
Fine-Grained Complexity Analysis of Multi-Agent Path Finding on 2D Grids

Tzvika Geft
The Blavatnik School of Computer Science, Tel Aviv University, Israel

zvigreg@mail.tau.ac.il

Abstract

Multi-Agent Path Finding (MAPF) is a fundamental motion
coordination problem arising in multi-agent systems with a
wide range of applications. The problem’s intractability has led
to extensive research on improving the scalability of solvers
for it. Since optimal solvers can struggle to scale, a major chal-
lenge that arises is understanding what makes MAPF hard. We
tackle this challenge through a fine-grained complexity analy-
sis of time-optimal MAPF on 2D grids, thereby closing two
gaps and identifying a new tractability frontier. First, we show
that 2-colored MAPF, i.e., where the agents are divided into
two teams, each with its own set of targets, remains NP-hard.
Second, for the flowtime objective (also called sum-of-costs),
we show that it remains NP-hard to find a solution in which
agents have an individually optimal cost, which we call an
individually optimal solution. The previously tightest results
for these MAPF variants are for (non-grid) planar graphs. We
use a single hardness construction that replaces, strengthens,
and unifies previous proofs. We believe that it is also simpler
than previous proofs for the planar case as it employs minimal
gadgets that enable its full visualization in one figure. Finally,
for the flowtime objective, we establish a tractability frontier
based on the number of directions agents can move in. Namely,
we complement our hardness result, which holds for three di-
rections, with an efficient algorithm for finding an individually
optimal solution if only two directions are allowed. This result
sheds new light on the structure of optimal solutions, which
may help guide algorithm design for the general problem.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of plan-
ning the collision-free motion of agents that operate on a
graph (see formal problem definition below). MAPF has a
wide range of applications in transportation, logistics, and
beyond, from warehouse automation (Li et al. 2020) through
train scheduling (Atzmon, Diei, and Rave 2019), to pipe
routing (Belov et al. 2020). The increasing proliferation of
multi-agent systems has led to MAPF being a highly active
research area in AI and robotics, where MAPF serves as a
discrete abstraction of multi-robot motion planning.

In this paper we study the following time optimization
objectives for MAPF:

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Makespan–where we wish to minimize the time at which
the last agent reaches its goal.

• Flowtime (also known as sum-of-costs)– where we wish
to minimize the total time it takes the agents to reach their
goals, i.e., the sum of all the agents’ individual arrival
times.

Arguably, these objectives are the most prevalent for MAPF.
Therefore, when using the term MAPF (or time-optimal
MAPF) in the sequel, we refer to MAPF with either of these
objectives, unless stated otherwise.

Since finding optimal solutions for MAPF is intractable
(see review below), the problem has been attacked along
many fronts, leading to dozens of diverse algorithms
(which we also call solvers) being proposed. Optimal
MAPF algorithms include the popular Conflict-Based Search
(CBS) (Sharon et al. 2015), which has seen multiple improve-
ments over the years (see, e.g., (Felner et al. 2018; Li et al.
2019)). Other algorithms include Branch-and-Cut-and-Price
(BCP) (Lam et al. 2019), which is based on mixed-integer pro-
gramming, Lazy CBS (Gange, Harabor, and Stuckey 2019),
which uses lazy-constraint programming, and the satisfiabil-
ity modulo theory-based SMT-CBS (Surynek 2019).

Over time, the development of improved algorithms has al-
lowed effectively solving a wide range of increasingly larger
instances. Nevertheless, despite significant progress, optimal
solvers can still struggle to scale. At the same time, the per-
formance of algorithms is not well-understood: It has been
observed that instances that do not exhibit notable differences
can result in very different running times (Salzman and Stern
2020). Furthermore, it has been challenging to empirically
establish an algorithm dominating all others (Felner et al.
2017), leading to research on algorithm selection (Kaduri,
Boyarski, and Stern 2020) and to the search for parameters
governing algorithms’ performance (Ewing et al. 2022).

Alongside the incomplete understanding of MAPF algo-
rithms’ performance, a more fundamental question has been
raised on what makes the problem itself hard (Felner et al.
2017; Gordon, Filmus, and Salzman 2021). Gaining a deeper
understanding of the problem’s computational complexity
has been recently highlighted as a major open challenge (Salz-
man and Stern 2020). A major driving force in this work is
to deepen such understanding, with the ultimate goal of ap-
plying it to obtain more scalable algorithms. To this end, we
provide a fine-grained complexity analysis of MAPF, as we

Proceedings of the Sixteenth International Symposium on Combinatorial Search (SoCS 2023)

20

outline next.

Previous work and remaining questions
The complexity of time-optimal MAPF has been extensively
studied. Earlier hardness results apply mostly to non-planar
graphs (i.e., graphs that cannot be drawn in the plane such
that edges do not cross) (Surynek 2010; Yu and LaValle 2013;
Ma et al. 2016). A significant downside of such proofs is that
they do not hold (i.e., cannot be easily adapted) for the more
typical use cases of MAPF, which concerns planar environ-
ments. Benchmarks and empirical performance evaluations
typically revolve around the even more special case of 2D
grids, which serve as an abstraction for structured environ-
ments such as warehouses. Consequently, a major theme of
subsequent complexity research has been to obtain results
for more grid-like environments. Complexity analysis for re-
stricted cases is valuable as it can indicate whether the special
structure of such cases can be exploited to obtain improved
algorithms. We therefore echo this theme and focus on the
planar case.

