drop
superscript g in the notation if it is clear from the context.

Eppstein’s Algorithm and K∗ Search
We will review high-level ideas of EA in K∗ search, es-
pecially on the heap-based data structures and criteria for
safely enumerating the k best paths from partially explored
search graph using A∗. For more details, please refer to Epp-
stein (1998) and Aljazzar and Leue (2011).

Eppstein’s Implicit Path Representation We assume fa-
miliarity with A∗, and begin by introducing notations re-
lated to EA in the context of K∗ search. Denoting the ex-
plicit search graph explored by A∗ as GA∗ , EA can uti-
lize the shortest path tree TA∗ maintained by A∗ to repre-
sent all paths between the initial state s0 and the unique
goal state s⋆ using a sequence of “side-tracked” edges (STE),
where each STE (u, v)∈GA∗ \TA∗ . For each STE (u, v) be-
tween nodes from u to v, we can compute the deviation cost
δo(u, v) through an action o against the cost of the incom-
ing edge toward v in TA∗ by δo(u, v)=g(u)+C(o)−g(v)
if and only if v=uJoK. We denote an arbitrary goal reach-
ing path from s0 in GA∗ by ρA∗(s0, s⋆), and the unique
path from u to v in TA∗ by ρ∗A∗(u, v) if it exists. Then, any
ρA∗(s0, s⋆) can be uniquely represented by an ordered se-
quence of STEs, denoted by SIDETRACKS(ρA∗(s0, s⋆)) =
⟨(u1, v1), . . . , (uq, vq)⟩, where an STE closer to s⋆ appears
earlier in the sequence. Namely, ρA∗(s0, s⋆) can be recon-
structed from SIDETRACKS(ρA∗(s0, s⋆)) by

ρA∗(s0, s⋆) = ρ∗A∗(s0, uq) ◦ [◦2i=q{(ui, vi) ◦ ρ∗A∗(vi, ui−1)}]
◦ (u1, v1) ◦ ρ∗A∗(v1, s⋆),
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where ◦ concatenates edges and paths from left to right.

Heaps for Representing Paths EA traverses a search
graph called path graph GEA, where each node encodes a
path ρA∗(s0, s⋆). In order to generate GEA, EA maintains
the following three heap-based data structures:
• incoming heap Hin(v), a binary heap for storing all in-

coming STEs (·, v) toward v ∈ TA∗ sorted by δ(·, v),
• tree heap HT(t), a binary heap for storing the root node

ROOTSTE(v) of Hin(v) for every node v in the shortest
path ρ∗A∗(s0, t) from s0 to t in TA∗ ,

• graph heap HG(t), a 3-heap that merges HT(t) and
Hin(v) for all v ∈ ρ∗A∗(s0, t).

We can update all incoming heaps while generating search
nodes in GA∗ and maintain all STEs sorted with respect to
the deviation cost. However, tree heaps and graph heaps
should be created after all STEs in GA∗ have been seen. By
merging a tree heap and incoming heaps, HG(t) can enu-
merate all paths with a single deviation relative to ρ∗A∗(s0, t)
sorted by the deviation cost. To be concrete, recall that
HG(t) merges ROOTSTEs that are stored in HT(t), and other
STEs that are descendants of ROOTSTE(v) in Hin(v). There-
fore, there are two types of nodes in the graph heap. De-
noting the root node of the heap maintained by HG(t) by
R(t), the first node traversed from the root R(t) must be
a ROOTSTE(v). From a node in HG(t) that originated from
HT(t), there are two possible cases for generating children
nodes. In the first case, the child node is one of the two chil-
dren nodes in HT(t) because it is a binary heap. In the sec-
ond case, the child node is the only child of ROOTSTE(v)
in Hin(v) because Hin(v) in EA stores one child under
ROOTSTE(v). Next, from a node that originated from incom-
ing heaps Hin(v), there is only a single case for generating
successor nodes that are, at most, two children in the binary
heap Hin(v). We have illustrated how HG(t) expands nodes
associated with STEs in a 3-heap, which is the basis for gen-
erating GEA.

