
Sampling from Pre-Images to Learn Heuristic Functions for Classical Planning
(Extended Abstract)

Stefan O’Toole1, Miquel Ramirez2, Nir Lipovetzky 1, Adrian R. Pearce 1

1 Computing and Information Systems, University of Melbourne, Australia
2 Electrical and Electronic Engineering, University of Melbourne, Australia

stefan@student.unimelb.edu.au, {miquel.ramirez, nir.lipovetzky, adrianrp}@unimelb.edu.au

Abstract

We introduce a new algorithm, Regression based Supervised
Learning (RSL), for learning per instance Neural Network
(NN) defined heuristic functions for classical planning prob-
lems. RSL uses regression to select relevant sets of states at
a range of different distances from the goal. RSL then for-
mulates a Supervised Learning problem to obtain the param-
eters that define the NN heuristic, using the selected states
labeled with exact or estimated distances to goal states. Our
experimental study shows that RSL outperforms, in terms of
coverage, previous classical planning NN heuristics functions
while requiring a fraction of the training time.

Introduction
In this work, we introduce the Regression based Supervised
Learning (RSL) algorithm in order to learn per instance NN
defined heuristic functions. Like other methods (Ferber et al.
2021; Yu, Kuroiwa, and Fukunaga 2020) do, RSL selects
a set of regressions, trajectories of sets of states, or pre-
images, found via the application of well-known and ef-
ficient pre-imaging operators (Rintanen 2008) that rely on
symbolic action descriptions. These trajectories found along
a given regression, always start from the set of goal states of
an instance, and then training states are sampled from each
set along the trajectory. Our method takes many samples
from each pre-image found in a regression, instead of per-
forming many trajectories or longer regressions to increase
the number of training states for the NN, using the observed
goal distances for each pre-image to label the sampled states.

Regression Based Supervised Learning
Given a planning problem, which we consider using
the STRIPS formulation Π = ⟨F,O, I,G⟩ (Fikes and
Nilsson 1971), RSL produces a training set D =
{(s1, h1), . . . (sN , hN )}which is a set of states s ∈ S paired
with goal distance estimates h. To produce D RSL performs
Nr rollouts, each starting at the goal G and applying L times
the classical planning regression operator. Each rollout from
G is a sequence of actions πj = (aji )

L−1
i=0 , for j = 1, . . . , Nr.

Each πj produces a sequence of pre-images xj
0, x

j
1, . . . , x

j
L,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1: Overview of the RSL Algorithm
Input: Π
Parameter: Pr, L,Nr, Nt, µ
Output: hRSL

1: R ← REGRESSION(Π, L,Nr, µ)
2: Ts ← SAMPLE STATES(R, Pr, Nt)
3: D ← LABEL(R, T∫ )
4: hRSL← SUPERVISED LEARNING(D)

where xj
0 = G and xj

i ⊆ F . The sequence of pre-images
denotes a sequence of sets of statesRj = Xj

0 , X
j
1 , . . . , X

j
L,

where Xj
i = {s | xj

i ⊆ s, s ∈ S}. By the definition of the
regression operator, Xj

i−1 corresponds with the pre-image,
conditioned on aji−1, of Xj

i . Therefore any state within Xj
i

can be reached from Xj
i−1 by applying action aji−1. It fol-

lows that any state within Xj
i can reach Xj

0 in at most i
transitions. Using this observation, RSL labels each state s
within its training set of states, Ts, with

d(s) = min(i | s ∈ Xj
i , j ∈ {1, . . . , Nr}) (1)

that is, the smallest goal distance estimate of any of the state
sets visited by the regressions which s is also a member of.

Algorithm 1, provides an overview of RSL. The hyper-
parameters of RSL are the length of each regression L, the
number of regressions to perform Nr, the number of train-
ing states to use Nt, the percentage of training states that
are randomly sampled from the entire state space Pr, and a
function that maps state regression trajectories into novelty
levels µ. RSL has three distinct steps, 1: extracting sets of
state sets, R =

⋃Nr

j=1Rj , through performing regressions
from the goal set (line 1), 2: sampling training states Ts and
labeling them with goal distance estimates using (1) (lines
2-3), and 3: training the NN heuristic function (line 4).

Extracting State Sets through Regression
As previously explained RSL performs Nr regressions to ex-
tract the set of state sets R over which the training set D
is defined. At step i of a rollout with a pre-image xj

i cor-
responding to the set of states Xj

i , as previously defined,
the actions we consider valid for pre-imaging Xj

i with are

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

308



a ∈ ν(xj
i ), defined as follows

ν(xj
i ) = {a | a ∈ REACHABLE(O, I),

xj
i ∩ e-Del(a) = ∅,

xj
i ∩ Del(a) = ∅, xj

i ∩ Add(a) ̸= ∅}

(2)

and e-Del(a) is

e-Del(a) = { q | q ∈ F \Add(a),
∃p ∈ Pre(a) : MUTEX(p, q)}. (3)

REACHABLE(O, I) maps the operator set O and initial state
I to the set of actions with reachable preconditions in the
delete relaxation of Π (Bonet and Geffner 2001) given the
initial state of the progression state-transition model I . The
MUTEX(p, q) function in (3) maps the pair of atoms (p, q)
to true if p and q are mutually exclusive, that is, it is im-
possible for p and q to both be true in any state s ∈ S that
can be reached from I . Note that the Ferber et al. (2021) al-
gorithms that use regression also filter the valid actions in
the same way through using the mutex groups and applica-
ble operations found by the Fast Downward (FD) (Helmert
2006) Translator.

