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Abstract

Despite being very effective, learned heuristics in bounded-
suboptimal search can produce heuristic plateaus or move the
search to zones of the state space that do not lead to a so-
lution. In addition, it produces inadmissible cost-to-go esti-
mates; therefore, it cannot be exploited with classical algo-
rithms like WA* to produce w-optimal solutions. In this pa-
per, we present two ways in which Focal Search can be mod-
ified to exploit a learned heuristic in a bounded suboptimal
search: Focal Discrepancy Search, which, to evaluate each
state, uses a discrepancy score based on the best-predicted
heuristic value; and K-Focal Search, which expands more
than one node from the FOCAL list in each expansion cycle.
Both algorithms return w-optimal solutions and explore dif-
ferent zones of the state space than the ones that focal search,
using the learned heuristic to sort the FOCAL list, would ex-
plore.

Introduction
Many machine learning algorithms have demonstrated the
capacity to learn very effective heuristics estimates to guide
search in a variety of problems, such as domain-independent
planning (Shen, Trevizan, and Thiébaux 2020), Sokoban
(Groshev et al. 2018), Rubik’s cube, and the sliding-tile puz-
zles (Agostinelli et al. 2019). The learned heuristics pro-
duce inadmissible cost-to-go estimates, making it impossi-
ble to exploit them in algorithms that support its subop-
timality guarantees on admissible heuristics. On the other
hand, despite being very effective, it can make mistakes that
guide the search to uninformed heuristics regions or heuris-
tics plateaus, which degrade the search efficiency. For that
reason, the question of how to exploit a learned heuristic
in a bounded-suboptimality search is still an open question.
DeepCubeA is a very effective learned heuristic to solve
puzzle problems, such as sliding-tile puzzles or the Rubik’s
cube, trained with reinforcement learning. Despite that be-
ing very effective, the predicted cost-to-go can have large
errors. Figure 1 shows the difference of the DeepCubeA
(Agostinelli et al. 2019) learned heuristic (hnn) with respect
to the optimal cost (h∗). It is observed that the further away
the state is from the goal, the greater its average error.
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To avoid concentrating the search in zones of the search
space where the learned heuristic may be uninformed, which
guide the search to zones that do not lead to a solution, we
propose to combine it with a calculated admissible heuristic
in Focal Search (Pearl and Kim 1982), which can help to not
concentrate the search only in these zones.

In this paper, we present two variations of the well-known
bounded suboptimality search algorithm Focal Search: Fo-
cal Discrepancy Search (FDS), which exploits the discrep-
ancy score (i.e., the numbers of nodes in the path in which
the action with the best heuristic value was not taken); and
K-Focal Search (K-FS) which, instead of select for expan-
sion the best node at expansion cycle, select the best K
nodes, expanding nodes that may not be expanded in a reg-
ular best-first order. Both algorithms keep the theoretical
guarantees of Focal Search, i.e., return w-optimal solutions.

On the experimental side, we evaluate the algorithms
on the 24-puzzle benchmark using DeepCubeA. We com-
pare our algorithms against Focal Search using the learned
heuristic to sort the FOCAL, similar was proposed by Spies
et al., and two purely heuristic search algorithms that exploit
the admissibility of the heuristic, such as WA* and DPS. Our
results show that by using a learned heuristic, our algorithms
outperform the classical Focal Search by two orders of mag-
nitude and WA* and DPS by four orders of magnitude re-
garding the number of expansions.

0 20 40 60 80
h *

0

2

4

6

er
ro
r=
|h
*

h n
n|

Figure 1: Error of the DeepCubeA learned heuristic (hnn)
on 24-puzzle with respect to h∗
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Focal Discrepancy Search
Focal Discrepancy Search (FDS) (Araneda, Greco, and
Baier 2021; Greco, Araneda, and Baier 2022) is a version of
Focal Search which sorts FOCAL by the discrepancy associ-
ated with the path of each state. More formally, if s is a state
in FOCAL, at any point during the execution of FS, its prior-
ity is given by disc(path(s)), which is the number of times
along the path where the state with the best heuristic value
was not selected for expansion. This method was originally
proposed to use a learned policy, but it is also applicable to
learned heuristics, even in an anytime context.

