Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

Lazy Compilation in Classical Planning (Extended Abstract)

Zuzana Filova, Pavel Surynek

Czech Technical University in Prague
Faculty of Information Technology, Thakurova 9, 160 00 Praha 6, Czechia
{filovzul,pavel surynek} @fit.cvut.cz

Abstract

Classical planning is a task of finding a sequence of actions
that achieve a given goal. One of many approaches to clas-
sical planning is compilation into propositional satisfiability
(SAT). In this work, we propose a new method that uses lazy
compilation into SAT. Different from the standard compila-
tion method, lazy compilation constructs the target proposi-
tional formula step by step while the SAT solver is consulted
at each step and refinements of the formula are suggested ac-
cording to SAT solver’s answers. The performed experiments
pointed out that lazy compilation has the potential to improve
the performance of the planners.

Introduction and Background

Planning is an offline process that selects and sorts available
actions to achieve a given goal, taking into account expected
results of actions without executing them (Fikes and Nilsson
1971; Ghallab, Nau, and Traverso 2004).

The task in planning is to find a sequence of actions (plan)
that achieve a given goal. It is a triple P = (A, I, G), where
A represents actions, [is an initial state, a set of ground
atoms, and G is a goal, a set of ground literals. An action
is a triple (prec, eff 7, eff), where prec is a precondition,
atoms that must hold in a state before the action can be ap-
plied, eff 7 and eff ~ are positive and negative effects re-
spectively, the atoms that are added and removed to/from
the state after the action is applied.

The original search-based techniques for classical plan-
ning often struggled with a large search space (Korf 1987;
Currie and Tate 1990) which led to the development of nu-
merous heuristics (Bonet and Geffner 2001; Haslum, Bonet,
and Geffner 2005).

Planning graphs and the related Graphplan algorithm
(Blum and Furst 1995) is an important milestone that re-
vived planning via a stream of neoclassical techniques that
make it possible to solve significantly larger problems. Plan-
ning graphs also significantly contributed to compilation-
based approaches. The original idea of compiling planning
as propositional satisfiability (SAT) (Cook 1971; Biere et al.
2009) was coined by Kautz and Selman 1992. It compiles
the planning task into a series of propositional formulae

Copyright (©) 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

270

that are answered by the SAT solver (Audemard and Simon
2018). This enables using efficient search, propagation, and
learning techniques from SAT solvers for planning.

There are many SAT-based planners including Blackbox
(Kautz and Selman 1998), SATPlan (Kautz, Selman, and
Hoffmann 2006), Madagascar (Rintanen 2014), or a plan-
ner for SAS+ formalism (Huang, Chen, and Zhang 2012).
However, SAT-based planners are no longer among the top
performers in the International Planning Competition. After
a period of their greatest success, better performing planners
based on different principles have emerged - such as Delphi
(Katz et al. 2018) and Fast Downward (Helmert 2006).

Although planning as SAT may seem outdated, there is
still some potential for the future. The great advantage of
converting planning to SAT is that any progress in SAT solv-
ing also automatically means improvement in planner per-
formance. Thus, it may happen that existing algorithms are
improved or new SAT solving algorithms are discovered,
which will improve there planners as well.

The lazy approach problem solving and the lazy compi-
lation, stemming from counterexample-guided generation
and refinement - CEGAR (Clarke 2003) or Bender’s de-
composition (Benders 2005), has been successfully applied
in domain-dependent planning. For example, in solving the
problem of Multi-Agent Path Finding (MAPF) (Silver 2005;
Surynek 2019; Gange, Harabor, and Stuckey 2019). There is
therefore opportunity for further research and the question
of whether the lazy approach could be successfully applied
in a more general area such as classical planning.

In this work we propose a new method that uses a step-
by-step lazy compilation of classical planning into SAT.

Lazy SAT-based Compilation in Planning

By the classical compilation we mean a procedure in which
for a given length of plan n we compile the bounded plan-
ning problem, that is the question whether a plan of length
n exists, at once into the propositional formula ®(n).

If ®(n) is satisfiable, the plan 7 is extracted from the
truth values of the propositional variables. Otherwise n is
increased (usually by one) to allow for longer plans.

In the case of lazy compilation, only a partial specification
of the given planning problem is encoded into formula ®'(n)
in the first phase. The plan 7’ decoded from the truth values
of the variables of ®'(n) hence may not be valid.

In some cases, not all actions from 7’ can be applied se-
quentially and/or the states obtained by applying the actions
may not contain all the atoms from the goal state. The plan
7' hence must be checked and, in case of errors being found,
new clauses are added to the formula to eliminate the errors
followed by consulting the SAT solver again.

Lazy SAT Encoding

We used parallel encoding based on planning graphs (Kautz,
McAllester, and Selman 1996) where some constraints are
omitted. The encoding uses the following rules, where a;
indicates the action performed in the action layer A; and p;
is an atom from the predicate layer P; of the planning graph:

1. All atoms from the initial state are true in layer P, and
all atoms from the goal state must be true in the layer

P,
/\po/\/\ﬁpo/\ /\Pn

pel p¢l peG

2. Operators imply their preconditions. For each action a in
the layer A; there is a formula:

/\ Di—1

pEprec(a)

a; —

3. Each atom in layer P; implies the disjunction of all the
actions at previous action layer A; ; that have it as an
positive effect. For each atom p in the layer P; there is a
sub-formula:

=

Pi ai—1

V

a€A;_1 | picefft(a))

Keeping the Completeness

This encoding is not complete because it lacks the rules that
actions imply their effects and also mutually exclusive ac-
tions are not forbidden. This can admit invalid solutions that
contain conflicting actions. The following propositions ap-
plie to planning problem P:

®’(n) is satisfiable =~ P has a plan of length n

®’(n) is not satisfiable = P has no plan of length n

All possible errors in the plan are caused by dependent
actions in some layer of the layered plan 7. For the next iter-
ation, clauses eliminating the detected pairs of dependent ac-
tions a, b are added to the formula ®’(n) and the SAT solver
is consulted again: —a V —b.