Indeed, later hardness results have been presented for pla-
nar graphs (Yu 2016), finally culminating with hardness for
2D grids in the works of (Banfi, Basilico, and Amigoni 2017)
and (Demaine et al. 2019) (the latter applies only to makespan
minimization). As for recent results, a highly restricted vari-
ant where agents must simply follow given straight paths on
a 2D grid, without an optimization objective, has been shown
to be NP-hard (Abrahamsen et al. 2023). An even newer re-
sult (which we became of aware of during the review process)
shows that makespan minimization on 2D grids is NP-hard
even for a fixed makespan value and fixed-parameter tractable
when parameterized by the number of agents, assuming no
obstacles (Eiben, Ganian, and Kanj 2023).

Nevertheless, some open questions remain within the
prevalent MAPF formulation for 2D grids, which we now
highlight.

Colored MAPF. In practice, it may be more natural to
consider the agents as being divided into teams rather than
viewing each agent as unique. In the k-colored MAPF
variant (Barták, Ivanová, and Svancara 2021; Solovey and
Halperin 2014), there are k teams of agents, each with its
own set of targets. A valid solution then involves having each
target be reached by any of the agents in the team. k-colored
MAPF generalizes standard (labeled) MAPF, where each
agent may be viewed as a singleton team. On the other end
of the spectrum, we have unlabeled or anonymous MAPF,
where all the agents are viewed as being part of one team and
a target may be assigned to any agent. The unlabeled case
can be efficiently solved by a reduction to network flow (Yu
and LaValle 2012). Therefore a natural question is whether
efficient solutions exist for other small k values. Previously,
(Yu 2016) has shown that on planar graphs the problem is NP-
hard already for k = 2. On 2D grids, only the NP-hardness
for k = 3 for makespan has been shown (Demaine et al.
2019).

Therefore, our first question (Q1) is whether 2-colored
MAPF on 2D grids is NP-hard. We point out that hardness
has been conjectured but ultimately left unresolved (Banfi,

r1

r2

r1

r2

Figure 1: Two MAPF instances, where start cells are filled
and target cells are unfilled. Left: An instance having an
individually optimal solution, for which the paths are shown.
Right: An instance that does not have such a solution, as
any combination of individually optimal paths for r1 and r2
would result in a collision.

Basilico, and Amigoni 2017).

Finding agent-wise individually optimal solutions. For
the flowtime objective, we also investigate the complexity of
finding a solution whose cost equals the lower bound cost. A
lower bound cost for a MAPF instance is defined as the sum
of costs of all agents’ individually optimal paths, which are
optimal paths when all other agents are ignored. We call such
a solution an individually optimal solution. In such a solution
every agent moves at every time step along some shortest
path to its goal until reaching it. See Figure 1 for examples.

Alternatively stated, if we let ∆ denote the difference be-
tween the cost of the optimal solution and the lower bound
cost of a given MAPF instance, the problem is to decide
whether ∆ = 0. Note that this problem is easier than opti-
mally solving MAPF, since finding an optimal solution also
solves the former problem.

Our motivation stems from the inherent connection be-
tween ∆ and the amount of computation needed to optimally
solve MAPF. In terms of search-based solvers, such as CBS,
the size of the high-level search tree may grow exponentially
with ∆. This fact stems from the typical flow of optimal
MAPF solvers, which begins by determining the existence
of an individually optimal solution and only proceeds to
look for more expensive solutions if no such solution exists.
Therefore, it seems natural to ask whether the initial step of
deciding whether ∆ = 0 can be done more efficiently.

The answer for planar graphs has been negative since in-
stances in the hardness proof of (Yu 2016) are yes-instances
if and only if ∆ = 0. However, we cannot say the same for
the proof for 2D grids (Banfi, Basilico, and Amigoni 2017)
since their construction does not bound ∆ in yes-instances.1

We therefore pose the following question (Q2): For MAPF
with the flowtime objective on 2D grids, is it NP-hard to
determine the existence of an individually optimal solution?

Note we can define an equivalent question for the
makespan objective, though its answer is immediate since for
makespan any existing construction can be easily modified
to show hardness for this case.2

1In yes-instances in their proof the clause agents may have to
take detours, resulting in paths longer than their individually optimal
paths. Hence the answer to the decision question in their proof does
not indicate whether ∆ = 0.

2Suppose that there is a hardness construction showing that

21

Paper 2D grids ∆ = 0
(flowtime only)

2-colored
MAPF 3 directions # of agents Remark

(Yu 2016) ✓ ✓ n/a O(m2)
(Demaine et al. 2019) ✓ n/a 3-colored O(nm) Makespan only
(Banfi et al. 2017) ✓ O(nm2 + n2m)

this work ✓ ✓ ✓ ✓ m

Table 1: Comparison of previous hardness results for planar graphs. The “# of agents” column shows the number of agents used
in the MAPF instance output by each reduction in terms of the size of the input 3-SAT formula, where n and m are the number
of variables and clauses, respectively. For completeness, we note here that proofs for the non-planar case (see references in main
text) generally also show hardness for 2-colored MAPF and for the decision question of whether ∆ = 0. Such proofs may be
simpler at the expense of not being applicable to planar environments. Remark: The number of agents and directions used in
each construction are worst case based on the details given in each proof. They may be lower following a more careful analysis
of the respective proofs.

Contribution
We provide a new NP-hardness proof for MAPF on 2D grids
that settles the hardness of the restricted variants in Q1 and
Q2. Namely, 2-colored MAPF and finding an (agent-wise)
individually optimal solution remain NP-hard on 2D grids.
Our results are tight in the following sense: For Q1 the case
of k = 1 (i.e., anonymous MAPF) is efficiently solvable.
Similarly, Q2 considers the smallest value for ∆. Thus, our
proof replaces and unifies multiple previous proofs, includ-
ing those of (Yu 2016; Banfi, Basilico, and Amigoni 2017;
Demaine et al. 2019), while obtaining stronger results that
close two gaps in MAPF’s complexity.

