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Abstract

Sampling-based motion planning algorithms such as Rapidly-
exploring Random Trees (RRTs) have been used in robotic
applications for a long time. In this paper, we propose a
method that combines deep learning with RRT* method. We
use a neural network to learn a sample strategy for RRT*. We
evaluate Deep RRT* in a collection of 2D scenarios. The re-
sults demonstrate that our algorithm could find collision-free
paths efficiently and fast, and can be generalized to unseen
environments.

Introduction
Efficient and safe motion planning algorithms are crucial
for the applications of robots in life and industry. One of
the most developed motion planning for these requirements
is sampling-based motion planning, such as probabilistic
roadmap (PRM) (Kavraki et al. 1996), Rapidly-exploring
Random Trees (RRT) (LaValle and Kuffner Jr 2001), and
RRT* (Karaman and Frazzoli 2011). The RRT expands the
trees by randomly generating new samples. This sampling
strategy is fast and efficient to find a collision-free path for
the robot in a low-dimensional space. However, the number
of samples generated by this random strategy will grow fast
with the increasing sizes and dimensions of the space, and
the algorithms like RRT and RRT* will be computationally
expensive.

The idea to improve the sample generation strategy of
RRTs is well studied in motion planning research (Gammell,
Srinivasa, and Barfoot 2014; Islam et al. 2012). However,
most of these works are focusing on improving the quality
of the paths. The runtime of these methods is still quite high.

Recently, learning-based motion planning algorithms
have shown their promising ability to solve problems effi-
ciently. Some of these works try to replace the whole motion
planner (Qureshi et al. 2019; Huh, Isler, and Lee 2021) while
others try to improve some components of classical motion
planning algorithms. However, they usually require demon-
stration data from other motion planning algorithms (Wang
et al. 2020; Ariki and Narihira 2019). Thus, the quality of
the paths found by these algorithms is strongly dependent
on the algorithms used to generate examples.
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In this paper, we propose a deep learning-based RRT al-
gorithm, called Deep RRT*, that finds collision-free paths
with a small number of samples. Deep RRT* trains a model
that predicts the distribution of the expanded nodes position
while giving the current node position, the goal position, and
a latent representation of obstacle space. Our current experi-
ment results in a collection of 2D scenarios show the poten-
tial of Deep RRT*.

Problem Definition
Let S ⊆ Rn be the state space of a given problem, Sobs ⊊ S
be the obstacle state space, and Sfree := S\Sobs be the
free state space. Let Sinit ∈ Sfree be the initial state and
Sgoal ⊊ Sfree be the goal region. Let a collision-free path
τ be a continuous mapping in state space S such that τ :
[0, 1] → Sfree, where τ(0) = Sinit and τ(1) ∈ Sgoal. Let T
be the set of collision-free paths. Let c(·) be a cost function
of the path, the optimal motion planning problem is to find
a optimal path that has the minimum cost.

τ∗ = argminτ∈T c(τ) (1)

Deep RRT*
This section introduces our proposed method, Deep RRT*.
Instead of using a random sample strategy, our method trains
a model to “guide” the sampling strategy. Our model uses
a similar architecture to MPNet (Qureshi et al. 2019) that
contains two neural networks - the encoder network and the
policy network. The first part of our model, the encoder net-
work, embeds the obstacles state space Sobs that is repre-
sented by point clouds into an m-dimensional latent space
Z, where m ⊆ R. The second neural network is a policy
network. Given the current tree node state, the goal state,
and the latent space Z from the encoder, the policy network
predicts the distribution of the subsequent node. Then Deep
RRT* expands the tree by sampling a new node with the
predicted distribution.

Our model, both encoder network and policy network, is
trained by self-play. In each iteration, Deep RRT* finds N
successful paths from trees with a set of predefined state
spaces S, randomly generated initial states Sinit, and ran-
domly generated goal states Sgoal, where N ⊆ R+, and then
store these paths in a rollout buffer in each epoch. Then we
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Figure 1: The top row shows the results of RRT*. The bottom row shows the results of Deep RRT*. The blue points represent
obstacles. The red points represent the tree nodes. The yellow lines represent found paths. The green nodes are the initial states,
and the grey nodes are the goal states.

trained our model π with these data by optimizing the objec-
tive

minθπL = − 1

N

N∑
j

M−1∑
i

log π(Sj
i+1 | Sj

i , Sgoal, Sobs),

(2)
where θπ is the parameter of our model π, and M is the
number of nodes in a path.

Results
The model we proposed is implemented in PyTorch (Paszke
et al. 2019). We use RRT* implemented in Python as the
benchmark algorithm, and compare it with Deep RRT*. We
train and test Deep RRT* in the same 2D environments used
by MPNet. The 2D environment contains 110 different sce-
narios. We use 100 scenarios to train our model and keep
the remaining scenarios for testing. Each testing scenario
contains 2000 different initial and goal configurations. We
randomly selected 500 configurations of those. In our exper-
iments, the maximum number of nodes of the tree is set to
1000 for RRT*, and 300 for Deep RRT*. During the plan-
ning, once a node expanded is located in the goal region,
the path is returned. Otherwise, the problem is considered
unsolved.

Figure 1 shows four scenarios, each solved by RRT* (top
row) and Deep RRT* (bottom row). Table 1 presents the suc-
cess rate, search tree size and CPU-time comparison of Deep
RRT* against RRT* on the testing scenarios.

As Table 1 shows, Deep RRT* is more “sample efficient”
and faster than RRT*. The size of the search tree built by
Deep RRT* is only 37.16% of the size of the search tree
built by RRT*. The average time to find a path with Deep

Algorithm Succ. Rate Tree Size Time
RRT* 97.4% 199.87± 150.01 0.60± 0.72
Deep RRT* 90.1% 74.28± 126.93 0.36± 1.19

Table 1: Comparison with RRT*.

RRT* is 0.36 seconds, and the average time to find a path
with RRT* is 0.60 seconds.

The success rate of Deep RRT* is, however, reduced by
7.3 %. We find that in most of unsuccessful cases, when the
search tree is expanded close to the goal area, the new node
generated by Deep RRT* misses the goal area, and then it
generates samples randomly in the area close to the goal un-
til it reaches it or the maximum number of samples is ex-
ceeded. We believe that adding a weighted entropy loss to
the loss function, and reduce the weight of entropy loss dur-
ing the training may help.

Conclusion and Future Work
In this paper, we present, Deep RRT*, a method that com-
bines the deep learning method with sampling-based motion
planning. The neural network used in Deep RRT* contains
an encoder to embed the obstacle state space into a latent
space and a policy to predict the distribution for sampling
the next node while having the current node, and the goal
state.

Currently, we are working on the design of a heuristic
based mechanism to select the most promising node to ex-
pand in the search tree. In future, we plan to train and test
Deep RRT* with the select mechanism in more environ-
ments like complex 2D environments, 3D environments, and
rigid-body environments.
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