Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

A Jeep Crossing a Desert of Unknown Width (Extended Abstract)*

Richard E. Korf

Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095
korf@cs.ucla.edu

Abstract

The classic jeep problem concerns crossing a desert wider
than the range of the jeep, with the aid of preplaced fuel
caches. There has been a lot of work on this problem and
its variations, and the optimal strategy is well known, but
all previous work assumes that we know the width of the
desert. We consider the case where we don’t know the dis-
tance in advance. We evaluate a strategy by its competitive
ratio, which is the worst-case ratio of the cost of the strat-
egy, divided by the cost of an optimal solution had we known
the distance in advance. We show that no strategy with a
fixed sequence of caches can achieve a finite competitive ra-
tio. The optimal strategy is an iterative one that uses the op-
timal known-distance strategy to reach a sequence of target
distances, emptying all caches between iterations. One opti-
mal strategy doubles the cost of each successive iteration, and
achieves a competitive ratio of four. The full paper was pub-
lished in the American Mathematical Monthly.

Introduction

We have a jeep with a given fuel capacity, and a range it
can travel on a full load of fuel. This includes fuel in the
tank plus fuel cans in the jeep. Without loss of generality,
we assume that the jeep can carry one gallon of fuel, and
can travel one mile per gallon. We have unlimited fuel at the
start, and can cache unlimited fuel along the way. We want
to minimize the total fuel cost to travel a given distance.

In the one-way version of the problem, we just have to
cross the desert, while in the two-way version we have to
return to the start as well. We adopt the two-way version,
since for the unknown-distance case we always have to be
able to return to the start. It’s much easier to determine the
maximum distance we can go with a given integer amount
of fuel, than to determine the amount of fuel needed to go a
given integer distance.

Previous Work: The Known Distance Case

The one-way problem was first solved in (Fine 1947), and
the round-trip problem in (Phipps 1947), both in 1947. With
one gallon of fuel, we can go 1/2 mile and return. With
two gallons, we go 1/4 mile, cache 1/2 gallon, and return.

“This is an extended abstract version of (Korf 2022).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

297

Then we go 1/4 mile, pick up 1/4 gallon, go 1/2 mile fur-
ther and back, pick up the remaining 1/4 gallon, and return
to the start. With three gallons, we can go 1/6 + 1/4 +
1/2 = .91667 miles, with caches at 1/6 and 1/6 + 1/4
miles from the start. In general, with n gallons, we can go
1/2n+1/2(n — 1)+ --- 4+ 1/4 + 1/2 miles, with n — 1
caches, spaced at these distances from each other, except
for the last 1/2 mile. We never carry back more fuel than
needed to reach the previous cache or start, and every for-
ward trip starts with a full gallon of fuel. The amount of
fuel needed to go d miles and return is slightly less than
e2(d=1) ~ 7.389¢-1 gallons.

The Unknown Distance Case

To evaluate a strategy for the unknown distance case, we use
its competitive ratio. The competitive ratio of an algorithm
for this problem is the cost of reaching a given distance using
the algorithm, divided by the cost of an optimal solution for
that distance, had we known the distance in advance. The
worst-case competitive ratio is the maximum of this ratio
over all possible distances.

Using a Fixed Sequence of Caches

The simplest strategy stocks a fixed sequence of caches, until
we reach the goal. An optimal strategy never carries back
more fuel than necessary to reach the previous cache. If there
is enough fuel at the current cache to go forward with a full
load, we do so, and otherwise we go back to the start. We
show that for a given sequence of caches, this is an optimal
way to schedule the hops.

With caches 1/3 of a mile apart, the cost of going d miles
and returning is O(27%) gallons. With caches 1/4 of a mile
apart, this decreases to O(169) gallons, and for caches 1/5
of a mile apart it decreases to O(12.86%). In general, for
evenly spaced caches 1/k miles apart, the asymptotic cost
of reaching a given distance grows exponentially with the

k
distance, and the base of the exponent is <%) . This is al-

ways greater than the e? base for the optimal known-distance
strategy, and only approaches e? in the limit as k goes to in-
finity. This would require an infinite number of caches in
any finite distance, and an infinite amount of fuel. Since the
exponential growth rate of these strategies is greater than for



the optimal known-distance strategy, their competitive ratios
are unbounded as the goal distance increases.

For the unknown-distance case, given three adjacent
caches, the most efficient placement of the intermediate
cache is halfway between the other two. Thus, for any fixed
sequence of caches for the unknown-distance case, spac-
ing them evenly apart is the most efficient placement. When
combined with the result for evenly-spaced caches, this im-
plies that any fixed sequence of caches results in an un-
bounded competitive ratio.

