
An Online Approach for Multi-Agent Path Finding Under Movement Uncertainty
(Extended Abstract)

Elad Levy, Guy Shani, Roni Stern,
Software and Information Systems Engineering, Ben Gurion University of the Negev, Israel

elad.levy2@gmail.com,shanigu@bgu.ac.il,sternron@bgu.ac.il

Introduction
The multi agent path finding (MAPF) problem deals with a
group of agents in a discrete environment, where each agent
aims to reach a given goal location without colliding with
the other agents (Stern et al. 2019). MAPF has many real
world applications, such as robots operating in a logistics
center (Wurman, D’Andrea, and Mountz 2008; Salzman and
Stern 2020), airport towing (Morris et al. 2016), autonomous
vehicles, robotics (Veloso et al. 2015), and digital entertain-
ment (Ma et al. 2017). Classical MAPF research deals fo-
cused on deterministic domains, where there is only a single
possible effect for each action. However, real-world prob-
lems, e.g., in robotic scenarios, often exhibit stochastic be-
haviors. For example, the wheels of a robot attempting to
move forward may slip, causing it to move sideways, or
remain in place. Often, one can define a probability distri-
bution over the possible outcomes of an action, defining a
stochastic problem that can be modeled as a Markov deci-
sion process (MDP). Previous research on MAPF has con-
sidered stochastic settings, but limited to cases where the
agent can either move to its intended direction or remain in
place (Wagner and Choset 2017; Atzmon et al. 2020). In
such stochastic settings, the set of locations that an agent
may reach when executing a plan still forms a path in the en-
vironment. Hence, classical MAPF algorithms that compute
a sequence of actions may still provide a viable solution in
these cases. Indeed, most existing work on stochastic MAPF
build on algorithms for classical (deterministic) MAPF.

We focus on a more general type of stochastic MAPF
problem, where agents move in directions that differ from
the intended direction with some probability. This seem-
ingly minor generalization makes the problem considerably
harder, as a solution now must specify a policy for each
agent, i.e., a mapping from any position the agent may reach
to an appropriate action. As a result, standard approaches
to solve classical MAPF such as A*-based solvers (Stand-
ley 2010; Wagner and Choset 2011, 2017) or CBS (Sharon
et al. 2015) do not transfer easily. Our contributions include
formalizing the problem of stochastic MAPF, proposing an
online approach to solve it, and comparing it experimentally
to offline MDP-based solutions.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Stochastic MAPF
A stochastic MAPF problem is a tuple ⟨G,n, S, T, P,C⟩
where G = (V,E) is a graph of possible locations; n is
the number of agents; S = (s0, . . . , sn) is the initial loca-
tions; T = (t0, . . . , tn) is the target locations; P (v, a, v′)
is the single-agent stochastic transition function specifying
the probability that an agent reaches v′ when doing action a
when at state v; and C(v, a) is the single-agent cost function
specifying the cost of applying action a at position v. The
joint state of the system v = ⟨v1, ..., vn⟩ comprises the cur-
rent location of each agent. The joint action a = ⟨a1, ..., an⟩
specifies an action for each agent. Transitions and costs are
independent, i.e., the probability of reaching a joint state v’
when doing a joint action a at state v is the product of its
constituent single-agent transition probabilities and the cost
of a joint action is the sum of its constituent single-agent
costs. Collisions are strictly forbidden, that is, a joint action
a cannot be executed at a state v if there is a non-zero prob-
ability to reach a state ⟨v′1, ..., v′n⟩ where there exist i ̸= j,
such that vi = vj . A solution to a stochastic MAPF problem
is a joint policy assigning for each joint state a joint action.
A policy is valid if it never assigns a forbidden joint action
to any joint state. A policy is optimal if it minimizes the ex-
pected sum of costs for all agents reaching their goals.