Moreover, our proof is simpler in terms of using fewer
agents than previous proofs for the planar case; see Table 1
for a comparison with previous proofs. The relatively low
number of agents in our reduction stems from the fact that
we only use one type of agent, as opposed to multiple types
used in previous reductions.3 Consequently, this makes it
(arguably) easier to visualize our complete construction, with
all its constituent components, on the 2D grid.

Finally, we establish a new tractability frontier for MAPF
based on the number of cardinal directions agents can move
along. Our proof uses only three such directions, as opposed
to previous 2D grid proofs, which use all four directions. We
complement the hardness results by showing that if we allow
only two directions of motion, we can efficiently find an in-
dividually optimal solution for flowtime (if such a solution
exists). While this positive result is quite restricted, it sheds
new light on the structure of optimal solutions. Namely, we
prove that yes-instances have a canonical solution that can
be found by a simple prioritized planning-based algorithm.
Overall, by bridging complexity analysis and algorithm de-
sign we hope to inspire enhanced reasoning techniques that
can further improve MAPF solvers.

deciding whether a solution with makespan better than M exists.
Then we may modify the construction by adding a single agent
whose target is M units away in a separate part of the construction
from the rest of the agents. The lower bound for makespan becomes
M due to the new agent.

3By “types of agents” we refer to agents having a distinguished
role in the proof, e.g., agents representing SAT clauses versus agents
representing variables.

Problem Definition
In Multi-Agent Path Finding (MAPF) (Stern et al.
2019) we are given a graph G = (V,E) and a set of
agents {r1, . . . , rN}, where each agent ri has a start
and a goal vertex, denoted by (si, gi) respectively, where
si, gi ∈ V . Time is discretized and at each time step an agent
can either wait at its current vertex or move across an edge
to an adjacent vertex. A timed path (or simply path) is a
sequence (v1, . . . , vt) of vertices representing the current lo-
cation of an agent at each time step, i.e., for each i < t, vi
and vi+1 are either adjacent or the same vertex. A feasible or
collision-free solution is a set of paths P = {p1, p2, ..., pN}
such that pi is a timed path for agent ri from si to gi, and there
are no conflicts between any two paths in P . Namely, the
following types of conflicts do not occur: A vertex-conflict,
in which two agents occupy the same vertex at the same time
step. An edge-conflict, in which two agents traverse the same
edge in opposite directions at the same time step.

An optimal solution is a set of paths P that also opti-
mizes some objective function. For time-optimal MAPF for-
mulations, the most common objectives are the following:
Makespan: the maximum number of time steps needed for all
agents to reach their targets, i.e., maxi=1,...,N |pi|. Flowtime
(also known as sum-of-costs): the sum of time steps needed
by all agents to reach their targets, i.e.,

∑
i=1,...,N |pi|.

k-colored MAPF. In k-colored MAPF the agents are di-
vided into k teams and each team is associated with a number
of targets that is identical to the number of agents in the team.
A feasible solution brings the agents in each team to the
team’s respective targets, i.e., each target can be occupied by
any agent in the team. Note that N -colored MAPF, i.e., each
team consists of a single agent, is the same as the original
definition of MAPF above. The 1-colored variant is called
unlabeled or anonymous MAPF. Colored MAPF has also
been studied under the name Target Assignment and Path
Finding (TAPF) (Ma and Koenig 2016).

Other conflict types. One may define other types of con-
flicts that needed to be avoided in a feasible solution: A fol-
lowing conflict occurs when an agent attempts to move to a
vertex that is being vacated by another agent at the same time
step. A cycle conflict occurs when multiple agents r1, . . . , rk

22

x1 ∨ x5

x1 ∨ x3 ∨ x4

x1 x2 x3 x4 x5

x1 ∨ x2 ∨ x5

x3 ∨ x4 ∨ x5

x1 ∨ x2

C1

C2

C4

C5

C3

Figure 2: A MONOTONE PLANAR 3-SAT instance in a recti-
linear embedding.

are involved in a following conflict such that ri(mod k) at-
tempts to move to the current vertex of ri+1(mod k), i.e., a
rotating cycle of agents is formed.

Hardness Results
In this section we present our hardness results, which are as
follows:
Theorem 1. For the makespan and flowtime objectives,
MAPF remains NP-complete on 2D grids with holes even
when the agents are restricted to move along 3 directions and
for the following variants:

(i) 2-colored MAPF, i.e., when there are two groups of agents,
where agents within each group are considered inter-
changeable.

(ii) Deciding whether there is an individually optimal solution
for flowtime.

Since membership in NP is straightforward (Yu and
LaValle 2013), we only show hardness. The base problem
for our reduction is MONOTONE PLANAR 3-SAT, which we
now define.

MONOTONE PLANAR 3-SAT. Let ϕ =
∧
Ci be a 3-SAT

formula having n variables and m clauses, where each clause
Ci is the disjunction of at most three literals, each of which
is either a variable or its negation. We now define the two
special elements of this version of 3-SAT.

A clause is positive (resp. negative) if it contains only
positive (resp. negative) literals. An instance of 3-SAT is
monotone if it only has positive or negative clauses.

For the planarity element, we consider the bipartite graph
Gϕ that contains a vertex for each variable and for each
clause, and has an edge between a variable vertex and a clause
vertex if and only if the variable appears in the clause. In
PLANAR 3-SAT, which remains NP-complete (Lichtenstein
1982), we require Gϕ to be planar.