This result was very surprising. When I began this work, I
was sure there was an optimal strategy with a fixed sequence
of caches, and set out to find it.

Iterative Strategies

If the sequence of caches is not fixed, then the only other op-
tion is an iterative strategy that chooses a sequence of target
distances, uses the optimal strategy for each target distance,
and empties all the caches between iterations. We want a
sequence of target distances that minimizes the worst-case
competitive ratio.

Computing the Optimal Competitive Ratio

The competitive ratio of a strategy for the unknown-distance
case is the total cost to find the goal divided by the optimal
cost to find it, had we known its distance in advance. The
goal is reached in the last iteration, but where it is found
in that iteration has little effect on the cost of the iteration.
The worst-case competitive ratio occurs when the goal is
found just past the range of the penultimate iteration. Thus
we compute the competitive ratio as the total cost of all it-
erations, including the last one, divided by the cost of the
penultimate iteration. The worst-case competitive ratio is the
maximum value of this ratio over all possible goal positions.

If we assume that the cost of each successive iteration is
a constant multiple m of the cost of the previous iteration,
then the optimal value of m is easy to compute. If the goal
is found on the ith iteration, then the cost of the penultimate
iteration is m*~1, the total costis 1 +m +m?2 + - - -m?, and
the competitive ratio is

1+m+m?+---+m 1
— = —+—F=++1+m
mt mt mt
1 1 1
=l+m+—+—S+ - +—
m m m

The worst-case competitive ratio is the infinite sum

1 1 m?2
I+m+—+—
m m

+ T m—1
To find the value of m that minimizes this expression, we
take its derivative:

d m? m2 —2m

dmm—1 (m—1)2
Setting this to zero and solving for m yields m = 2, which
doubles the cost of each successive iteration, and results in
a competitive ratio of 4. Here we assumed a constant multi-
plier for simplicity, but the full paper shows that no sequence
of multipliers can achieve a competitive ratio less than 4.

298

Cost Bounds for Iterative Deepening

This result is applicable to the problem of choosing cost
bounds for depth-first search algorithms, such as Iterative-
Deepening-A* (IDA*) (Korf 1985). In problems with many
unique cost bounds, IDA* can perform poorly due to only
a small number of new nodes being expanded in each iter-
ation. A number of algorithms have been designed to ad-
dress this issue by using larger increments for successive
cost bounds, starting with IDA_CR (Sarkar et al. 1991), and
including Iterative Budgeted Exponential Search(Helmert
et al. 2019) most recently. A common strategy is to choose
cost bounds to try to double the cost of each successive iter-
ation. Our analysis of the optimal strategy for the jeep prob-
lem provides a theoretical basis for this strategy.

Assume that every node has a unique cost, and that we
can predict how many nodes will be expanded for each cost
bound. Then we can choose cost bounds that double the size
of each successive iteration. In fact, we can more than dou-
ble the size of each iteration without exceeding a competi-
tive ratio of 4. The first iteration expands 1 node. The sec-
ond can expand 7 nodes, because in the worst case the goal
could be found with just 2 node expansions, the total cost
can’t exceed 1 + 7 = 8, and 8/2 = 4. The third iteration
can expand 24 nodes, because the total cost can’t exceed
1+ 7+ 24 = 32, the goal could be found after 8 node ex-
pansions and 32/8 = 4. In general, if z; is the number of
nodes expanded by the ith iteration, we can compute x,, as
zp_1+1)— Z?;ll x;. If we look at the ratios of the num-
ber of nodes expanded in a given iteration divided by the
number of nodes expanded in the previous iteration, we get
a sequence of multipliers that approach 2 from above in the
limit of an infinite number of iterations. The same thing hap-
pens with the target distances for the jeep problem, but it is
easier to explain in this discrete context.

References
Fine, N. 1947. The Jeep Problem. American Mathematical
Monthly, 54(1): 24-31.
Helmert, M.; Lattimore, T.; Lelis, L. H. S.; Orseau, L.;
and Sturtevant, N. R. 2019. Iterative Budgeted Exponen-
tial Search. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI-19), 1249-1257.
Macau.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence, 27(1).
Korf, R. E. 2022. A jeep crossing a desert of unknown width.
American Mathematical Monthly, 129(5): 435-444.
Phipps, C. 1947. The jeep problem: A more general solution.
American Mathematical Monthly, 54(8): 458—462.
Sarkar, U.; Chakrabarti, P.; Ghose, S.; and DeSarkar, S.
1991. Reducing reexpansions in iterative-deepening search
by controlling cutoff bounds. Artificial Intelligence, 50(2):
207-221.