A stochastic MAPF problem can be modeled as an MDP
over the joint state and action spaces. Therefore, it can be
solved by any MDP solution method, such as Value Iteration
(VI) and Real-Time Dynamic Programming (RTDP) (Barto,
Bradtke, and Singh 1995). While this algorithms work well
for the single-agent case, they struggle when faced with the
large search space and branching of stochastic MAPF. In
practice, even scaling to 3 agents often proves to be pro-
hibitively difficult.

Online Conflict Detection and Resolution
We propose the following online approach to solve the
stochastic MAPF problem. Initially, we compute offline a
single agent policy for each agent independently, ignoring
potential collisions. The agents then begin to execute their
policies until either all agents reached their goals or some
agents come within a predefined distance of each other and
their current policies may lead to a collision.

Once a potential collision between a set of agents was de-
tected, we resolve it locally, as follows. First, we identify the

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

299



Method N E[C] Tof Ton S R

Random-64-64-10
Offline 2 198.3 ± 2.4 116.0 < 0.1 25 100.0
Online 2 199.8 ± 2.2 10.3 < 0.1 25 100.0
Offline 3 296.1 ± 5.2 180.0 1.8 25 77.8
Online 3 289.0 ± 4.9 15.3 0.1 25 100.0

Room-32-32-4
Offline 2 84.1 ± 3.5 21.0 < 0.1 25 86.9
Online 2 85.1 ± 3.3 1.2 < 0.1 25 100.0
Offline 3 120.9 ± 6.3 180 0.3 6 62.0
Online 3 124.6 ± 3.8 1.7 0.1 6 100.0

Table 1: Results on 64x64 and 32x32 grids, comparing of-
fline RTDP and our online method.

conflict area, which is the minimal region that contains all
the possibly colliding agents. Then, we define a joint MDP
including only the conflicting agent over the conflict area.
The reward function for this joint MDP assigns reward to
joint states in which the agent exist the conflict area. To steer
agents towards their goals, we provider higher reward the
agents for exiting the area in the direction they originally in-
tended to follow. Our algorithm solves this joint MDP and
the agents follow the resulting policy until either they exit
the conflict area or a new potential collision is detected. This
may occur because another agent reached the vicinity of the
conflict area. In that case, we define a new area, as above,
and the process is repeated.

Empirical Evaluation
We conducted a set of experiments to compare offline meth-
ods, where a complete policy is computed prior to execution,
and the online method we proposed. The offline methods we
considered are VI and RTDP over the joint MDP described
in Section . In our experiments VI was not able to solve any
problems with more than a single agent. Thus, we only re-
port on the results of the offline RTDP. RTDP was run until it
guaranteed convergence to the optimal policy with an error
of less than 0.1, or a timeout of 180 seconds was reached.

To conduct our experiments, we used the standard 4-
neighborhood grid classical MAPF benchmark (Stern et al.
2019). This benchmark contains a set of maps (grids), and
each map has 25 different scenarios, specifying the start and
goal positions of the agents. In all the experiments below
we use all 25 scenarios, and run each method 30 times. We
report the amount of scenarios where a method was able
to achieve the goal in all 30 runs. To introduce uncertainty
we assumed that in most grid locations, the agent moves in
the intended direction, stays in place, moves clockwise, or
counter-clockwise, with probabilities 0.7, 0.7, 0.7, and 0.1,
respectively. The other grid locations are different: the prob-
ability to stay in place is increased to 0.2 and the probability
to move towards the intended direction is decreased accord-
ingly to 0.6. We added these special locations in the middle
of the shortest paths between start and goal locations of all
agents, and set their size to to min(l/8, 3), where l is the
length of the shortest path that is being patched.

Table 1 shows results of the offline RTDP (denoted as

N E[C] Tof Ton MG CR S

Random-64-64-10
4 382.6 ± 5.7 14.6 0.1 2 4.6 22
6 608.6 ± 8.0 22.0 0.2 2 9.0 16
8 741.6 ± 10.7 26.7 0.3 2 2.9 7

10 730.0 ± 8.6 35.7 0.4 2 8.2 3

ost003d
4 754.7 ± 7.8 569.4 0.1 2 4.0 25
6 1185.0 ± 9.6 905.1 0.3 3 6.2 23
8 1605.8 ± 11.2 1215.1 0.4 2 9.2 20

10 2039.9 ± 13.1 1509.6 0.6 2 10.0 13
12 2381.3 ± 12.8 1771.4 2.4 3 15.5 4

Table 2: Results for the online methods on larger problems.