Path Graph By extending HG(t) to enumerate all paths
ρA∗(s0, t) with a single deviation relative to ρ∗A∗(s0, t),
GEA expands nodes in the search graph that can enumer-
ate all SIDETRACKS(ρA∗(s0, s⋆)). In the following, we will
illustrate how the successor generator of GEA works. With-
out loss of generality, each node n(uq,vq) in GEA associated
with the STE (uq, vq) stores a pointer to the node in some
graph heap HG(t) that stores (uq, vq), and it also tracks a
sequence of STEs, ⟨(u1, v1), . . . , (uq−1, vq−1)⟩ selected for
the deviation, which will become clear in a moment. The
successor generator of GEA makes two types of decisions
encoded by two types of edges:
• a cross-edge that extends SIDETRACKS(ρA∗(s0, s⋆)) to a

sequence of STEs ⟨(u1, v1), . . . , (uq, vq)⟩,
• a heap-edge that only generates children from the asso-

ciated node in some graph heap HG(t).
Starting from a special root nodeR of GEA associated with
an empty sequence of SIDETRACKS(ρ∗A∗(s0, s⋆)), the suc-
cessor generator generates a single child node associated
with R(s⋆), which is the root node of HG(s⋆) that stores the

Algorithm 1 Generic K∗ Search for Top-k Planning

Input: Single goal-state planning task Π, k
Output: Top-k plans

1: Initialize K∗ search
2: P ← ∅ ▷ Initialize set of found plans
3: while True do ▷ K∗ outer-loop
4: while ¬

(
OPENA∗ = ∅ ∨ SWITCH-TO-EA( )

)
do

5: Expand an A∗ node
6: Update data structures GA∗ , TA∗ , Hin, etc
7: PREPAREEA() ▷ Update HT, HG, GEA, etc
8: while ¬

(
OPENEA = ∅ ∨ SWITCH-TO-A∗( )

)
do

9: Expand a node in path graph GEA

10: Reconstruct a plan and update P
11: if |P | = k then return P

12: if OPENA∗ and OPENEA are empty then return P

STE (u1, v1). Next, the node R(s⋆) generates its successors
following two possible cases. The first case follows heap-
edges that are children of R(s⋆) in HG(s⋆) by deferring a
decision for making a deviation. The second case follows a
single cross-edge which creates a child node pointing to the
root node R(u1) of HG(u1) with an extended STE sequence
⟨(u1, v1)⟩. The rest of the nodes in GEA are generated as
illustrated above, namely, generating successor nodes fol-
lowing heap-edges in graph heaps or starting to enumer-
ate the next possible deviations relative to ρ∗A∗(s0, uq) when
(uq, vq) was the most recently added STE to the sequence.
The maximum branching factor in GEA is at most 4 since an
additional cross-edge that doesn’t exist in HG(v) is added.
Since each node in GEA extends SIDETRACKS(ρA∗(s0, s⋆))
in increasing order of the total cost, expanding GEA and run-
ning Dijkstra’s algorithm (Dijkstra 1959) on GEA will enu-
merate all shortest paths in increasing order of path costs.

Generic K∗ Search and Existing Variants Algorithm 1
shows a generic template for adapting K∗ search for top-k
planning. Following the template, we can divide generic K∗

search into three parts:

• A∗ with updates on heaps and checking the switching
criteria from A∗ to EA (line 4–6),

• PREPAREEA() for updating heaps and other data struc-
tures (line 7).

• EA that extracts solution from GA∗ and checks switch-
ing criteria from EA to A∗ (line 8–11),

The main contribution of the original K∗ is to show a safe
switching criterion from EA to A∗ that ensures the sound-
ness of EA when it processes a partially explored search
graph GA∗ with admissible heuristics. Specifically, after ex-
panding GA∗ , the original K∗ reconstructs a solution path
from the expanded nodes in GEA only if the maximum path
cost of the children nodes of the head node in OPENEA is
not greater than the head value of OPENA∗ .