The graph Gϕ of a PLANAR 3-SAT instance can be drawn
in a rectilinear embedding as follows (Knuth and Raghu-
nathan 1992): All vertices are drawn as unit-height rectangles,
with all the variable-vertex rectangles centered on a fixed hor-
izontal strip called the variable row. Every edge is a vertical
line segment, which we call a leg, that does not cross any
rectangles, as shown in Figure 2. PLANAR 3-SAT remains
NP-complete when Gϕ is given as a rectilinear embedding.

x1 x2 x3 x4 x5

c1

c2

c3

c4

c5

c1
c2
c3

c4

c5

c

c′

Figure 3: The instance M in our reduction, which corre-
sponds to the 3-SAT formula shown in Figure 2 (agent ci
corresponds to the clause Ci). Positive (resp. negative) agents
and their targets are green (resp. red). The two colors rep-
resent the two teams in the corresponding 2-colored MAPF
instance. Obstacle cells are dark gray. The lengths of vertical
corridors in the figure are slightly smaller than required – see
text for details.

The 3-SAT version we use combines planarity with mono-
tonicity as follows: MONOTONE PLANAR 3-SAT is a restric-
tion of PLANAR 3-SAT to monotone instances in which the
rectilinear embedding of Gϕ has all positive clause-vertices
above the variable row and all negative clause-vertices below
it, as illustrated in Figure 2. MONOTONE PLANAR 3-SAT
remains NP-complete (de Berg and Khosravi 2010).

Nesting level and root clauses. We will use the following
hierarchical relationship between clauses, which is induced
by a fixed rectilinear embedding of Gϕ: Let C and C ′ be two
clauses that are on the same side of the variable row. We say
that C encloses C ′ if one can draw a vertical line segment s
connecting C and C ′, and also C is vertically further from
the variable row than C ′. C is called the parent of C ′ if it
encloses C ′ and furthermore we can draw s without crossing
any clauses, i.e., C directly encloses C ′. In this case, we call
C ′ a child of C. A clause that does not have a parent is called
a root clause. For example, in Figure 2 C1 encloses C3, but
is only the parent of C2.

We may assume without any loss of generality that there is
a single root clause on each side of the variable row (Agarwal
et al. 2021), as occurs in Figure 2, where C1 and C2 are the
two root clauses.

We now recursively define the nesting level of a clause
using the hierarchical structure of Gϕ: Any non-parent clause

23

has a nesting level of 0. Any parent clause C has a nesting
level of ℓ+ 1, where ℓ is the maximum level of any child of
C. For example, in Figure 2, C1 has a nesting level of 2.

Reduction Outline. Given a Monotone Planar 3-SAT in-
stance ϕ we construct a MAPF instance M := M(ϕ) that has
an individually optimal solution, for the flowtime objective,
if and only if ϕ is satisfiable. The resulting instance will allow
proving the hardness of all the considered MAPF variants,
up to minor changes that we describe later. We use the recti-
linear embedding of Gϕ, which is easily embedded in the 2D
grid. Roughly speaking, we turn vertices and edges in this
embedding into horizontal and vertical unit-width corridors,
respectively. Such corridors are formed by filling up most of
the grid with obstacle cells. Refer to Figure 3, which will be
described in more detail later. We represent each clause in ϕ
by a corresponding agent as follows, resulting in m agents
in total: For a positive clause C in ϕ, we have a respective
positive agent that starts in C’s embedding and has to reach
its target by moving down and right, crossing the variable
row. Symmetrically, for a negative clause C in ϕ, we have
a respective negative agent (also starting in C’s embedding)
that has to reach its target by moving up and right.

The key idea in the construction is to force the unidirec-
tional travel of agents through variable channels, which are
long vertical corridors that represent variables (yellow in Fig-
ure 3). Our paths are constructed so that each agent is forced
to pass through one of the variable channels corresponding
to variables appearing in the clause. This creates a point of
contention along variable channels, for which we only have
uni-directional motion in an individually optimal solution.
The direction of motion in such a solution corresponds to the
variable’s assignment in ϕ.

The overall idea is similar to the proof of (Yu 2016), where
MAPF was first shown to be NP-complete for planar graphs.
We therefore also use some of the same terminology.

The details. We now discuss M in more detail. We con-
vert the rectilinear embedding of ϕ to M as follows. Each
clause is converted to a clause gadget with the following path
segments: The horizontal rectangle (clause vertex in Gϕ) be-
comes a horizontal corridor of unit height and each leg (edge)
becomes a vertical corridor of unit width. Each positive (resp.
negative) agent is initially located in the top (resp. bottom)
left cell of its corresponding gadget.

Each variable gadget is a long vertical path (one unit wide)
of length L (to be specified later), which forms the variable
channel. All the variable channels start and end at the same
grid row. Clause gadgets are connected to variable channels
as follows. Each variable has two horizontal corridors, one
above the variable row and one below it. On each side of
the variable row, all the legs that lead to the variable go the
horizontal corridor of that variable (on the respective side).
The two horizontal corridors connect to the variable channel
from the left. For example, in Figure 3, for x1 we have three
incoming legs to the respective horizontal corridor on the
positive side, making it 5 units wide.

Note that the rightmost leg entering a variable (on each
side of the variable row) is located in the same column as
that variable’s channel. If a certain literal only appears once,

then the horizontal corridor is only one unit wide (such as
for all variables except x1 on the positive side of the variable
row in Figure 3).

Before specifying the agents’ target cells, we describe the
backwards paths. We add such paths to M to facilitate the
motion of agents on the opposite vertical side of construction
with respect to their start cells. Let Ci and Cj be two positive
clauses such that Ci is the parent of Cj . The backwards path
for this pair of clauses starts at the top right corner of Ci’s
gadget and continues rightward until reaching a leg of Cj’s
gadget. This placement ensures that only negative agents
can use the path (as a positive agent would have to detour
from its individually optimal path to use the backward path).
Backwards paths below the variable row are handled sym-
metrically. These paths are shown in pale cyan in Figure 3.

