
Fast Traffic Assignment by Focusing on Changing Edge Flows
(Extended Abstract)

Ali Davoodi,1 Mark Wallace, 1 Daniel Harabor 1

1 Faculty of Information Technology, Monash University, Melbourne, Australia
ali.davoodi,mark.wallace,daniel.harabor@monash.edu

Abstract

This paper presents a novel algorithm for solving the traf-
fic assignment problem (TAP). Contrary to traditional algo-
rithms, which use the one-to-all shortest path algorithm to
solve the problem for all origin destinations (OD) pairs, this
algorithm tracks the changes of the edges and (at certain iter-
ations) solves the problem only for critical edges whose flows
have changed substantially using a state-of-the-art edge p2p
shortest path algorithm. When additionally, only OD pairs
with larger flows are considered, this enhancement halves the
time needed to optimize the solution with a very small error
in a large-scale network.

Introduction
Traffic assignment is how travellers choose their routes
in a network where the demands between origins and
destinations are given. Wardrop’s first principle (Wardrop
and Whitehead 1952) states that for each pair of origin-
destination (OD), the travel time of the used routes (positive
flow) is equal to or less than the travel time of the unused
routes. Traffic flows that establish this rule are referred to
as ”equilibrium flows”. (Beckmann, McGuire, and Winsten
1955) formulated the TAP as an optimisation problem based
on the UE condition. Since then, many algorithms have been
introduced to solve the traffic assignment problem. See (Mi-
tradjieva and Lindberg 2013) for a recent overview. These
algorithms have an iterative method. Current solutions and
shortest paths are used in each iteration to shift flow from
non-shortest paths to shortest paths.

Calculating the shortest paths for each pair of OD in each
iteration is one of the most important and time-consuming
components of traffic assignment algorithms. Instead of us-
ing the p2p shortest path technique, traffic assignment al-
gorithms often employ the shortest path tree such as Dijk-
stra (Dijkstra et al. 1959) , or Bellman-ford (Bellman 1958)
one-to-all from each origin to all nodes to find the short-
est paths. The reason for this is that in these classical al-
gorithms, searching one-to-all shortest paths is not substan-
tially more costly than p2p shortest paths. Despite numer-
ous acceleration approaches and tactics that have been re-
searched to reduce shortest path time computation (readers

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

referred to (Bast et al. 2016) for a recent overview), classical
one-to-all shortest path algorithms are still difficult to beat.

In this paper, instead of solving the problem for all OD
pairs, the problem is solved only for the OD pairs that
have more potential to reduce the objective function. In this
study, we solve TAP using (Chen, Jayakrishnan, and Tsai
2002)’s Origin-Destination-Based Frank-Wolfe (ODBFW)
algorithm. This path-based algorithm breaks the problem
down into sub-problems for each OD pair and solves each
sub-problem using the FW algorithm. Compressed Path
Databases (CPDs)(Bono et al. 2019), a p2p technique, is also
used to find the shortest paths. The critical OD pairs can be
identified by tracking edge changes and storing the OD pairs
associated with each edge. The convergence of the proposed
algorithm is directly compared to the conventional ODBFW,
as well as RG (Babazadeh et al. 2020) algorithm.

Problem Setting
Consider G = (N,E) is a directed transportation network
with edge set E and node set N. Each edge e ∈ E has a
non-decreasing and continuously differentiable travel time
function te(xe) where xe shows flow of edge e. R and S are
denoted as sets of origins, and destinations respectively. Drs

is demand from origin r to destination s. The sets of paths
from origin r to destination s is defined Prs, and hp consid-
ering as the flow on path p. The traffic assignment problem
based on Wardrop’s first principle can be formulated as a
non-linear programming problem (NLP) with strictly con-
vex and twice continuously differentiable objective function
and linear constraints as follows:

min z(x(h)) =
∑
e∈E

∫ xe

0

te(ω) dω (1)

∑
p∈Prs

hp = Drs ∀r ∈ R, ∀s ∈ S (2)

hp ≥ 0 ∀p ∈ Prs, ∀r ∈ R, ∀s ∈ S (3)
and the relation between edge flows and path flows is ex-
pressed as:

xe =
∑
r∈R

∑
s∈S

∑
p∈Prs

hpδep ∀e ∈ E (4)

Where δep = 1 if path p passes edge e, and 0 otherwise.

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

267

O1D1, O1D2 O1D1, O2D2, O3D1

O1D2,
O1D3

O3D1,
O3D2

O3D3, O3D2 O3D3, O2D3, O1D3

O3D1

O1D3

O1D2,
O2D2
O3D2,
O1D3

O1D2,
O3D1
O2D2,
O3D2

O1D2,
O1D3
O2D2,
O3D2

O1D2,
O2D2
O3D1,
O3D2

1

O2 D2

O1

O3 2

D1

D3

0.25

0.25

0.15

0.25

0.4

0.6

0.5

0.75

2.25⇤

0.75

0.1

0.2

(a) Example network
2 4 6 8 10 12 14 16 18

10
−
4

10
−
3

10
−
2

10
−
1

Time(mins)

E
rr

(l
og
)

ODBFW
En-ODBFW
RG

(b) Convergence rates

2 4 6 8 10 12

3.08

3.1

3.12

3.14

3.16

3.18

Time(mins)

O
b
je
ct
iv
e
F
u
n
ct
io
n
(×

10
7
)