ENCODER SAT SOLVER

INPUT:
planning
problem

CNF formula SAT solution

DECODER

plan

PLAN VALIDATION|

errors in plan OK

OUTPUT: plan

Figure 1: A scheme of the lazy SAT-based classical planner.

271

1000

100

10

4-0 7-1 81 9-1 10-1 11-1 12-1 13-1 14-1 15-1 18-1 20-1

0,1

0,01

0,001

«=@==Classical Compilation

Lazy Compilation

Figure 2: Time of solving Logistics domain problems for
our planner with different types of compilation (the y-axis
shows time in seconds on the logarithmic scale, and the x-
axis shows individual problems from the Logistics domain).

Experimental Evaluation

A planner using two compilation variants - the proposed
method for lazy compilation and classical compilation -
was implemented to evaluate the proposed method. The
planner was tested on planning problems from the Interna-
tional Planning Competition (Gerevini et al. 2009). A to-
tal of 79 problems of varying difficulty from four domains
(Blocks World, Logistics, ZenoTravel, Mystery) were used.
The experiments focused mainly on comparing the total time
needed to solve planning problems and the parameters of the
formula ®’(n) - the number of variables and clauses.

Results suggest some advantages of lazy compilation
method: the time-consuming construction of mutexes can be
eliminated when constructing the planning graph which had
a positive effect on the overall time. The results from the
Logistics domain are shown in the Figure 2. The lazy plan-
ner was able to solve 63 from 79 problems faster than the
classical planner.

It was found that in lazy compilation, much smaller for-
mulas were sufficient to solve the problem (usually between
2 - 20 % of the number of classic compilation clauses). In
some cases, the difference was significant (e.g. for the Mys-
tery02 problem - 70,000 clauses in ®’(n) compared to 4.8
million in ®(n)).

The disadvantage of lazy compilation turned out to be that
more time is usually needed to solve the encoded SAT in-
stances. However this difference was mostly negligible in
terms of overall time except several Blocks World problems
where a large increase in time has been observed.

Conclusion

In this work we propose a new method that uses a lazy com-
pilation of the classical planning into SAT. The performed
experiments pointed out the advantages and possible disad-
vantages of lazy compilation. The results of the experiments
indicate that the use of lazy compilation has the potential to
improve the performance of SAT-based planners.

Acknowledgments

This research has been supported by GACR - the Czech Sci-
ence Foundation, grant registration number 22-31346S.

References

Audemard, G.; and Simon, L. 2018. On the Glucose
SAT Solver. Int. J. Artif. Intell. Tools, 27(1): 1840001:1—
1840001:25.

Benders, J. F. 2005. Partitioning procedures for solving
mixed-variables programming problems. Comput. Manag.
Sci., 2(1): 3-19.

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. 10S Press.

Blum, A. L.; and Furst, M. L. 1995. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence, 90(1):
1636-1642.

Bonet, B.; and Geffner, H. 2001.
search. Artif. Intell., 129(1-2): 5-33.

Clarke, E. M. 2003. SAT-Based Counterexample Guided
Abstraction Refinement in Model Checking. In Automated
Deduction - CADE-19, 19th International Conference on
Automated Deduction Miami Beach, 2003, Proceedings,
volume 2741 of Lecture Notes in Computer Science, 1.
Springer.

Cook, S. A. 1971. The Complexity of Theorem-Proving Pro-
cedures. In Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing, 151-158. ACM.

Currie, K.; and Tate, A. 1990. Using domain knowledge
to restrict search in an Al planner. In Proceedings of the
First International Conference on Expert Planning Systems,

1990, 186-190. AAAL

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. In Proceedings of the 2nd International Joint Con-
ference on Artificial Intelligence, 1971, 608—620. William
Kaufmann.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implicit Conflict-Based Search Using Lazy Clause Gener-
ation. In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS
2018, 155-162. AAAI Press.

Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell., 173(5-6): 619-668.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. The Morgan Kaufmann
Series in Artificial Intelligence. Elsevier Science. ISBN
9781558608566.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Ad-
missible Heuristics for Domain-Independent Planning. In
Proceedings, The Twentieth National Conference on Artifi-
cial Intelligence, 2005, 1163-1168. AAAI Press / The MIT
Press.

Planning as heuristic

272

Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191-246.

Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ Planning
as Satisfiability. J. Artif. Intell. Res., 43: 293-328.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning.
IPC-9 planner abstracts, 57-64.

Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
plans in propositional logic. KR, 96: 374-384.

Kautz, H.; and Selman, B. 1998. BLACKBOX: A new ap-
proach to the application of theorem proving to problem
solving. In AIPS98 workshop on planning as combinatorial
search, volume 58260, 58—60. sn.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as satisfiability. In 5th international planning com-
petition, volume 20, 156.

Kautz, H. A.; and Selman, B. 1992. Planning as Satisfia-
bility. In Neumann, B., ed., 10th European Conference on
Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7,
1992. Proceedings, 359-363. John Wiley and Sons.

Korf, R. E. 1987. Planning as Search: A Quantitative Ap-
proach. Artif. Intell., 33(1): 65-88.

Rintanen, J. 2014. Madagascar: Scalable planning with SAT.
Proceedings of the 8th International Planning Competition
(IPC-2014), 21.

Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the First Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2005, 117-122. AAAI Press.

Surynek, P. 2019. Unifying Search-based and Compilation-
based Approaches to Multi-agent Path Finding through Sat-
isfiability Modulo Theories. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, 1177-1183.