To enable negative agents to reach their targets, we create
an opening from the positive root clause gadget G that leads
to their targets. The opening consists of one cell neighboring
the top right cell of G, which we denote by c (the cell is
marked so Figure 3). All targets of negative agents are placed
above and to the right of this opening, e.g., by placing targets
one above another. The targets of positive agents are handled
symmetrically. We denote the corresponding opening cell on
the bottom side of the construction by c′.

Let W be the minimum number of columns required for
the construction. We have W ≤ 6m by assuming 3 legs per
clause and an empty cell between every two adjacent legs. We
define the height of a clause gadget as the length of its legs.
We adjust the height of each clause as follows: We set the
height of clauses with a nesting level of i to be iW . Setting
the heights is easily possible by adjusting the lengths of the
legs. With this placement, it is straightforward to verify that
each positive (resp. negative) agent’s start cell has a unique
(Manhattan) distance to c′ (resp. c), which is a key property
we later use.

We now set L, the length of the variable channels, to be the
maximum distance required by any agent to enter one of its
respective variable channels, over all the agent’s individually
optimal paths. For example, for c3 the maximum distance
is 5 (going right and then down). Observe that L is O(m2)
(and is roughly equal to the maximum height of any clause
gadget).

Size of the construction. We give a rough upper bound
on the size of the construction. Each clause is composed
of at most 4 horizontal/vertical corridors, each of length at
most O(m2) and has backwards path of length at most O(n).
There are n variable channels of length O(m2). Therefore
O(m3+nm2) cells suffice to form M and thus the reduction
can be performed in polynomial time. We conjecture that a
more compact construction is possible.

We now turn to the correctness of the reduction and thus
prove Theorem 1.

Proof of Theorem 1. We first prove statement (ii) by show-
ing ϕ has a satisfying assignment if and only if M has an
individually optimal solution, for flowtime. In particular, this
statement also establishes the hardness of optimizing flow-
time.

24

Given a satisfying assignment to ϕ we define an individ-
ually optimal solution to M . We describe the motion of a
positive agent as negative agents move in a symmetric man-
ner. Each positive agent moves using down and right moves
towards its target at every time step and only stops when
reaching its target. Each such agent is able to travel along a
variable channel corresponding to a variable assigned true as
per the satisfying assignment. Upon reaching the other end
of a variable channel, the agent continues down, entering a
leg of a negative clause gadget, say Ci, and then right until
reaching a backwards path. The backwards path takes the
agent to the leg of the gadget of Ci’s parent clause. The agent
can continue traveling similarly through the parent gadget,
using additional backwards paths, until reaching the gadget
of the negative root clause. From there, it easily reaches its
target via the opening cell. All the possible variable channels
for an agent result in the same path length for that agent.

We now prove that the described solution is collision-free.
First, note that the length of the variable channels is suffi-
ciently long so that negative agents cannot collide with posi-
tive agents. This is true, since after L time steps every agent
is inside some variable channel and each channel contains
only positive agents or only negative agents.

Therefore, we turn to collisions among positive agents
(the same arguments apply to negative agents). Recall that c′
denotes the opening cell of the negative root clause gadget.
By construction, each start cell of a positive agent has a
unique (Manhattan) distance to c′. At each time step, all the
positive agents that have not reached c′ get close to c′ by one
unit, since they all move down or right. Hence, such agents
maintain the property of having a unique distance from c′.
Therefore, they cannot collide, as a collision requires two
agents to be located the same distance from c′. After an agent
visits c′, it continues to its target and does not block other
agents from reaching their target later on, as per the solution.

In the other direction, let us assume that M has an individ-
ually optimal solution. Since agents must move at every time
step (along a shortest path) until reaching their respective
targets, the solution cannot have both a positive agent and
a negative agent traverse the variable channel. This is true
because an agent can reach a variable channel in at most L
time steps. Since the length of a variable channel is L, if it
is used by both a positive and negative agent, one of them
would have to wait for the other. Therefore we simply set a
variable in ϕ to be true if and only the corresponding variable
channel is used by a positive agent in the given solution. Such
an assignment satisfies ϕ since each clause’s agent must use
a variable channel corresponding to one of the variables in
the clause, which sets the variable to the appropriate value.

Next, we prove hardness for the makespan objective. We
do so by first slightly changing M . We ensure that all agents
have the same individually optimal path length as follows: Let
d denote the maximum individually optimal path length over
all agents in M . We now make every target be at a distance D
from its respective start cell by moving each target rightward
a sufficient number of cells so that the condition holds. Let
M ′ denote the resulting MAPF instance. It is straightforward
to verify that M ′ has a solution with a makespan of d if and
only if M has an individually optimal solution for flowtime.

ri

rj

Figure 4: Illustration of the key observation (see preliminaries
of our algorithm) with the two diagonals marked. Agent rj
would always be closer to a potential point of conflict (marked
by a cross) than ri.

Finally, to prove statement (i) for both objectives, we use
the same constructions M and M ′, with the positive agents
as one group and the negative agents as the other group. It is
straightforward to verify that the statement follows.

We remark that the proof holds for all common conflict
types in MAPF (see problem definition above) since it relies
on head-on collisions only.

Efficiently Finding Individually Optimal
Solutions for a Restricted Case

In this section, we establish a tractability frontier for finding
an individually optimal solution for the flowtime objective.
Our hardness proof relies on three directions of motion to
create contention in narrow corridors between agents mov-
ing in opposite directions. We now show that if we further
restrict the problem to only two directions of motion, we can
efficiently solve this MAPF variant:
Theorem 2. Let G be a subgraph of the 2D grid, i.e., a 2D
grid with holes. For MAPF with the flowtime objective on
G where agents are restricted to move along two directions,
there is an algorithm that finds an individually optimal solu-
tion or reports that none exists. The algorithm runs in time
O(N |V |), where N is the number of agents and |V | is the
number of cells in G.