ODBFW
En-ODBFW
RG

(c) Objective function values

Figure 1: Performance comparison of ODBFW and En-ODBFW for Chicago network

Proposed Algorithm

Our proposed algorithm is based on the fact that in each it-
eration of the TAP algorithms, the OD pairs that undergo
more changes are those whose paths include edges that had
more changes in the previous iteration. Thus, the aim of our
algorithm is to track the edges that have experienced the
most changes in their edge cost function ECe = xe.t(xe)
to solve the sub-problem only for the OD pairs that have
used these edges through their path. To identify related OD
pairs of each edge, we first implement the regular ODBFW
cycle to reach acceptable solution accuracy. Then, the al-
gorithm stores the OD pair number of each used edge by
moving through the paths. Edges whose cost difference in
the current iteration compared to the previous iteration are
greater than the threshold changes will be considered effec-
tive edges. The number of effective OD pairs is subsequently
discovered. If this number is too large (it exceeds a given
threshold), then the Dijkstra one-to-all shortest path algo-
rithm is used to solve all OD pairs’ sub-problems. Other-
wise, the problem for effective OD pairs is solved using the
p2p CPD-search shortest path. Finally, we increase the algo-
rithm’s sensitivity for tracking edges by halving the thresh-
old changes. For example, consider Figure 1a with 9 OD
pairs. In this figure, for each edge, ∆ECe is written on it.
The OD pairs passing through each edge are also specified
next to each edge. Since edge (2,D2) has experienced the
most changes in flow and travel time in the previous itera-
tion, the OD pairs passing through it have higher potential to
reduce the objective function than the other OD pairs. So, in
this iteration, our algorithm targets 4 OD pairs passing edge
(2,D2) instead of solving the problem for all 9 OD pairs.

Storing all OD pairs for edges takes a large amount of
memory. Also, solving sub-problems for many OD pairs
may not be very effective due to the low demand. To address
this issue, we can only store those with sufficient demand
Drs ≥ Dth and let the rest be solved in regular iterations.
Our research shows that using this strategy cuts the time to
solve the problem in half.

Numerical Results

This section compares the performance of the proposed En-
ODBFW algorithm to ODBFW and RG algorithms to inves-
tigate its performance. The authors wrote these algorithms
in the C++ programming language using Visual Studio code.
Both algorithms were implemented on a Mac Pro 13 with 16
GB of RAM. The Chicago regional network was chosen as
a large-scale network with 1790 zones and more than 3 mil-
lion OD pairs. We run En-ODBFW algorithm with threshold
demand Dth = 1. The algorithm’s convergence is assessed
by the Err, which is the relative difference between the cur-
rent total cost and the optimal total cost in the current flow.
Our runs were terminated when Err fell below 10−4.

Figure 1b compares the performance of ODBFW, RG, and
En-ODBFW for the Chicago networks by plotting their Errs
versus CPU times. While 1c shows how quickly these algo-
rithms can reduce the Beckman model’s objective function
value. These figures show that En-ODBFW clearly outper-
forms the ODBFW algorithm. ODBFW took around 18.2
minutes to achieve Err = 10−4, while the En-ODBFW al-
gorithm converged to the same precision in less than 8 min-
utes, which is nearly 2.3 times faster than ODBFW. These
figures also reveal that En-ODBFW can be faster than the
RG algorithm to attain the target convergence and hits the
plateau faster than this state-of-the-art algorithm.

Conclusion

This study proposes a novel variation of the Frank-Wolfe
(FW) traffic assignment algorithm. While the shortest path
tree has provided the basis for the fast recent FW vari-
ants, this paper has shown that processing single origin-
destinations (OD) can be even faster. Our algorithm intel-
ligently targets ODs which most impact the objective, when
there are not too many of them. Otherwise, it falls back
on standard path tree based iterations. On typical examples
computing time is better than halved. Our variation can use
the best available shortest path methods, and benefit from
any future enhancements.

268

References
Babazadeh, A.; Javani, B.; Gentile, G.; and Florian, M.
2020. Reduced gradient algorithm for user equilibrium traf-
fic assignment problem. Transportmetrica A: Transport Sci-
ence, 16(3): 1111–1135.
Bast, H.; Delling, D.; Goldberg, A.; Müller-Hannemann, M.;
Pajor, T.; Sanders, P.; Wagner, D.; and Werneck, R. F. 2016.
Route planning in transportation networks. In Algorithm en-
gineering, 19–80. Springer.
Beckmann, M. J.; McGuire, C. B.; and Winsten, C. B. 1955.
Studies in the Economics of Transportation. Rand Corpora-
tion.
Bellman, R. 1958. On a routing problem. Quarterly of ap-
plied mathematics, 16(1): 87–90.
Bono, M.; Gerevini, A. E.; Harabor, D. D.; and Stuckey, P. J.
2019. Path Planning with CPD Heuristics. In IJCAI, 1199–
1205.
Chen, A.; Jayakrishnan, R.; and Tsai, W. K. 2002. Faster
Frank-Wolfe traffic assignment with new flow update
scheme. Journal of Transportation Engineering, 128(1): 31–
39.
Dijkstra, E. W.; et al. 1959. A note on two problems in
connexion with graphs. Numerische mathematik, 1(1): 269–
271.
Mitradjieva, M.; and Lindberg, P. O. 2013. The stiff is mov-
ing—conjugate direction Frank-Wolfe Methods with appli-
cations to traffic assignment. Transportation Science, 47(2):
280–293.
Wardrop, J. G.; and Whitehead, J. I. 1952. Correspondence.
some theoretical aspects of road traffic research. Proceed-
ings of the institution of civil engineers, 1(5): 767–768.

269

