
Focal Discrepancy Search for Learned Heuristics (Extended Abstract)

Matias Greco1, Pablo Araneda1, Jorge A. Baier1,2

1 Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Chile
2 Instituto Milenio Fundamentos de los Datos, Chile
{mogreco, pharaneda}@uc.cl, jabaier@ing.puc.cl

Abstract

Machine learning allows learning accurate, but inadmissible
heuristics for hard combinatorial puzzles like the 15-puzzle,
the 24-puzzle, and Rubik’s cube. In this paper, we investi-
gate how to exploit these learned heuristics in the context of
heuristic search with suboptimality guarantees. Specifically,
we study how Focal Search (FS), a well-known bounded-
suboptimal search algorithm can be modified to better ex-
ploit inadmissible learned heuristics. We propose to use Focal
Discrepancy Search (FDS) in the context of learned heuris-
tics, which uses a discrepancy function, instead of the learned
heuristic, to sort the focal list. In our empirical evaluation, we
evaluate FS and FDS using DeepCubeA, an effective learned
heuristic for the 15-puzzle. We show that FDS substantially
outperforms FS. This suggests that in some domains, when
a highly accurate heuristics is available, one should always
consider using discrepancies for better search.

Introduction
Recent work has shown that machine learning is an effec-
tive approach to learning heuristics estimators in different
scenarios, such as domain-independent automated planning
(Ferber, Helmert, and Hoffmann 2020; Shen, Trevizan, and
Thiébaux 2020) and combinatorial puzzles such as Rubik’s
cube and the sliding tile puzzle (Agostinelli et al. 2019; Ar-
faee, Zilles, and Holte 2011).

Given a learned heuristic function, a natural question to
ask is how to exploit such a learned heuristic within a
bounded-suboptimal search algorithm; i.e, a complete algo-
rithm that provides guarantees on the quality of the solution.
This question is challenging because learned heuristics, even
if highly accurate, cannot be assumed to be admissible.

Learned inadmissible heuristics can be exploited within
search in various ways (e.g. Thayer and Ruml 2011; Spies
et al. 2019; Aine et al. 2016). One way of exploiting an inad-
missible heuristic is with Focal Search (FS) (Pearl and Kim
1982), a bounded-suboptimal search algorithm which uses
two priority queues, one which is sorted just like A*’s open
using an admissible heuristics, and another—the FOCAL
list—which can be sorted according to any priority, in par-
ticular, an inadmissible learned heuristic. In FS’s main loop

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nodes are always extracted from FOCAL while the open list
is used to provide the suboptimality guarantee.

Spies et al. (2019) proposed to use the learned heuristic
to sort FOCAL. Araneda, Greco, and Baier (2021) proposed
an approach to exploit learned policies, rather than a heuris-
tic, in the context of FS. They show that an effective way to
incorporate policies in FS is by exploiting the notion of dis-
crepancy (Harvey and Ginsberg 1995), which given a state-
action sequence s0a0s1a1 . . . sn counts the number of times
ai would have not been chosen by the learned policy at state
si. Their work assumed no learned heuristic are available.

In this paper, strongly inspired by the work of Araneda,
Greco, and Baier (2021), we propose to use Focal Discrep-
ancy Search (FDS) in the context of bounded-suboptimal
search with learned heuristics, which sorts FOCAL using a
discrepancy score computed from the learned heuristic.

We evaluate our approach using the extremely effec-
tive (but inadmissible) learned heuristic of DeepCubeA
(Agostinelli et al. 2019) for the 15-Puzzle. Our results show
that the straightforward way of incorporating a heuristic into
FS, that is, using it to sort the FOCAL list (as done by Spies
et al. 2019) is not the best performing one and FDS, expands
fewer nodes and returns better solutions.

Focal Discrepancy Search for Learned
Heuristics

A natural way of using a learned heuristic hnn in FS is to
sort FOCAL by hnn, as Spies et al. (2019) propose. Focal
Discrepancy Search (FDS), instead, is a version of FS that
sorts FOCAL by the discrepancy associated with the path
of each state. More formally, if s is a state in FOCAL, at
any point during the execution of FS, its priority is given by
disc(path(s)). FDS has been proposed recently in the con-
text of learned policies (Araneda, Greco, and Baier 2021), in
which the notion of discrepancy is not defined in terms of a
heuristic but rather in terms of a policy.

