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Abstract

Multi-agent path finding (MAPF) represents a task of find-
ing non-colliding paths for agents via which they can nav-
igate from their initial positions to specified goal positions.
Contemporary optimal solving algorithms include dedicated
search-based methods, that solve the problem directly, and
compilation-based algorithms that reduce MAPF to a differ-
ent formalism for which an efficient solver exists. In this
paper, we enhance the existing Boolean satisfiability-based
(SAT) algorithm for MAPF via using sparse decision dia-
grams representing the set of candidate paths for each agent,
from which the target Boolean encoding is derived, consid-
ering more promising paths before the less promising ones
are taken into account. Suggested sparse diagrams lead to a
smaller target Boolean formulae that can be constructed and
solved faster while optimality guarantees of the approach are
kept. Specifically, considering the candidate paths sparsely
instead of considering them all makes the SAT-based ap-
proach more competitive for MAPF on large maps.

Introduction and Motivation
Multi-agent path planning in graphs (MAPF) represents a
fundamental problem in combinatorial motion planning in
robotics (Silver 2005; Ryan 2007; Standley 2010; Luna and
Bekris 2011; Yu and LaValle 2013). The task is to navigate
each agent from the set of agents A = {a1, a2, ..., ak} from
its initial position to a specified goal position. The environ-
ment is modeled as an undirected graph G = (V,E) where
vertices represent positions and agents move across edges
between vertices. Two requirements make the problem chal-
lenging: (1) the agents must not collide with each other, that
is they can never share a vertex nor can traverse an edge in
opposite directions, and (2) some objective such as the total
number of actions must be optimized (minimized).

We address the MAPF problem from the perspective of
compilation-based techniques. Compilation is one of the
most important techniques used across many computing
fields ranging from theory to practice. In the context of
problem solving, the compilation approach reduces an input
problem instance from its source formalism to a different,
usually well established, target formalism for which an effi-
cient solver exists. After obtaining a solution by the solver, it
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is interpreted back to the input formalism, which altogether
constitutes a reduction-solving-interpretation loop.

The target formalisms are often combinatorial optimiza-
tion frameworks like constraint programming / optimiza-
tion (CP) (Dechter 2003), mixed integer linear programming
(MILP) (Jünger et al. 2010; Rader 2010), Boolean satisfia-
bility (SAT) (Biere et al. 2009), satisfiability modulo the-
ories (SMT) (Barrett and Tinelli 2018), or answer set pro-
gramming (ASP) (Lifschitz 2019). Employing the advance-
ments in solvers for the target formalisms, often accumu-
lated for decades, in solving the input problem represents
the key benefit of problem solving via compilation. How-
ever, the way how the input instance is reduced to the target
formalism and presented to the solver has a great impact on
the efficiency of the reduction-solving-interpretation loop.

Currently, compilation-based optimal solvers for MAPF
represent a major alternative to search-based solvers, that
model and solve the problem directly, and often provide
more modular and versatile architecture than the search-
based solvers while keeping competitive performance. Con-
temporary compilation-based solvers for MAPF include
those based on CP (Gange, Harabor, and Stuckey 2019),
MILP (Lam et al. 2019), SAT/SMT (Surynek et al. 2016;
Surynek 2019), as well as ASP-based solvers (Erdem et al.
2013).

We focus in this paper on SAT-based solvers for MAPF.
Our contribution consists in a new technique for encoding
the MAPF instance as Boolean formulae via sparsification
of the set of candidate paths for each agent. The existing en-
coding introduces a Boolean decision variable for each ver-
tex and edge from a candidate path for a given agent. The
interpretation of a decision variable is that it is set to TRUE
if and only if the agent traverses the corresponding vertex or
edge at the corresponding time step.

The novel encoding is integrated into a modified SMT-
CBS (Surynek 2019), an optimal MAPF solving algorithm
that uses lazy compilation scheme. Since Boolean formu-
lae, to which the input MAPF instance is reduced in SMT-
CBS, are derived from the set of candidate paths, the effect
of sparsification of the set is twofold: (1) it leads to smaller
target Boolean formulae that can be constructed faster and
(2) the satisfiability of formulae can be decided by the SAT
solver faster, altogether improving the reduction-solving-
interpretation loop in SMT-CBS. At the same time, optimal-
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ity guarantees in the modified SMT-CBS are kept via main-
taining easily verifiable property of the sparse set of candi-
date paths.

Sparse Multi-valued Decision Diagrams
SMT-CBS expands the underlying graphG over time so that
it can represent all possible paths of certain length. These
path are represented using multi-valued decision diagrams
(MDD) (Andersen et al. 2007) (Figure 1). However, for in-
stances that takes place on large graphs, the size of MDDs
that is directly reflected in the size of the target Boolean for-
mula could be prohibitive.
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Figure 1: An example of MDDs representing all candidate
paths of cost 4 for agents a1 and a2.

Therefore we suggest to simplify MDDs and the formula
by reducing the number of paths that are represented. To do
this, we suggest to use sparse sets of candidate paths for each
agent that satisfy given sum-of-costs and makespan bounds.
That is, instead of considering all such paths as done in the
standard time expansion using MDDs, we consider only a
relevant subset of them. Similar concept called the pool of
paths has been used in the context of MILP-based compila-
tion for MAPF (Gange, Harabor, and Stuckey 2019) which
however does not explicitly focus on sparsification.