We now describe the algorithm and prove its correctness.

Preliminaries. Let us assume without any loss of generality
that the allowed directions of motion are down and right (the
problem is trivial for two opposite directions). Furthermore,
we assume that each agent’s target is located either below
or to the right of its start cell (or both), since otherwise the
algorithm should clearly report “no solution”.

Let us partition the agents into sets based on the grid di-
agonal on which they start. That is, two agents with starting
cells having coordinates (xi, yi) and (xj , yj) are in the same
diagonal set if and only if xi−xj = yi−yj . Let D1, . . . , Dr

denote the resulting diagonal sets in left to right order (accord-
ing to the x-intercept of the corresponding grid diagonal).

We use the following key observation: Let ri, rj be two
agents such that ri ∈ Da, rj ∈ Db, a < b. In an individually
optimal solution, ri and rj can collide only at g(j), since for
any other cell c where their paths intersect rj will leave c the
time step before ri enters c. In other words, ri’s path must
simply avoid rj’s target and need not take into account rj’s

25

r1
r2

r3

r1
r2

r3

Figure 5: Left: An instance consisting of agents on a single
diagonal where the algorithm finds a solution. Right: When
one obstacle cell is added, the left instance becomes a “No”
instance. In both cases, our algorithm plans paths in the
order r1, r2, r3. Observe that preferring right over down
is crucial for finding a solution for the left instance. For the
right instance, paths are found for r1 and r2, but the algorithm
concludes that it is not possible to also find an individually
optimal path for r3.

path at all. See Figure 4 for an illustration. Therefore, our
algorithm can essentially handle each diagonal set indepen-
dently and treat the targets of agents from diagonal sets that
are to the right as obstacles.

Algorithm. Our algorithm can be viewed as a combination
of two simple elements: prioritized planning using a special
ordering of the agents and a tie-breaking rule for the single-
agent path search. We first give a succinct description of
the algorithm along such terms and then provide an explicit
description.

Recall that in prioritized planning (Silver 2005) we plan the
agents’ paths one by one, in a decoupled manner, where each
agent’s path must not conflict with previously planned paths.
We apply prioritized planning by planning paths for agents
in this manner, in right to left order of their start positions
(with ties broken arbitrarily). Furthermore, we require that
each single agent path search prefers going right before going
down (e.g., a path planned without any obstacles would go
right and then down). During this process, if the optimal path
found for a single agent is not individually optimal, we report
a “No” instance. Otherwise, we clearly get an individually
optimal solution. We shall see that both the ordering of the
agents and the tie-breaking in each agent’s path search are
required for correctness.

We give an alternative, more explicit description of the
algorithm that can provide better intuition for its correctness.
The explicit version of the algorithm plans the paths for each
diagonal set Di separately, in the order i = r, r − 1, . . . , 1.
Therefore, we fix Di and describe the planning for it.

First, for all j > i we remove from G, i.e., mark as obsta-
cles, the target cells of the agents in Dj . The removed cells
cannot be used by agents in Di in an individually optimal
solution since such cells would be occupied by agents from
diagonals right of Di.

Let r1, . . . , ru denote the agents sorted along Di accord-
ing to decreasing x-value of their starting cells. We then go
over each rj in this order and attempt to find an individually
optimal path for rj as follows. We run a DFS from the start
cell of rj that prefers visiting cells to the right of the currently

p′

pj+1p′j+1

Figure 6: An illustration of the paths p′ (green), p′j+1 (blue),
and pj+1 (red) from Lemma 1. The cells of U(p′j+1) are
shaded and pj+1 is weakly above p′j+1.

visited cell. If no such path is found within the bounding box
of the start and target cell of rj , report a “No” instance. Oth-
erwise, let pj denote the resulting path. We remove the cells
appearing on pj from G and proceed to the next agent. The
removed cells cannot be used by other agents in Di since that
would result in a collision.

Once finished with Di, add back all the removed cells
of p1, . . . , pu to G and proceed to the next diagonal. An
example of the algorithm handling a single diagonal Di is
shown in Figure 5.

Correctness. First, we note that if the algorithm finds a
solution then it is clearly individually optimal and collision-
free. Therefore, if no such solution exists, the algorithm will
report a “No” instance. Hence, it remains to prove that if an
individually optimal solution exists, the algorithm will find
such a solution.

In what follows, we use the following key definition. Given
a path p, we denote by U(p) the union of cells that either
appear in p or are above some cell in p. A path q is said to be
weakly above p if the cells of q are contained in U(p). See
Figure 6. We now show that the existence of an individually
optimal solution implies the existence of a canonical solution
identical to the one found by the algorithm. In this canonical
solution, each path pj for agent rj is weakly above the agent’s
path in any individually optimal solution.

Let us fix some diagonal set D = r1, . . . , ru, where the
ri’s appear in decreasing x-value of their starting cells. We
now assume that an individually optimal solution exists
and denote the paths for the agents of D in this solution
by P ′ = {p′1, . . . , p′u}. We denote by P = {p1, . . . , pu}
the corresponding paths in the solution found by the al-
gorithm. Let Pj denote a solution composed of the first j
paths of P and the remainder of the paths are from P ′, i.e.,
Pj := {p1, . . . , pj , p′j+1, . . . , p

′
u}. Roughly speaking, the fol-

lowing lemma shows that we may transform the paths in P ′

one by one to the paths of P , the canonical solution, while
maintaining a collision-free solution.