Unfortunately, the original K∗ algorithm did not provide
details about the implementation of PREPAREEA(). When
A∗ uses consistent heuristics, OPENA∗ expands nodes in
the order of the path cost, and TA∗ monotonically adds a
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(a) GA∗ , TA∗ and side-tracked edges (b) Hin implemented in linked list (c) HT implemented in linked list

Figure 1: Illustration of incoming heaps Hin(v) and tree heaps HT(v) implemented as linked lists. Figure 1a reproduces the example shown
in the original K∗ paper by (Aljazzar and Leue 2011), where the source node is s0 and the terminal node is s4. The solid edges represent the
search tree TA∗ , and the dotted edges are sided-tracked edges. The cost of each edge appears next to it. Figure 1b shows the incoming heaps
for each node in GA∗ , except for Hin(s0) and Hin(s3), which are empty. Each node in the linked list stores a pointer to a data structure that
stores the STE (u, v) and its deviation cost. Figure 1c shows the tree heaps for each node in GA∗ , except for node s0 because there is no path
from s0 to s0. Each HT(v) stores all ROOTSTEs over the path from s0 to v in TA∗ . For example, HT(s4) collects and sorts ROOTSTE(s1) in
Hin(s1) and ROOTSTE(s4) in Hin(s4).

new edge when A∗ expands a new state. This implies that
all heaps required for EA can be reused without the need
for PREPAREEA(), as illustrated in the original K∗ algo-
rithm. However, A∗ does not ensure such a monotonic be-
havior for generated nodes, and we need to carefully sort
incoming heaps and properly update tree heaps and graph
heaps if we want to apply EA on the nodes generated from
A∗. When inconsistent heuristics guide A∗, the original K∗

suggested refreshing the path graph to make it consistent
with GA∗ . However, due to the missing details, existing vari-
ants of K∗ for top-k planning couldn’t incorporate inconsis-
tent heuristics. The following section will present details of
PREPAREEA().

The switching criterion SWITCH-TO-EA() is less crucial
than the other two parts. The original K∗ proposed to escape
A∗ if the number of nodes newly expanded exceeds 20 per-
cent of the total number of nodes in OPENA∗ counted at the
previous iteration. Existing variants also follow this ad-hoc
rule.

Renovating K∗ Search for Top-k Planning
We have been motivated to renovate K∗ search for top-k
planning by observing the discrepancy between the strong
theoretical guarantee and the weak empirical evaluation re-
sults reported up to date. Among the handful of available
open-source implementations, for example, (Shibuya and
Imai 1997; Katz et al. 2018), none has implemented 3-heaps
with non-standard heap operations for pointing and travers-
ing nodes inside the heap, to the best of our knowledge.
While reviewing the high-level ideas in EA, we saw that
heap-based data structures, including the path graph, share
nodes that store STEs across multiple heaps, and they may
redirect nodes if necessary. To manage these heap nodes
more flexibly, we implemented alternative data structures

that use a linked list, which demonstrated satisfactory per-
formance in our evaluation. In addition to improving the im-
plementation of EA, we also identified several pitfalls that
need to be overcome to achieve promising performance of
EA in the generic K∗ search template. In particular, these
include missing details on PREPAREEA() and more aggres-
sive yet safe switching criteria between A∗ and EA, which
will be revisited in each part of the generic K∗. Next, we
will begin by addressing the restriction to tasks with a single
goal state, an uncommon situation in classical planning.

Preserving Heuristic Quality after Reformulation
As discussed, previous approaches chose to transform the
planning task to an equivalent (in terms of plan spaces) plan-
ning task with a single goal state and solve that task instead.
As a result, heuristic functions were computed on the trans-
formed task and might have resulted in less informative es-
timates. Note that while the search requires this limitation to
a single goal state, the heuristics do not, and it is possible to
transform the task back to the original task. Inspired by the
idea of Domshlak, Katz, and Lefler (2012), we propose to
perform the search on the transformed single goal state task
but evaluate it on the task transformed back to original. The
following theorem shows the validity of such an approach.

Theorem 1 Let Π be a planning task and Πg be its single-
goal transformation. Let m be a mapping from the states of
Πg to the states of Π obtained by projecting away the addi-
tional variable vg . If h is an admissible heuristic function for
Π, then hg defined by hg(s) = 0 if s is the goal state of Πg ,
and otherwise hg(s) = h(m(s)), is an admissible heuristic
function for Πg . Moreover, If h is consistent, then hg is also
consistent.