K-Focal Search
K-Focal Search (K-FS(k)) is a generalization of Focal
Search. Instead of selecting for expansion the best node in
FOCAL, K-FS(k) extracts the best k nodes from FOCAL,
and unless the goal is among the extracted states, it expands
all such states. If the FOCAL list contains less than k nodes,
it selects for expansion all nodes in the FOCAL list. K-FS
with k = 1 [K-FS(1)] executes the exact procedure that Fo-
cal Search. Due to all states in FOCAL are within the bound,
K-FS keeps the theoretical guarantees of Focal Search, thus
returning a w-optimal solution.

K-FS was mainly proposed to reduce the time expended
in calculating the learned heuristic for each state, accumu-
lating a batch of states whose heuristics estimates will be
calculated using a GPU via batched computation. K-FS can
perform a more efficient search because it includes more ex-
ploration and expand nodes that might not have been ex-
panded in a standard best-first search algorithm.

Experimental Results
We evaluated our algorithm on the 24-puzzle with a subopti-
mality bound w = 1.5. We use the trained models of Deep-
CubeA (Agostinelli et al. 2019) as learned heuristic. This
model was implemented in Pytorch and is publicly avail-
able. We use the Linear Conflict heuristic as an admissible
heuristic. All algorithms were implemented in Python 3, and
the experiments were run on an Intel Xeon E5-2630 ma-
chine with 64GB RAM, using a single CPU core and one
GPU Nvidia Quadro RTX 5000. For all experiments, we use
a 30-minute timeout. As evaluations, we use Korf’s 50 in-
stances for the 24-puzzle (Korf and Felner 2002). Our algo-
rithms are compared with FS (FS) using the same neural-
net heuristic, which calculates the learned heuristic for each
node that is inserted in FOCAL at the moment that it is in-
serted; and two other state-of-the-art bounded suboptimality
search algorithms: Weighted A* (WA*) and Dynamic Poten-
tial Search (DPS) (Gilon, Felner, and Stern 2016), which is
a bounded-suboptimal version of potential search.

The results show that purely heuristic search algorithms,
such as WA* and DPS, can solve only 68% and 80% of
problems, resp, FS and K-FS(1) can solve 96% of instances;
and FDS and K-FS(5) and K-FS(10) solve 100% of the in-
stances. Regarding the number of expansions, we observe
that FDS and K-FS(5) perform two orders of magnitude
fewer expansions than FS and K-FS(1) and four orders of
magnitude than WA* and DPS. Regarding the time spent in

w=1.5
Cov. Exp. Cost Time

WA* 68 2362299 112.21 1015.86
DPS 80 1753895 113.83 785.0
FS 96 31689 111.50 84.15
FDS 100 340 110.26 1.40
K-FS(1) 96 43464 111.50 80.37
K-FS(5) 100 523 103.64 0.81
K-FS(10) 100 1017 102.24 1.02

Table 1: Results on 24-puzzle

the search, we observe that K-FS(5) and K-FS(10) perform
slightly more expansions than FDS, and spend less time due
to the GPU acceleration. Note that FS and K-FS(1) select
nodes for expansion in the same order, but due to batched
computation, K-FS can perform more expansion spending
the same time. Regarding the best quality of solution, we
observe that the best solutions were obtained by K-FS(10).

Conclusions and Future Work
In this paper, we present two algorithms based on Focal
Search applicable to avoid large errors or plateaus on learned
heuristics in bounded suboptimal search, keeping the theo-
retical guarantees provided by Focal Search. On the exper-
imental side, we demonstrate the effectiveness of our algo-
rithms in the 24-puzzle domain using DeepCubeA, a very
effective inadmissible learned heuristic. We show that our
approach outperforms other bounded-suboptimal heuristic
search algorithms such as WA* and DPS by four orders of
magnitude and FS using the learned heuristic by two orders
of magnitude regarding the number of expansions. We hy-
pothesize that the success of our algorithms is because they
can explore different zones of the state space due to the di-
versity introduced by its expansion strategy in the case of
K-FS, or its evaluation function in the case of FDS. In future
work, we want to combine both algorithms, i.e., sort FOCAL
by the discrepancy (as FDS does), expanding the best K
nodes from FOCAL, which has the best discrepancy score
(as K-FS does). Another exciting line of research is to in-
clude a random type exploration as type-WA* does (Cohen,
Valenzano, and McIlraith 2021) and incorporate our expan-
sion strategy in the recent versions of EES (Fickert, Gu, and
Ruml 2022).
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