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Abstract

Planning with global state constraints is an extension of clas-
sical planning such that some properties of each state are de-
rived via a set of rules common to all states. This approach
is important for the application of planning techniques in ma-
nipulating cyber-physical systems, and has been shown to be
effective in practice. Urban Traffic Control (UTC) deals with
the control and management of traffic in urban regions, and
includes the optimisation of traffic signals configuration to
minimise traffic congestion and travel delays. In this paper,
we briefly introduce how to cast the UTC problem into the
formalism of planning with global state constraints, and we
perform a preliminary experimental evaluation considering
significant scenarios taken from the literature, and a new one
based on real-world data. The results show that the approach
is feasible, and the quality of generated solutions has been
confirmed in simulation using existing symbolic models.

Introduction and Background
Urban Traffic Control (UTC) is a wide research area that is
attracting a growing interest from the AI community given
the potential impacts in Smart Cities and the Green Deal
as promoted by the European Union. UTC aims at optimis-
ing traffic flows in urban areas by reducing travel time de-
lays and avoiding congestion of road links. One possibility,
considered here, is optimising traffic light configurations in
junctions to deal with either recurrent or unexpected traffic
conditions.

A traffic signal configuration of an junction is defined by a
sequence of green light phases, each with its specified dura-
tion, that, in consequence, imposes constraints on the traffic
movements. Traffic signal configurations operate in cycles,
i.e. the sequence of green phases is being repeated (until the
configuration changes).

To deal with the UTC problem, we employ planning
with Global State Constraints (GSC) (Ivankovic et al. 2014;
Haslum et al. 2018). This refers to an extension of classical
planning in which some properties of states are determined
by a set of rules that are common to all states. This formal-
ism is well suited for applying classical planning methods on
domains that involve a network of interconnected physical
systems (Ivankovic, Gordon, and Haslum 2019) controlled
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by discrete controllable variables (for example power net-
works). The crucial feature of such domains is that a sin-
gle discrete action (to change controllable variables), such
as opening or closing a switch somewhere, affects the en-
tire network in a way that is dependent on the global state of
the system. For a detailed formal definition of this approach
see (Ivankovic et al. 2014; Haslum et al. 2018). Here we
simply remark that we make a distinction between primary
variables – which have discrete and finite domains and func-
tion exactly as in classical planning; secondary variables –
which can be of any type and determine the properties that
depend on the secondary model (in this case a linear pro-
gram); and switched constraints, which is the mechanism
through which primary and secondary variables interact.

We make the following contributions: i) we extend the
GSC formalism to allow for a subset of secondary variables
to persist (to be used in computation of the secondary model
in the subsequent state). ii) we provide an encoding of the
UTC problem into the extended GSC framework. iii) we
consider several UTC reference scenarios taken from the
literature and new real-world scenarios for an experimen-
tal evaluation comparing the performance and quality of the
GSC approach w.r.t. the state-of-the-art approach based on
PDDL+ (Vallati et al. 2016; McCluskey and Vallati 2017).

Extending the GSC Framework
In previous work on planning with GSC, values of secondary
variables are computed in each state and discarded whenever
we move to the next state. In contrast, here we allow for val-
ues of a subset of secondary variables, which we refer to as
persistent secondary variables, from the preceding state to
be used in computation of the secondary model of the cur-
rent state. In the UTC domain, we use persistent secondary
variables to track the numbers of cars on the roads and the
numbers of cars passing some given points.

Proposed Approach
The traffic network is modelled as a directed graph, with
roads R as edges. Nodes represent either: i) junctions, I or
ii) points through which vehicles enter or exit the network
E . Each junction has a set of incoming and a set of outgoing
roads (denoted in(q) and out(q), respectively).

Primary variables are used to represent traffic light con-
figurations. To a junction q ∈ I we assign variable Lq ,
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whose domain is D(Lq) = [0 . . . Nq], where Nq is the num-
ber of possible configurations. Additionally, a Boolean vari-
able time is set to ⊤ by the action that advances time and ⊥
by every other action.

Secondary variables include total numbers of vehicles,
vehicle inflows and vehicle outflows over a cycle (repre-
sented by ni, fi,in and fi,out, for road i, respectively). Ad-
ditionally fij is a secondary variable representing the flow
from road i to road j over a cycle. Persistent secondary
variables include i) nij , which is the number of vehicles
currently in i intending to turn to j at the intersection and ii)
Ci, which tracks the number of vehicles that left i. The val-
ues of nij and Ci in the previous state are denoted nij,s−1

and Ci,s−1, respectively.
The following set of constraints is created for each road i.

