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Abstract

Covering arrays (CAs) are discrete objects appearing in com-
binatorial design theory that find practical applications, most
prominently in software testing. The generation of optimized
CAs is a difficult combinatorial optimization problem being
subject to ongoing research. Previous studies have shown that
many different algorithmic approaches are best suited for dif-
ferent instances of CAs. In this extended abstract we describe
the IPO-MAXSAT algorithm, which adopts the prominent
IPO strategy for CA generation and uses MaxSAT solving
to optimize the occurring sub-problems.

Introduction

Covering arrays (CAs) are discrete objects appearing in
combinatorial design theory having specific coverage prop-
erties regarding the appearance of tuples in sub-arrays. In
recent years, CAs find application in a branch of automated
software testing called combinatorial testing (Kuhn, Kacker,
and Lei 2013). Thereby, the defining property of CAs, the
coverage of all ¢-tuples in subarrays, has shown to be par-
ticularly beneficial when CAs are used to derive test sets,
as these can reveal all interaction faults based on parameter-
value combinations of up to ¢ input parameters of the exam-
ined system, see (Kuhn et al. 2009).

A covering array denoted as CA(N;t, k,v) is defined as
an N x k matrix, with entries coming from a v-ary alphabet
and the property that each v-ary t-tuple appears at least once
as a row of each sub-array when selecting any ¢ columns of
the array, see also (Colbourn and Dinitz 2006). The 4 x 3
matrix in the top left corner of Figure 1 gives an example of
a CA(4;2,3,2): selecting any two of the three columns, we
find each binary 2-tuple appearing as a row. The parameter
t is also called the strength of a CA, and we will refer to
the number of rows N also as the size of a CA. The tuples
appearing in the rows of CAs are called t-way interactions.

Similar to other covering problems, such as set cover or
vertex cover, the typical problem arising with the notion of
CAs is that of finding CAs with a minimal number of rows
N. For given t, k and v this minimal number is called cover-
ing array number and denoted as CAN(, k, v). CAs achiev-
ing this bound are called optimal.
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Using SAT solving for CA generation, optimal arrays
were found for small instances. The problem of CA exis-
tence for given CA parameters was encoded into SAT (Hnich
et al. 2006; Banbara et al. 2010), such that a CA, if one ex-
ists, can be extracted from a model of the formula. In similar
fashion, the optimization problem of finding an optimal CA
was encoded into MaxSAT (Ansétegui et al. 2013). How-
ever, those approaches do not scale well.

In applications optimality is generally desired, but not
needed, as sufficiently small CAs that are derived in a rea-
sonable amount of time are satisfactory. In this context, sev-
eral algorithms and heuristic construction techniques have
been developed to generate CAs with a small number of
rows, see (Torres-Jimenez, Izquierdo-Marquez, and Avila-
George 2019) for a survey. Amongst these a very prominent
family of algorithms are the so called in-parameter-order
(IPO) algorithms (Lei and Tai 1998), which construct a CA
by incrementally appending columns and rows to a small ini-
tial CA. Various CA generation tools, such as e.g. (Yu et al.
2013) and (Wagner et al. 2020), implement such algorithms.

In this abstract we describe IPO-MAXSAT, to the best of
our knowledge, the first approach that combines MaxSAT
solving with the PO strategy for CA generation.

Introduction to In-Parameter-Order Algorithms

In (Lei and Tai 1998) the IPO strategy was introduced
and initially applied for the generation of CAs of strength
two. The concept was later generalized for CAs of arbitrary
strength in (Lei et al. 2007).

The characteristic of the IPO strategy (see Figure 1 for a
schematics) is that for the generation of a CA of strength ¢
with k columns over a v-ary alphabet, it starts with a v® x ¢
array covering all ¢-way interactions of the first ¢ columns.
This array is then extended iteratively with one column at a
time until a CA with & columns is attained. The addition of
a column is called the horizontal extension (highlighted in
blue in Figure 1). However, the addition of a column intro-
duces several new t-way interactions, of which some might
not be covered by the current array. Therefore, after each
horizontal extension a vertical extension step (the green part
in Figure 1) is performed, in which several rows can be
added in order to restore coverage of all t-way interactions.
Hence, after each vertical extension step we are guaranteed
that the current array is a CA. Interleaving horizontal exten-
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Figure 1: Schematics of the IPO strategy, for generating a
binary CA of strength ¢ = 2. Horizontal extension high-
lighted in blue, vertical extension highlighted in green and
star-values highlighted in red.