Proof: For each non-goal state s in Πg , an optimal plan
πg for s can be mapped to an optimal plan π for m(s) in
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Π by simply removing the last zero-cost action og . Since
h(m(s)) ≤ C(π) = C(πg), we have hg(s) = h(m(s)) ≤
C(πg). Let t be a non-goal state obtained from s by applying
o in Πg . Then m(t) is obtained from m(s) by applying o in
Π and since h is consistent, we have h(m(s)) ≤ h(m(t)) +
C(o) and therefore hg(s) ≤ hg(t) + C(o). If t is the goal
state, it is obtained from s by applying og . The precondition
of og includes the goal of Π and thus we have m(s) being
a goal state for Π, meaning hg(s) = h(m(s)) = 0. In this
case as well we have 0 = hg(s) ≤ hg(t) + C(og) = 0. □

List-based Implementation of EA

We follow the high-level idea for implementing EA as
shown in the background, yet introducing two changes.

List-based Hin and HT We simplify the heap-based data
structures for generating GEA by building Hin(v) and
HT(v) using linked lists instead. We skip the step of merg-
ing them to create graph heaps HG(v). To illustrate changes,
Figure 1 reproduces the same example shown in (Aljazzar
and Leue 2011). Figure 1b and 1c show a simpler variation
of Hin(v) and HT(v). Note that every node in the linked list
only stores a pointer to the data structure storing STEs, and
no duplicate STE (u, v) will be created. We admit that the
presented approach loosens the complexity bound because
inserting a node to incoming heaps and tree heaps imple-
mented in linked lists takes linear time. However, we see that
this simplification didn’t degrade the overall performance
while solving planning tasks, since the branching factor of
the search graph of planning tasks is usually much smaller
than the total number of nodes in GA∗ . For denser graphs,
the ideal way would be fully implement heaps with pointer-
friendly data structures instead of arrays or vectors.

Path Tree with a List-based Successor Generator As
graph heaps are no longer built explicitly, we imple-
mented a different successor generator for exploring GEA.
The new successor generator traverses the nodes in the
linked lists implementing HT and Hin. Utilizing the
fact that Hin(v) and HT (v) are implemented as lin-
ear linked lists, a path graph node nEA stores a tuple
⟨loc

(
HT (v)

)
, loc

(
Hin(v)

)
, pa, value, crossing⟩ for enu-

merating the k-best solutions, where loc refers to the loca-
tion of a linked list node in either HT or Hin that stores a
pointer to STE, pa is a pointer to its parent path graph node,
value is the path cost value, and crossing is a Boolean flag
indicating whether the node follows a crossing-arc. Since all
linked lists are sorted by the deviation cost and HT (t) col-
lects only ROOTSTE(v) of Hin(v) for v ∈ ρ∗A∗(s0, t), a path
graph node nEA can generate at most 3 children nodes:

• a node associated with the next node in HT (v),
• a node associated with the next node in Hin(v), and
• a node that follows a cross-edge.

Note that the branching factor is at most 3 because linked
lists are linear.

Figure 2 illustrates a path tree GEA generated from GA∗ ,
shown in Figure 1a. The root of GEA stores the location of
the root node R(s4) of the linked list HT(s4), since R(s4)

Figure 2: Path tree GEA generated from GA∗ in Figure 1a. Each
node represents a path graph node, and there are three types of ar-
rows: a dotted arrow, a solid red arrow, and a solid blue arrow. The
dotted arrow represents a cross-edge, the solid red arrow represents
a heap-edge in HT , and the solid blue arrow represents a heap-edge
in Hin.

points to an STE with the minimum deviation from the op-
timal solution path from s0 to s4. Following a heap-edge, a
child path graph node can point to either the next ROOTSTE
in HT(s4) or the next STE in Hin(s4). We see that Hin(s4)
doesn’t have the next node shown in Figure 1b, whereas
HT(s4) has the next node ROOTSTE(s1) in Figure 1c, fol-
lowing a red heap-edge. Therefore, we generate a single
child following the red heap-edge that encodes a possible
deviation (s1, s1) relative to ρ∗A∗(s0, s4). Following a cross-
edge in a dotted arrow from the root path graph node that
stores the location of R(s4), we generate a child path graph
node that points to R(s2). We emphasize that a cross-edge
represents the decision to deviate from TA∗ . Therefore, the
successor generator chooses to deviate on (s2, s4) with a de-
viation cost of 1. The next possible deviation can occur be-
tween s0 and a node in ρ∗A∗(s0, s2). As a result, the child
path graph node points to R(s2) in HT (s2). The succes-
sor generator generates all other nodes in the same manner.
However, unlike the path graph that connects all the graph
heaps HG and results in a search graph, our variant gener-
ates a path tree.