The baseline option for performing the rollout, and the
method used by Ferber et al. (2021), is to randomly select
actions a for which applying the regression operator is valid.
In addition to testing RSL using random action selection we
instantiate a version of RSL we name Novelty guided Re-
gression based Learning (N-RSL) that aims to increase the
structural diversity of operators selected in its regression.
N-RSL does this by preferring actions with pre-conditions
which contain atoms that are not specified in the goal G and
are not a member of the pre-condition set of any of the ac-
tions executed in the trajectory up until that point.

Sampling and Labeling Training Data
The training data for RSL is sampled from the sets of states
R. States are sampled from each set Xj

i ∈ R, and sampled
states that contain mutex atom pairs (p, q) are modified by
removing either the p or q atom from the state. Note that if
a sampled state from the set Xj

i has a mutex pair (p, q) and
p ∈ xj

i , q will be removed from the state, that is, an atom that
is a member of the partial state xj

i that a state is sampled
from will never be removed from the state. As previously
described, the labelled heuristic value for a sampled state is
given by d(s), which returns the distance of the closest state
set inR to the goal according to the regression.

Some domains benefited from adding randomly sampled
states from S. The random states have mutexes enforced us-
ing the same method as above, and are also labeled with
d(s). In the case that the state is not a member of any of
the sets of states inR, we define d(s) to equal L+ 1.

Experimental Study
Our benchmark set of domains, instances and initial states is
the “Hard Task” set as introduced by Ferber et al. (2021). As
we are learning per instance heuristics, a unique heuristic is

NN defined heuristics
Budget 6 minutes 600 minutes* 6 minutes

hRSL hN-RSL hBoot hAVI hTSL hFF LAMA
blocks 36.4 68.0 0.0 0.0 0.0 46.4 96.0
depot 14.6 12.6 8.3 12.9 35.4 9.4 69.4
grid 67.2 69.0 87.8 70.5 60.2 31.0 100
npuzzle 0.0 0.0 0.0 0.0 0.0 5.8 12.8
pipesworld 33.8 33.1 23.4 8.0 48.7 20.4 68.0
rovers 0.1 0.1 2.8 6.5 1.5 8.3 100
scanalyzer 100 100 3.3 60.7 60.0 83.3 100
storage 1.8 0.2 27.2 15.8 0.0 9.2 9.0
transport 0.0 8.8 0.0 2.4 0.0 0.0 59.6
visitall 100 100 28.0 0.0 0.0 40.0 100
Average 35.4 39.2 18.1 17.7 20.6 25.4 71.5
Ave. Train
(hours) 6.88 6.88 112* -

Table 1: Comparison of the coverage of hRSL with other
Neural Network defined heuristics functions introduced by
Ferber et al. (2021) hBoot, hAVI, as well as the hTSL intro-
duced by Ferber et al. (2020). The table also shows the cov-
erage of hff(Hoffmann and Nebel 2001) and LAMA (Richter
and Westphal 2010) (run on same hardware as RSL). The
bold numbers indicate the highest coverage among the Neu-
ral Network methods. *Note that the baseline learning meth-
ods that use a 600 minute planning budget are the values as
reported by Ferber et al. (2021). According to standard sin-
gle thread CPU benchmarks, our vCPU can be 20% faster.

trained for each problem instance and then evaluated over a
set of 50 different initial states.

We evaluate hRSL heuristic using the same method as Fer-
ber et al. (2021). Each heuristic is evaluated over 50 differ-
ent initial states guiding GBFS implemented in FD (Helmert
2006). The coverage of a planner is defined as the percent of
initial states for which a solution path is found within the
given planning budget. Ferber et al. (2021) report observing
that in general the coverage superiority between the different
NN heuristics tested did not vary over time. That is, the plan-
ning time used and the relative coverage superiority between
the algorithms were not correlated. Given this observation
and constraints on our available compute resources we re-
duce the overall 10 hour planning time-limit that Ferber et
al. used by 99% down to just 6 minutes, and compare with
the NN defined heuristic baseline algorithms results as pro-
vided by Ferber et al. (2021) which use the 10 hour planning
time-limit.

Table 1 shows a comparison of existing methods with re-
spect to RSL and N-RSL, using the best performing configu-
ration from a hyper-parameter grid search. The first notable
difference is the average training times used by each algo-
rithm. hRSL uses around 6% of the training CPU time used
by all the other per-instance NN defined heuristics func-
tions. The overall average coverage over the benchmark set
shows that hRSL and hN-RSL outperform the other NN defined
heuristic functions and the model-based heuristic hFF. How-
ever, the other model-based method LAMA clearly dom-
inates all other methods. While hN-RSL has better average
coverage than hRSL the difference is small with a 3.8% aver-
age improvement.

309



References
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1): 5–33.
Ferber, P.; Geiber, F.; Trevizan, F.; Helmert, M.; and Hoff-
mann, J. 2021. Neural Network Heuristic Functions for
Classical Planning: Reinforcement Learning and Compari-
son to Other Methods. In 2nd PRL Workshop, International
Conference on Automated Planning and Scheduling.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural net-
work heuristics for classical planning: A study of hyperpa-
rameter space. In European Conference on Artificial Intelli-
gence, 2346–2353.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189–208.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research, 14: 253–302.
Richter, S.; and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research, 39: 127–177.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In European Conference on Artificial In-
telligence, 568–572.
Yu, L.; Kuroiwa, R.; and Fukunaga, A. 2020. Learning
Search-Space Specific Heuristics Using Neural Network.
12th HSDIP Workshop, International Conference on Auto-
mated Planning and Scheduling, 1–8.

310