We integrated the sparse paths set reasoning into the
SMT-CBS framework, designing a new algorithm we called
Sparse-SMT-CBS. Sparse-SMT-CBS uses the identical
sum-of-costs and makespan bounds increasing scheme to
find the optimum as SMT-CBS at the high-level. Each itera-
tion at the high-level resolves a question whether there exists
a solution to the input MAPF such that it fits in the current
sum-of-costs SoC and makespan µ bounds. This question
is compiled as a series of Boolean formulae and consulted
with the SAT solver. Conflict elimination is encoded lazily
into the formulae, starting with no conflict elimination con-
straint followed by refinements as conflicts are being discov-
ered (Clarke 2003).

The low-level in Sparse-SMT-CBS is different from SMT-
CBS. In both algorithms, we try to find a non-conflicting set
of paths satisfying SoC and µ, but the set of candidate paths

from which SMT-CBS selects is fixed in advance in MDD,
while Spare-SMT-CBS starts with a minimal set of candi-
date paths and each time a new conflict is discovered the set
of candidate paths is extended to reflect the new conflict. To
keep soundness and optimality of the algorithm, the sparse
set of candidate paths must be selected according to the fol-
lowing conditions.

Definition 1 (path feasibility). Let C be a set of conflicts
of the form (ai, v, t) forbidding an agent ai ∈ A to re-
side in v ∈ V at time step t. We say a path path(ai) =
[p0, p1, ..., pm] for agent ai to be feasible with respect to C
if and only if (ai, pt, t) /∈ C for ∀t ∈ {0, 1, ...,m}.

In other words, a feasible path avoids all conflicts from
C. The sparse set of paths for agent ai denoted Π(ai) with
respect to a set of conflicts C and makespan µ must satisfy
the following property:

• (P1) Π(ai) contains at least one feasible path with re-
spect to each subset of conflicts C ′ ⊆ C if such path
exists.

(P1) ensures that after discovering a new conflict at least
one new path avoiding the new conflict for each possible
combination of previous conflicts is added to Π provided
that such path exists for given makespan bound µ.

We extend the usage of MDDs on sparse sets of candidate
path and denote them as sparse MDDs (SMDDs) (Figure 2).
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Figure 2: An example of sparse MDDs (SMDDs) for agents
a1 and a2. The first iteration yields a conflict in v5 at
timestep 2 between the agents which can be avoided via
newly represented paths in the next iteration.

Conclusion
According to our experiments on a number of benchmarks,
the new algorithm called Sparse-SMT-CBS performs sig-
nificantly better than SMT-CBS especially on MAPFs with
large graphs and outperforms the basic search-based CBS.

Another important advantage of sparsification is that it
provides a room for integrating domain specific heuristics
via giving a preference to some paths being selected into the
set of candidate paths for an agent.
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Jünger, M.; Liebling, T. M.; Naddef, D.; Nemhauser, G. L.;
Pulleyblank, W. R.; Reinelt, G.; Rinaldi, G.; and Wolsey,
L. A., eds. 2010. 50 Years of Integer Programming
1958-2008 - From the Early Years to the State-of-the-Art.
Springer.
Lam, E.; Bodic, P. L.; Harabor, D. D.; and Stuckey, P. J.
2019. Branch-and-Cut-and-Price for Multi-Agent Pathfind-
ing. In Kraus, S., ed., Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, 1289–1296.
ijcai.org.
Lifschitz, V. 2019. Answer Set Programming. Springer.
Luna, R.; and Bekris, K. E. 2011. Push and Swap: Fast Co-
operative Path-Finding with Completeness Guarantees. In
Walsh, T., ed., IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, 294–300. IJCAI/AAAI.
Rader, D. 2010. Deterministic Operations Research: Mod-
els and Methods in Linear Optimization. Wiley. ISBN
9780470484517.

Ryan, M. 2007. Graph Decomposition for Efficient Multi-
Robot Path Planning. In Veloso, M. M., ed., IJCAI 2007,
Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, January 6-12,
2007, 2003–2008.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the First Artificial Intelligence and Interactive Digital En-
tertainment Conference, 117–122. AAAI Press.
Standley, T. S. 2010. Finding Optimal Solutions to Cooper-
ative Pathfinding Problems. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2010. AAAI Press.
Surynek, P. 2019. Unifying Search-based and Compilation-
based Approaches to Multi-agent Path Finding through Sat-
isfiability Modulo Theories. In Kraus, S., ed., Proceedings
of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019, 1177–1183. ijcai.org.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
An Empirical Comparison of the Hardness of Multi-Agent
Path Finding under the Makespan and the Sum of Costs Ob-
jectives. In Proceedings of the Ninth Annual Symposium on
Combinatorial Search, SOCS 2016, 145–147. AAAI Press.
Yu, J.; and LaValle, S. M. 2013. Planning optimal paths
for multiple robots on graphs. In 2013 IEEE International
Conference on Robotics and Automation, 2013, 3612–3617.
IEEE.

319