Algorithm 1: IPO Strategy

Input: ¢, k, v
CA «+ {0,...,v — 1} cross-product of first ¢ columns
forl+—t+1,...,kdo
HorizontalExtension(/)
if there are uncovered ¢-way interactions then
VerticalExtension(/)
end if
end for
assigns star-values arbitrarily
return CA

sions with vertical extensions the desired CA(N; ¢, k,v) is
generated. Any row that is added in a vertical extension step
is initialized with so called star-values (also called don’t-
care-values in the literature), which represent entries that
have not yet been assigned a value. These star-values are
generally not considered in the horizontal extension, but en-
able the vertical extension to merge missing ¢-way interac-
tions into existing rows. Should there remain star-values in
the final N X k array, they can be assigned arbitrarily before
the CA is returned. We give an overview of the IPO strategy
in form of a pseudo code in Algorithm 1.

IPO-MAXSAT

Our IPO-MAXSAT algorithm is a new realization of the
IPO strategy where a MaxSAT solver is utilized for hori-
zontal extension. For every such extension a MaxSAT for-
mula is given, i.e. we create a propositional formula in CNF,
composed of hard clauses and weighted soft clauses. The ar-
ray extension is then derived from the solution found by the
MaxSAT solver. For vertical extension we use the greedy al-
gorithm proposed in (Lei et al. 2007). In the following para-
graph we briefly describe the MaxSAT formula for horizon-
tal extension.

Horizontal extension In horizontal extension an existing
CA is extended with a new column. Referring to Figure 1,
we want to find values for the h; in the blue part, and, un-
like the PO algorithm, also for the star-values s; in the red
parts. We aim to choose an extension, where the maximal
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Figure 2: Experimental results for CA(N; 3, k, 2).

number of ¢-way interactions is covered amongst all possi-
ble assignments of values for these variables. Additionally,
we maximize the number of star-values in the resulting ar-
ray. The formula ® for horizontal extension consists of hard
clauses for validity of assignments, soft clauses with low pri-
ority for star-value maximization and soft clauses with high
priority for coverage maximization.

Preliminary Experiments

We conducted our initial experiments on a server with an
AMD EPYC 7502P processor with 32 cores at 2.5 GHz
base clock and 3.35 GHz boost clock and 128GB of RAM.
For each computation we used a time limit of 3 600 sec-
onds. In Figure 2 we present a comparison of [PO-MAXSAT
using the MaxSAT solver EvalMaxSAT (Avellaneda 2021)
with state-of-the-art algorithms and bounds. In particular,
we compare against: SIPO: an algorithm implementing the
IPO strategy and using Simulated Annealing to improve in-
termediate solutions in the horizontal extension steps (Wag-
ner, Kampel, and Simos 2021), FIPOG: a representative of
a state-of-the-art [PO algorithm for CA generation (Kleine
and Simos 2018), NIST Tables: the largest online repository
of CAs under (Covering Arrays Team, National Institute of
Standards and Technology (NIST) 2022), generated with the
[POG-F algorithm proposed in (Forbes et al. 2008) and CA
Tables: the currently best known upper bounds on covering
array numbers (CAN) as recorded under (Colbourn 2022).

Results and Future Work

Our experimental results show that IPO-MAXSAT can pro-
duce smaller CAs when compared to similar approaches, at
the cost of worse scalability. Further, our results show that
even when each individual extension step is optimal, the [PO
approach does not necessarily produce optimal CAs. We be-
lieve that our experiments nicely display both the possibili-
ties and limitations of the IPO strategy and we hope that our
findings can spark further research into more effective [IPO
algorithms.
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