Lemma 1. For every j = 0, . . . , u, the algorithm succeeds in
finding the paths p1, . . . , pj and the solution Pj is collision-
free.

Proof. The proof is by induction on j. The base case of j = 0

26

is trivial since P0 = P ′.
Let us now assume that the lemma holds for some j. That

is, the algorithm has found paths for the first j agents and
the path p′j+1 of P ′ does not conflict with the paths of these
agents. The next agent of D for which the algorithm plans
a path is rj+1. Since this path search prefers right moves
before downward moves, it considers all paths that are weakly
above p′j+1 before eventually considering p′j+1 as an option.
Therefore, the search for pj+1 will succeed, resulting in a
path weakly above p′j+1 (which may be the same as p′j+1).

It remains to prove that pj+1 does not conflict with paths
in {p′j+2, . . . , p

′
u}. Let p′ be a path in {p′j+2, . . . , p

′
u}. Since

pj+1 is weakly above p′j+1, the cells along pj+1 are con-
tained in U(p′j+1). Furthermore, since p′ does not conflict
with p′j+1, the cells along p′ are disjoint from U(p′j+1); See
Figure 6. Therefore, combining the last two facts, p′ does not
conflict with pj+1, which means that the lemma holds for
j + 1.

For j = u the lemma implies that the algorithm succeeds
in finding paths for the agents of D. Finally, the lemma holds
for all diagonal sets, thus establishing the correctness of the
algorithm. Theorem 2 follows.

Discussion and Conclusion
We have provided a fine-grained complexity analysis of time-
optimal MAPF on 2D grids, thereby closing two gaps in the
literature. For the flowtime objective, our analysis reveals
a tractability frontier concerning the number of directions
the agents can move in. While our positive result holds for
quite a restricted case, it sheds new light on the complexity
of MAPF that may have further implications, which we now
discuss.

In (Yu 2016), agents that move in opposite directions are
used to show the hardness of MAPF for various distance
and time objectives. In turn, Yu concludes that the problem
becomes hard in the presence of contention that occurs when
two or more groups of agents need to move in opposite di-
rections through the same set of narrow paths. One natural
follow-up question is whether the problem is hard without
such opposite-direction movement. A “no” answer here, i.e.,
in the form of an efficient algorithm for a restricted MAPF
variant, may allow speeding up MAPF algorithms by incor-
porating its reasoning in solvers for the general problem.

This question has been recently addressed in (Geft and
Halperin 2022) for distance-optimal MAPF (where the goal
is to minimize the total traveled distance, ignoring time) on
2D grids. They show that distance-optimal MAPF is NP-hard
even if the agents need to go in the same general direction,
specifically when only allowed to move down and right. Fur-
thermore, it may be verified that their proof shows that in this
case finding an individually optimal solution is already NP-
hard. In this context, our paper somewhat surprisingly reveals
that the same question for the flowtime objective is tractable.
While the complexity of the problem without restricting ∆ re-
mains open for flowtime, our algorithm suggests that MAPF
with agents moving along two directions (or similar instances

where most agents move in the same general direction) may
be easier to solve efficiently.

From the perspective of parameterized complexity (Cygan
et al. 2015), which has been highlighted as a research avenue
for tackling MAPF’s hardness (Salzman and Stern 2020),
our analysis provides guidance concerning ∆ as a parameter.
Here ∆ could be a good candidate due to empirical observa-
tions showing that sometimes it can be much smaller than the
number of agents. Our hardness proof rules out ∆ as a candi-
date for 2D grids in the general case. That is, an algorithm
with the running time f(∆) · poly(|M |), where |M | is the
size of the MAPF instance, is unlikely to exist.4 On the other
hand, we cannot say the same for the restricted case where
the agents are moving in the same general direction, such as
down and right, where our restricted positive result calls for
further investigation.

We point out that the class of instances in which each
agent’s target is either below or to the right (or both) of its
start cell can be empirically challenging. This is easily seen
through the issue of rectangle symmetries, which arise in
instances of this class containing only two agents (Li et al.
2019). Before being explicitly addressed, such symmetries
have significantly hindered the performance of state-of-the-
art solvers such as CBS, Lazy CBS, and BCP (Li 2022).
Therefore, a research direction currently being explored is us-
ing the insights gained from exploring this class of instances
to further enhance the performance of MAPF solvers. This in-
cludes leveraging our algorithm towards improved symmetry
reasoning and lower bounding.

Acknowledgments
This work has been supported in part by the Israel Sci-
ence Foundation (grant no. 1736/19), by NSF/US-Israel-BSF
(grant no. 2019754), by the Israel Ministry of Science and
Technology (grant no. 103129), by the Blavatnik Computer
Science Research Fund, by the Yandex Machine Learning
Initiative for Machine Learning at Tel Aviv University, by
the Shlomo Shmeltzer Institute for Smart Transportation at
Tel Aviv University, and by the Israeli Smart Transportation
Research Center (ISTRC).

The author wishes to acknowledge Dominik Michael
Krupke for a discussion that inspired the hardness results
and also Dan Halperin and Nathan Libman for useful discus-
sions and comments.

References
Abrahamsen, M.; Geft, T.; Halperin, D.; and Ugav, B. 2023.
Coordination of Multiple Robots along Given Paths with
Bounded Junction Complexity. In AAMAS, 932–940. ACM.
Agarwal, P. K.; Aronov, B.; Geft, T.; and Halperin, D. 2021.
On Two-Handed Planar Assembly Partitioning with Connec-
tivity Constraints. In SODA, 1740–1756. SIAM.
Atzmon, D.; Diei, A.; and Rave, D. 2019. Multi-Train Path
Finding. In SOCS, 125–129. AAAI Press.