We have presented a simple variation for EA that gen-
erates search nodes by traversing the links in the linked lists
HT and Hin that sort STEs, resulting in a search tree. For the
rest of EA, Dijkstra’s algorithm enumerates shortest paths.
Due to the modifications to EA implementation, our vari-
ant performs tree search and sorts STEs more often than the
original heap-based approach. However, we didn’t observe
any notable degradation in search performance while solv-
ing top-k planning problems, as the number of requested
plans is relatively low, for example, less than 10,000, com-
pared to the total number of nodes in GA∗ .
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Algorithm 2 Switch from EA to A∗

Input: Flag rs-EA indicating whether to restart EA
1: function SWITCH-TO-A∗(rs-EA)
2: nhead ← top(OPENEA)
3: if rs-EA then EAThr ← nhead.value
4: else EAThr ← max { children(nhead).value }
5: return EAThr > fmin

Revisiting EA inside K∗

If we examine the safe switching criteria of the original K∗,
we see that EA has to defer extracting valid top-k plans
when its child has path cost greater than fmin value, the cur-
rent minimum value of OPENA∗ . This choice guarantees
that the successor generator of GEA won’t skip any solu-
tion path with a path cost lying between the costs of the two
path graph nodes, the head node in OPENEA and its child
nodes, when new STEs are added in A∗. Namely, if the heaps
maintain the insertion order for the STEs with the same de-
viation cost, K∗ can skip refreshing heap-based data struc-
tures. However, A∗ may need to expand significant number
of nodes to reach the next additional layer during A∗. Fur-
thermore, if a guiding heuristic function is inconsistent, K∗

must purge and rebuild the heaps anyway, losing the benefit
of keeping the safe switching criteria.

Based on this observation, we present a new variant with
more aggressive, yet still safe switching criteria in Algo-
rithm 2 that restarts EA at every outer iteration. SWITCH-
TO-EA(rs-EA) returns whether EAThr is greater than fmin
or not, where EAThr is taken from the head value of
OPENEA if rs-EA was True (line 3), or the same value
as the original K∗ otherwise (line 4). Note that K∗ utilizes
EAThr when it switches from A∗ to EA in Algoroithm 4.

Revisiting PREPAREEA()
Next, we revisit PREPAREEA() in Algorithm 3 when A∗

uses either consistent or inconsistent heuristics. We first con-
sider consistent heuristics. Although the expanded nodes in
GA∗ appear in the order of their path cost, and TA∗ only adds
edges as A∗ continues its search, we cannot assume such
a monotonic behavior for nodes generated during A∗ and,
hence, STEs seen while generating these nodes. Namely, if
we perform EA search over the path graph nodes associ-
ated with an STE (u, v) with v not yet expanded in A∗, we
must ensure that the heaps are well sorted in linked lists. In
addition, if we don’t restart EA at every K∗ iteration, we
must ensure that the heaps are stable (preserve the order of

Algorithm 3 Prepare EA

Input: Flag rs-EA indicating whether to restart EA
1: function PREPAREEA(rs-EA)
2: if rs-EA then Clear HT and OPENEA

3: if reopen occurred then Rebuild Hin, Recompute δ
4: if OPENEA is not empty then return
5: if OPENA∗ is empty ∨Root(GEA).value <= fmin

then Push Root(GEA) to OPENEA

Algorithm 4 Switch from A∗ to EA

Input: Flag sog, indicating whether to switch on generating
a goal, thresholds A∗

lb and A∗
ub

1: function SWITCH-TO-EA(sog, A∗
lb, A∗

ub)
2: if sog ∧ goal node generated then return True
3: if A∗

iter ≥ A∗
ub then return True

4: if EAThr unknown∧A∗
iter > A∗

lb then return True
5: if ¬reopen then return EAThr ≤ fmin

6: else if (A∗
iter > A∗

lb) return EAThr ≤ fmin

insertion for tied items), so as not to miss a child during the
expansion of GEA. In the new variant that restarts EA every
iteration, PREPAREEA(rs-EA) clears HT(v) and OPENEA