“Offline”) and our online method, on two types of maps:
a 64x64 grid with 10% randomly blocked cells and a 32x32
grid structured as a grid of 4x4 rooms. The table columns
show the number of agents (N ), the estimated expected cost
and its standard error (E[C]), the offline and online compu-
tation time (Tof and Ton), the number of scenarios solved
out of the available 25 scenarios (S), and the portion of
episodes where the agents reached the goals in these sce-
narios (R).

As expected, the offline RTDP failed to scale, and could
not converge to a policy that always reaches the goal (R
score lower than 100). In contrast, our online solves these
problems easily. Note that in one case — 64x64 grid with
two agents — both online and offline solvers found a policy
that always reaches the goal. Yet, the difference in expected
cost was only slightly better for the offline RTDP. This sug-
gests that while our online method is not provably optimal,
it yields efficient policies.

Table 2 shows the results of our online method larger
problems, where the offline method could not solve any in-
stance. Here we also included ost003d, a large 194× 194
game grid map. Column S shows the number of scenarios
our agent managed to reach the goal in at least 1 episode.
Column MG is the maximal encountered group of agents
in a conflict area and column CR is the average number of
conflict resolutions. Our results show we are able to solve
even some problems with 10 and 12 agents, suggesting the
potential scalability of our online method.

Conclusion and Future Work
We suggested an online approach for solving MAPF prob-
lems with stochastic effects. In our approach, conflicts are
detected during execution (online) and resolved by a fo-
cused replanning of the conflicting agent over the conflicting
region. We implemented this online approach and demon-
strated its benefit over of an offline approach. There are
much room for future work. First, our single agent policies
are an interesting case where methods such as RTDP that
focus on states visited using an optimal policy is a misfit.
It would be interesting to develop faster methods for such
problems, e.g., by identifying possible conflict areas and
forcing RTDP to explore their vicinity. This would allow us
to compute single agent policies faster.

300



Acknowledgements
This work has been partially funded by ISF grant #210/17
and NSF-BSF grant to Roni Stern.

References
Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020. Probabilistic Robust Multi-Agent Path
Finding. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 29–37.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence, 72(1): 81–138.
Ma, H.; Yang, J.; Cohen, L.; Kumar, T. K. S.; and Koenig, S.
2017. Feasibility Study: Moving Non-Homogeneous Teams
in Congested Video Game Environments. In Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 270–272.
Morris, R.; Pasareanu, C. S.; Luckow, K. S.; Malik, W.; Ma,
H.; Kumar, T. S.; and Koenig, S. 2016. Planning, Scheduling
and Monitoring for Airport Surface Operations. In AAAI
Workshop: Planning for Hybrid Systems.
Salzman, O.; and Stern, R. Z. 2020. Research challenges and
opportunities in multi-agent path finding and multi-agent
pickup and delivery problems blue sky ideas track. In Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 1711–1715.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI Conference on Artificial In-
telligence, 173–178.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. Symposium on Com-
binatorial Search (SoCS), 151–158.
Veloso, M. M.; Biswas, J.; Coltin, B.; and Rosenthal, S.
2015. CoBots: Robust Symbiotic Autonomous Mobile Ser-
vice Robots. In International Joint Conference on Artificial
Intelligence (IJCAI).
Wagner, G.; and Choset, H. 2011. M*: A complete mul-
tirobot path planning algorithm with performance bounds.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 3260–3267.
Wagner, G.; and Choset, H. 2017. Path Planning for Multiple
Agents under Uncertainty. In International Conference on
Automated Planning and Scheduling (ICAPS), 577–585.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI magazine, 29(1): 9–9.

301