Given a heuristic h, a discrepancy (Harvey and Gins-
berg 1995) occurs when an algorithm chooses to descend
to a child, which is not the one with minimum h-value
among its siblings. Formally, the discrepancy of a path σ =

s1s2 . . . sn, denoted by disc(σ)h, is
∑n−1

i=1 disc(si, si+1),
where disc(s, t) is equal to 0 if h(t) = mins′∈Succ(s) h(s

′)
and is equal to 1 otherwise.

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

282



0 20 40 60 80 100
Solved tasks

102

103

104

105

106

107

Ex
pa

ns
io

ns
 (l

og
)

Solved tasks vs Expansions [LOG]

0 20 40 60 80 100
Solved Task

0

2

4

6

8

10

12

Ra
tio

 to
 O

pt
im

al
 C

os
t

Solved tasks vs Accumulated
 Ratio to Optimal Cost
wA*
DPS
FS (hnn)
FDS (rank)
FDS (best)
Optimal

Figure 1: Results in 15-Puzzle using DeepCubeA as learned
heuristic

w = 1.5 w = 2.0
Cov. % Exp Subopt% Cov. % Exp Subopt%

WA* 100 12325 7.59 100 3558 22.62
DPS 100 9957 8.61 100 2518 27.82
FS (hnn) 83 3284 4.31 100 56 6.18
FDS (best) 100 76 4.21 100 58 5.72
FDS (rank) 100 444 3.74 100 57 5.47

Table 1: Results for the 15-puzzle.

Some researchers (e.g., Karoui et al. 2007), for non-binary
trees, have considered counting discrepancies according to
their successor rank. Instead of considering a discrepancy
as a binary function, they sort the successors in ascending
order according to their h-value, and consider that each suc-
cessor yields a discrepancy equal to the index in the order
(we assume the first index is 0). Let rank(s, t) denote the
rank of child t of s, with respect to the heuristic function
h. Then, we define the rank of a path σ = s1s2 . . . sn as
r(σ) =

∑n−1
i=1 rank(si, si+1).

Below FDS(best) and FDS(rank) denote the algorithm
that result by sort its corresponding FOCAL list by
disc(path(s)) and r(path(s)), respectively.

Experimental Results
We evaluate FDS in the 15-puzzle using the pre-trained
model of DeepCubeA (Agostinelli et al. 2019), a very ef-
fective learned heuristic for different puzzle problems. The
pre-trained models are publicly available1. We compare our
algorithms with FS(hnn) which use the learned heuristic
as hFOCAL (as Spies et al. (2019) has described), WA* and
DPS with the Linear Conflict (Hansson, Mayer, and Yung
1992) as admissible heuristic. For the evaluations, we use
the 100 Korf’s instances for the 15-Puzzle (Korf 1985). All
algorithms were implemented in Python 3, and the exper-
iments were run on an Intel Xeon E5-2630 machine with
64GB RAM, using a single CPU core and one GPU Nvidia
Quadro RTX 5000. We use a 30-minute timeout.

Table 1 shows the percentage of instances each algorithm
solves (coverage), the average number of expansions and the
average suboptimality obtained on the solved instances by

1https://github.com/forestagostinelli/DeepCubeA

all algorithms for two suboptimality bounds. With subopti-
mality bound w = 2.0, all algorithms solve all instances, but
the algorithms that use the learned heuristics outperform by
2 and 3 orders of magnitude the number of expansions WA*
(LC) and WA* (Man), resp. In addition, they obtain results
16% better in quality. With a suboptimality bound w = 1.5
FDS(best) and FDS(rank) solve the complete problem set
and outperform WA* by one and two order of magnitude
with respect to the number of expansions on the solved prob-
lems by all algorithms, resp. In addition, they obtain results,
on average, 4% better in terms of solution quality. FS(hnn)
shows poor performance, obtaining just 83% of coverage
and perform on average, one order of magnitude more ex-
pansions than FDS.