(line 2) before restarting EA. When a heuristic function is
inconsistent, the behavior is the same as consistent heuristics
as long as A∗ does not reopen any node. However, when A∗

reopens a node, the value of all descendant nodes become
invalidated and we must recompute all the deviation costs
for those nodes. Instead of checking the validity of the de-
viation costs after a reopen, PREPAREEA(rs-EA) rebuilds
Hin(v) (line 3). After clearing any possibly invalidated HT

and OPENEA due to the aggressive switching criteria shown
in Algorithm 2, PREPAREEA(rs-EA) pushes the root node
Root(GEA) to OPENEA to initiate EA if either A∗ queue
is exhausted or the second suboptimal solution is safe to ex-
tract in EA (line 5).

Revisiting A∗ inside K∗

Expanding A∗ nodes follows the standard A∗ algorithm. The
only modification needed is updating Hin(v), which stores
STEs (·, v), on generating A∗ nodes. In the earlier approach
by Riabov, Sohrabi, and Udrea (2014), GA∗ and other heap-
based data structures were created after escaping A∗. In the
new variant, we maintain a set Sin(v) for each Hin(v), and
each Sin(v) stores all (·, v)s on generating nodes in A∗.
Since A∗ updates TA∗ with expanded nodes, we defer the
creation of Hin(v) until v is expanded. After updating TA∗

with expanded v, we add all (·, v)s from Sin(v) to Hin(v).
If a reopen occurs during A∗, we only add (·, v)s to Sin(v)
since PREPAREEA(rs-EA) will rebuild Hin(v) after escap-
ing A∗.

Next, we revisit the switching criteria from A∗ to EA.
Instead of following the earlier choice that relied on a single
threshold on the number of A∗ nodes expanded, denoted as
A∗

iter, we introduce a lower bound A∗
lb and an upper bound

A∗
ub, as well as an additional Boolean flag sog, indicating

whether to switch on generating a goal. Algorithm 4 shows
that it will escape A∗ if a goal node was generated and sog
was set to True (line 2), or if A∗ expanded nodes up to
the upper bound A∗

ub (line 3). Otherwise, it will expand A∗
lb

nodes for the first A∗ iteration after finding the shortest path
(line 4). If reopen did not occur during A∗, we switch to EA
if EAThr ≤ fmin (line 5). If A∗ reopened a node, we use
the same criteria but expand at least A∗

lb (line 6).
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Algorithm 5 A New K∗ Search for Top-k Planning

Input: Reformulated planning task Π, number of plans k,
flag indicating whether to restart EA rs-EA, flag indi-
cating whether to switch on goal generation sog, bounds
on the number of A∗ expansions A∗

lb, A∗
ub

Output: Top-k solutions
1: Initialize A∗ search
2: while True do
3: while ¬

(
OPENA∗ is empty ∨

4: SWITCH-TO-EA(sog, A∗
lb, A∗

ub)
)

do
5: Expand an A∗ node u
6: Increase A∗

iter
7: For each node v generated from u
8: Add STE (u, v) to set Sin(v)
9: if ¬ reopen occurred then

10: Insert (u, v) to Hin(v), Sort Hin(v)
11: if reopen occurred then A∗

iter ← 0

12: PREPAREEA(rs-EA)
13: while ¬

(
OPENEA is empty ∨

14: SWITCH-TO-A∗(rs-EA)
)

do
15: Expand an EA node nEA

16: Lazy build HT while expanding GEA

17: Reconstruct a plan from nEA

18: if k plans found then return Top-k plans
19: if OPENA∗ is empty ∧ OPENEA is empty then
20: return Found plans

A New K∗ Search for Top-k Planning
Algorithm 5 presents a new variant of the generic K∗ al-
gorithm that integrates three revisited parts. We will high-
light the modification made to the existing K∗ algorithm.
The input parameters are the number of requested plans k, a
Boolean flag rs-EA to restart EA after switching from A∗,
a lower bound A∗

lb and an upper bound A∗
ub on the number

of node expansions in A∗, and a Boolean flag sog to switch
from A∗ to EA upon generating a goal node in A∗.