We denote i’s origin with a and the destination with b.

ni =
∑

j∈out(b) nij ni ≤ ni,max

time → Ci = Ci,s−1 + fi,out ¬time → Ci = Ci,s−1

fi,in =
∑

k∈in(a) fki fi,out =
∑

j∈out(b) fij
fi,out ≤ fi,out,max fi,in ≤ fi,in,max

If a ∈ E , then we have an additional constraint fi,in = aenter,
where aenter is a constant representing the inflow into the
network at node a (over a cycle).

At each junction, we have a pair of switched constraints
corresponding to each pair of roads between which move-
ment of vehicles is possible:

time → nij = nij,s−1 + αijfi,in − fij
¬time → nij = nij,s−1

where αij is a constant denoting the portion of the cars on
road i intending to turn to j at b (this value is obtained from
historical data). We also have a set of constraints related to
traffic light configurations. At each junction q, for each con-
figuration l ∈ D(Lq), we need one switched constraint for
each incoming-outgoing road pair ij.

Lq = l → fij ≤ cijtij,l

where cij is the flow capacity and tij,l is the time within a
cycle during which the vehicles are allowed to move from i
to j. tij,l must respect the rules regarding green light phase
lengths, such as maximum and minimum green time. The
objective function (active in every state) is: max

∑
f∈F f

where F contains all flows fij .
We have two types of actions: i) actions that change con-

figurations of traffic lights and ii) an action that advances
time for the duration of one traffic light cycle.

The goals include decongestion goals where we need to
reduce the number of cars on a given set of roads below
the specified values and flow goals where we need to get a
specified number of vehicles to pass through a given road.

Experimental Evaluation
Benchmark set. We consider three different networks,
and 7 different scenarios, all of which were previously mod-
elled in PDDL+. Scenarios (A-B3) correspond to those used
in (Vallati et al. 2016). Scenario A focuses on a simple net-
work composed of three junctions, while scenarios B-B3 are

Scenario GSC solver PDDL+&UPMurphi
Scenario A 48 125
Scenario B 9,045 19,210
Scenario B1 2,295 1,550
Scenario B2 6,120 3,430
Scenario B3 810 950
Scenario C1 400 unsolved
Scenario C2 400* unsolved

Table 1: Quality of the plans, in terms of simulated time
(in seconds) required to reach the goal. * denotes that the
solution could not be validated by the PDDL+ simulator.

based on a large section of Manchester urban area, com-
posed by 11 junctions, and corresponding to a huge traffic
situation. Scenarios C1 and C2 consider a real heavily con-
gested situation from a corridor (1.3 kilometers long, with
6 junctions) situated in West Yorkshire, UK (see (Bhatna-
gar et al. 2022) for details). In scenarios A-B3, the goals are
to decongest a given set of links, while in scenarios C1 and
C2 goals are given in terms of vehicles that need to transit
through the corridor (flow goals).

Experimental environment. We used a modified version
of GSC planner (Haslum et al. 2018) with best-first search
and a domain-specific heuristic. The experiments were run
on a Intel x86 2.1Ghz laptop equipped with 32Gb of RAM.
We considered a timeout of 30 seconds (s typical timing un-
der which UTC has to operate), and a memory limit of 10
Gb. As a comparison, we consider the plans generated by
the approach presented by Vallati et al. (2016), consisting
of UPMurphi (Penna et al. 2009). We validated the execu-
tion of the GSC solutions against the corresponding PDDL+
domain model and problem instance. Although our formula-
tion of the problems is more abstract than the PDDL+ model,
we can, still convert our solutions to PDDL+ plans, and val-
idate them accordingly.

Results. Table 1 shows the plan quality, in terms of simu-
lated time needed to reach the goal, of the solutions gener-
ated by the GSC approach and the PDDL+ approach. Con-
sidering the ability to generate a solution, it is worth noting
that the GSC approach is capable of providing a solution for
all the considered scenarios, while UPMurphi fails to solve
the most challenging scenarios. The solution generated for
scenario C2 could not be validated though, as one of the
goals was not achieved. This is likely due to the level of ab-
straction of the proposed model.

Conclusion and Future Works
We presented an approach based on GSC planning to per-
form UTC via traffic signal optimisation. For future work
we plan to explore more accurate traffic modelling, and in-
vestigate the reasons the GSC solutions obtained with our
abstracted model fail to reach the goal when simulated in
PDDL+. Finally, we plan to interface the proposed approach
with traffic simulators, such as SUMO (Lopez et al. 2018), to
better understand the performance of the proposed approach.
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