Figure 1 summarizes the results (cumulative expansions,
and cumulative suboptimality) obtained by the algorithms
for suboptimality bound w = 1.5. We use a square mark
to indicate the search algorithm failed to solve a particular
instance. When a problem is not solved, we add the expan-
sions performed until the timeout, and we consider the sub-
optimality of such a solution to be w times the optimal cost.

The results show that FDS(best) outperforms WA* by one
order of magnitude with respect to the number of expan-
sions. Nevertheless, both require a similar time. This is be-
cause expansions are one order of magnitude slower when
using the learned heuristic. We observe that FDS(best) loses
advantage over WA* for the last 30 instances. This may be
due to the fact that many search states have the same f -
values, and many expansions are needed to make progress
in the search. Regarding to the quality of the solutions, we
observe that both versions of FDS obtain solutions of better
quality than other algorithms

Summary and Conclusions

We presented Focal Discrepancy Search (FDS), a method
that uses FS to exploit a given learned heuristic more effec-
tively than FS used directly with the learned heuristic. We
evaluated our approach using DeepCubeA, a recent frame-
work that learns very accurate heuristics for puzzle games
with reinforcement learning. We show that FDS outperforms
other BSS algorithms, such as WA*, up to four orders of
magnitude. Also, we show that FDS outperforms FS(hnn),
which uses the heuristic value to sort the FOCAL list. We per-
form experiments using different admissible heuristic func-
tions and suboptimality bounds, but it can be also applied to
bounded cost. Due to calculating the learned heuristic value
may be time-consuming, in a future work, we will study how
to accelerate the time spent to calculate the heuristic value
in the context of bounded suboptimal search.

Acknowledgements

Matias Greco was supported by the National Agency for
Research and Development (ANID) / Doctorado Nacional
/ 2019 - 21192036. We also thank to Centro Nacional de In-
teligencia Artificial CENIA, FB210017, BASAL, ANID, for
partially funding the authors.

283



References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2016. Multi-Heuristic A*. International
Journal of Robotics Research, 35(1-3): 224–243.
Araneda, P.; Greco, M.; and Baier, J. 2021. Exploiting
Learned Policies in Focal Search. In Proceedings of the 14th
Symposium on Combinatorial Search (SoCS).
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. Artificial Intelli-
gence, 175(16-17): 2075–2098.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of Hyper-
parameter Space. In Giacomo, G. D.; Catalá, A.; Dilkina,
B.; Milano, M.; Barro, S.; Bugarı́n, A.; and Lang, J., eds.,
Proceedings of the 24th European Conference on Artificial
Intelligence (ECAI), volume 325 of Frontiers in Artificial
Intelligence and Applications, 2346–2353. IOS Press.
Hansson, O.; Mayer, A.; and Yung, M. 1992. Criticizing so-
lutions to relaxed models yields powerful admissible heuris-
tics. Information Sciences, 63(3): 207–227.
Harvey, W. D.; and Ginsberg, M. L. 1995. Limited discrep-
ancy search. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI).
Karoui, W.; Huguet, M.; Lopez, P.; and Naanaa, W. 2007.
YIELDS: A Yet Improved Limited Discrepancy Search for
CSPs. In Hentenryck, P. V.; and Wolsey, L. A., eds., 4th
International Conference on the Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR), volume 4510 of LNCS,
99–111. Springer.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence, 27(1):
97–109.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 4(4): 392–399.
Shen, W.; Trevizan, F. W.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In Beck, J. C.; Buffet, O.; Hoffmann, J.; Karpas,
E.; and Sohrabi, S., eds., Proceedings of the Thirtieth Inter-
national Conference on Automated Planning and Schedul-
ing, Nancy, France, October 26-30, 2020, 574–584. AAAI
Press.
Spies, M.; Todescato, M.; Becker, H.; Kesper, P.; Waniek,
N.; and Guo, M. 2019. Bounded Suboptimal Search with
Learned Heuristics for Multi-Agent Systems. In Proceed-
ings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI), 2387–2394. AAAI Press.
Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In Walsh, T., ed., Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), 674–
679. IJCAI/AAAI.

284