4This is true, since otherwise, we could run the algorithm
on MAPF instances from our reduction and efficiently solve NP-
complete problems.

27

Banfi, J.; Basilico, N.; and Amigoni, F. 2017. Intractability of
Time-Optimal Multirobot Path Planning on 2D Grid Graphs
with Holes. IEEE Robotics Autom. Lett., 2(4): 1941–1947.
Barták, R.; Ivanová, M.; and Svancara, J. 2021. From Classi-
cal to Colored Multi-Agent Path Finding. In SOCS, 150–152.
AAAI Press.
Belov, G.; Du, W.; de la Banda, M. G.; Harabor, D.; Koenig,
S.; and Wei, X. 2020. From Multi-Agent Pathfinding to 3D
Pipe Routing. In SOCS, 11–19. AAAI Press.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx,
D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015. Pa-
rameterized algorithms, volume 5. Springer.
de Berg, M.; and Khosravi, A. 2010. Optimal Binary Space
Partitions in the Plane. In COCOON, volume 6196 of Lecture
Notes in Computer Science, 216–225. Springer.
Demaine, E. D.; Fekete, S. P.; Keldenich, P.; Meijer, H.; and
Scheffer, C. 2019. Coordinated Motion Planning: Recon-
figuring a Swarm of Labeled Robots with Bounded Stretch.
SIAM J. Comput., 48(6): 1727–1762.
Eiben, E.; Ganian, R.; and Kanj, I. 2023. The Parameterized
Complexity of Coordinated Motion Planning. In 39th Interna-
tional Symposium on Computational Geometry, SoCG 2023,
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
To appear.
Ewing, E.; Ren, J.; Kansara, D.; Sathiyanarayanan, V.; and
Ayanian, N. 2022. Betweenness Centrality in Multi-Agent
Path Finding. In AAMAS, 400–408. International Founda-
tion for Autonomous Agents and Multiagent Systems (IFAA-
MAS).
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T.
K. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. In ICAPS, 83–87.
AAAI Press.
Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Gold-
enberg, M.; Sharon, G.; Sturtevant, N. R.; Wagner, G.; and
Surynek, P. 2017. Search-Based Optimal Solvers for the
Multi-Agent Pathfinding Problem: Summary and Challenges.
In SOCS, 29–37. AAAI Press.
Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implicit Conflict-Based Search Using Lazy Clause Genera-
tion. In ICAPS, 155–162. AAAI Press.
Geft, T.; and Halperin, D. 2022. Refined Hardness of
Distance-Optimal Multi-Agent Path Finding. In AAMAS,
481–488. International Foundation for Autonomous Agents
and Multiagent Systems (IFAAMAS).
Gordon, O.; Filmus, Y.; and Salzman, O. 2021. Revisiting the
Complexity Analysis of Conflict-Based Search: New Compu-
tational Techniques and Improved Bounds. In SOCS, 64–72.
AAAI Press.
Kaduri, O.; Boyarski, E.; and Stern, R. 2020. Algorithm
Selection for Optimal Multi-Agent Pathfinding. In ICAPS,
161–165. AAAI Press.
Knuth, D. E.; and Raghunathan, A. 1992. The Problem of
Compatible Representatives. SIAM J. Discrete Math., 5(3):
422–427.

Lam, E.; Bodic, P. L.; Harabor, D. D.; and Stuckey, P. J. 2019.
Branch-and-Cut-and-Price for Multi-Agent Pathfinding. In
IJCAI, 1289–1296. ijcai.org.
Li, J. 2022. Efficient and Effective Techniques for Large-
Scale Multi-Agent Path Finding. Ph.D. thesis, University of
Southern California.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019. Symmetry-Breaking Constraints for Grid-Based Multi-
Agent Path Finding. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, 6087–6095. AAAI Press.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2020. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In AAMAS, 1898–1900. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Lichtenstein, D. 1982. Planar Formulae and Their Uses.
SIAM J. Comput., 11(2): 329–343.
Ma, H.; and Koenig, S. 2016. Optimal Target Assignment and
Path Finding for Teams of Agents. In AAMAS, 1144–1152.
ACM.
Ma, H.; Tovey, C. A.; Sharon, G.; Kumar, T. K. S.; and
Koenig, S. 2016. Multi-Agent Path Finding with Payload
Transfers and the Package-Exchange Robot-Routing Problem.
In AAAI, 3166–3173. AAAI Press.
Salzman, O.; and Stern, R. 2020. Research Challenges and
Opportunities in Multi-Agent Path Finding and Multi-Agent
Pickup and Delivery Problems. In AAMAS, 1711–1715. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell., 219: 40–66.
Silver, D. 2005. Cooperative Pathfinding. In AIIDE, 117–122.
AAAI Press.
Solovey, K.; and Halperin, D. 2014. k-color multi-robot
motion planning. Int. J. Robotics Res., 33(1): 82–97.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In SOCS, 151–159.
AAAI Press.
Surynek, P. 2010. An Optimization Variant of Multi-Robot
Path Planning Is Intractable. In AAAI. AAAI Press.
Surynek, P. 2019. Unifying Search-based and Compilation-
based Approaches to Multi-agent Path Finding through Satis-
fiability Modulo Theories. In IJCAI, 1177–1183. ijcai.org.
Yu, J. 2016. Intractability of Optimal Multirobot Path Plan-
ning on Planar Graphs. IEEE Robotics Autom. Lett., 1(1):
33–40.
Yu, J.; and LaValle, S. M. 2012. Multi-agent Path Planning
and Network Flow. In WAFR, volume 86 of Springer Tracts
in Advanced Robotics, 157–173. Springer.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI.
AAAI Press.

28