The K∗ search starts with initializing an open list
OPENA∗ and a closed list CLOSEDA∗ for A∗ algorithm
(line 1). Then, A∗ expands nodes until either OPENA∗ be-
comes empty or the switching criteria from A∗ to EA are
satisfied (lines 3–11). While generating nodes during A∗,
we insert each STE (u, v) to a set Sin(v) associated with v
(line 8) and maintain Hin(u) sorted if state u was expanded
(line 9–10). We reset the counter for the number of expanded
nodes, A∗

iter, to zero if A∗ repones a node (line 11). After
escaping A∗, PREPAREEA(rs-EA) prepares EA (lines 12).
EA explores GEA until either OPENEA becomes empty or
the switching criteria are satisfied (lines 13–18). While ex-
plicating the path tree GEA, we lazy build HT since it will
be cleared up in PREPAREEA(rs-EA) when rs-EA is True
(line 15). SWITCH-TO-EA(rs-EA) updates EAThr and en-
sures that a valid plan can be reconstructed from the ex-
panded path graph node nEA (line 17). If EA finds k re-
quested plans, then EA returns the top-k plans (line 18). Fi-
nally, if both OPENA∗ and OPENEA become empty before
finding k plans, K∗ proves that the problem is unsolvable

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
FI (1) 0 18 18 16 23 20 30 31 26 29 27
SymK (2) 37 0 30 28 30 30 41 40 36 37 34
LMcut↓(3) 37 24 0 0 24 16 35 39 25 36 32
LMcut(4) 39 25 14 0 26 19 37 40 28 37 33
iPDB↓(5) 35 28 18 15 0 4 34 38 26 38 31
iPDB(6) 40 30 27 22 17 0 34 40 31 42 35
prev-iPDB↓(7) 28 18 11 8 11 9 0 25 13 22 19
CEGAR↓(8) 26 15 5 5 7 6 18 0 2 17 16
CEGAR(9) 32 19 15 10 16 11 26 28 0 24 20
M&S↓(10) 29 17 10 10 7 6 29 26 20 0 8
M&S(11) 31 16 16 15 12 11 32 26 22 17 0
Total 633 892 895 921 805 852 670 721 799 720 776

Table 1: Domain-level performance, comparing the single
goal task (denoted by adding ↓ to the heuristic name) to task
transformation back to original, for k = 1000 and four dif-
ferent heuristics. The last row depicts the overall coverage.

and returns the found plans (line 19–20).

Experimental Evaluation
To empirically compare the suggested algorithm, we have
implemented our variant of K∗ on top of the Fast
Downward planning system (Helmert 2006a). All experi-
ments were performed on Intel(R) Xeon(R) Gold 6248 CPU
@ 2.50GHz machines, with the timeout of 30 minutes and
memory limit of 8GB per run. The benchmark set consists
of all benchmarks from optimal tracks of International Plan-
ning Competitions 1998-2018, a total of 1827 tasks in 65 do-
mains. We have experimented with four admissible heuris-
tics, LMcut (Helmert and Domshlak 2009), merge-and-
shrink abstraction (denoted by M&S) (Helmert, Haslum, and
Hoffmann 2007), counterexample-guided Cartesian abstrac-
tion refinement (denoted by CEGAR) (Seipp and Helmert
2018), and pattern database heuristic iPDB (Haslum et al.
2007). While the latter three are also consistent, LMcut is
not. We measure the total time for finding the top-k solution
and the coverage: 1 per task if the top-k solution was found,
0 otherwise.

We start by comparing evaluating the states on the single
goal transformation as in previous work (Riabov, Sohrabi,
and Udrea 2014; Katz et al. 2018) to our suggested way
of evaluating on the original task. Following the previous
work, we set the switching criteria to switch once an in-
crease of 20% in expanded nodes was observed. Table 1
presents a pairwise comparison of K∗ domain-level perfor-
mance in terms of coverage for k = 1000 with the four
heuristics, with and without transformation back to original
task. The latter is denoted by adding ↓ to heuristic name.
The last row of the table shows the overall coverage for each
of the configurations. Every other entry in the table repre-
sents the number of domains where the row configuration
achieves better coverage than the column one. First, we ob-
serve that evaluating the heuristic on the original task signifi-
cantly improves the performance, across all tested heuristics.
The most significant improvement is observed for CEGAR,
where there are 28 domains with improved coverage, com-
pared to 2 domains with reduced coverage, and overall in-
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Figure 3: Any-time performance of selected LMcut config-
urations. Label lb-ub-sg: lower bound, lb, upper bound, ub,
and considering reaching goal state for switching, sg.

crease of 78 tasks solved. Second, note that the inconsistent
heuristic configuration LMcut is the best performer overall,
showing the benefit of an algorithm that supports the use of
inconsistent heuristics.

For the next experiment, we focus on LMcut, evaluated on
the original task. For k = 1000, we test the influence of the
decisions on switching between the A∗ and EA, in an any-
time manner. The switching criteria involve lower and upper
bounds, as well as whether a goal state was reached again.
For the bounds in {1, 5, 10, 20, 30, 40, 50, 100}, assuming
the lower bound being strictly smaller than the upper bound,
together with the historical configuration of single bound of
20 (labeled 20-20), as in the previous experiment. This re-
sults in the total of 58 configurations. Figure 3 shows the
any-time coverage of selected configurations. Note, while
their performance is somewhat similar, for smaller timeouts
of 300–1000 seconds the difference in coverage can be sig-
nificant, with the configuration 20-20 rarely being the top
performer.

Finally, going back to the four heuristics from the first
experiment, we show the any-k behavior of these configu-
rations, comparing to other top-k planning approaches, bidi-
rectional symbolic blind search (SymK) (Speck, Mattmüller,
and Nebel 2020) 1 and Forbid Iterative planner (FI) (Katz
et al. 2018), as well as previous implementation of a K∗

variant (Katz et al. 2018), depicted in Table 1 and Figure 4
by the prev-K*-iPDB↓ label. For the iPDB heuristic (purple
lines, solid and dashed), we can observe a significant im-
provement in the performance when switching to our vari-
ant of K∗. Some of it can be attributed to evaluating the
original task, but even with iPDB↓ (dashed lines) we see an
improvement to the any-k behavior. It is worth noting that
SymK is no longer the top performer. The overall cover-
age of SymK is 892, compared to 921 of K∗ with LMcut.
Per-domain comparison reveals that K∗ with iPDB ties with
SymK 30 to 30, and K∗ with LMcut achieves superior per-
formance on 24 domains vs. 28 domains in favor of SymK.

1As in other approaches, the h2 preprocessor was switched off.
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Going back to our new variant of K∗, note that for all heuris-
tics, the any-k performance is more level now, with the dif-
ference between top-1 and top-k being 13 for LMcut, 22 for
iPDB, 7 for CEGAR, 5 for M&S, and 11 for blind heuristic.
As top-1 is essentially cost-optimal planning with A∗, this
is the upper bound on K∗ performance achievable without
improving A∗.

Conclusions and Future Work
In this paper, we revisit K∗ search algorithm for top-k plan-
ning, and renovate K∗ search in various aspects, from sim-
plified yet optimized implementation of data structures to al-
gorithm configuration study that reflects the behavior of A∗

search. We also observed a significant impact of task trans-
formation that might degrade the quality of heuristics and
show how to mitigate such a negative impact.

The empirical evaluation results encourage further devel-
opment of K∗ search approaches in planning. In earlier eval-
uations, K∗ was the worst performer compared with other
approaches. However, the presented methods were able to
elevate the performance of K∗ to almost reach its theoreti-
cal ability, achieving state-of-the-art performance. The over-
all performance of K∗ is bounded by the performance of
A∗, where numerous techniques are ready to be explored in
the context of K∗ search. For future work, we would like to
take inspiration from methods improving A∗ performance
through search space pruning, such as partial order reduc-
tion (Wehrle and Helmert 2012) and symmetry reduction
(Domshlak, Katz, and Shleyfman 2012). Another possible
interesting avenue of research is how to improve the mem-
ory efficiency of K∗.
K∗ and EA are generic algorithm that can be applied to

wider range of problems. Looking at broader scopes, K∗

search could find applications in other planning tasks, such
as top-quality planning, or even in a non-optimal setting,
such as diverse planning. In addition, simplified yet effi-
cient implementation of EA and K∗ may be applied to other
problem domains, such as combinatorial optimization or ap-
proximation algorithms for the counting tasks.
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