Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

A Conflict Avoidance Table for Continuous Conflict-Based Search
(Extended Abstract)

Vianney Coppé, Pierre Schaus

UCLouvain
{vianney.coppe,pierre.schaus } @uclouvain.be

Abstract

Conflict-Based Search is a state-of-the-art algorithm solving
the Multi-Agent Path Finding problem. Given multiple agents
with start and goal locations, the problem is to find a set
of collision-free paths of minimal cost. Continuous Conflict-
Based Search is a recent adaptation of this algorithm for con-
tinuous time and agents with physical shapes. However, an
important ingredient has not been adapted to this continu-
ous version: the Conflict Avoidance Table. It is used as a
tie-breaking strategy in single-agent search phases to favor
paths causing fewer conflicts with the other agents. This pa-
per explains how the R-Tree can be used as a Conflict Avoid-
ance Table for Continuous Conflict-Based Search. The ex-
periments show that using the Conflict Avoidance Table can
reduce the number of nodes expanded by the algorithm by a
large margin. As aresult, the solving time is improved propor-
tionally and especially when using the implementation based
on R-Trees as opposed to a naive implementation.

Introduction

The Multi-Agent Path Finding problem (MAPF) concerns
the planning of collision-free paths on an undirected graph
with unit-cost edges G = (V, E) for n agents with start and
goal locations, S : {1,...,n} = Vand G : {1,...,n} —
V respectively. At each timestep, the agents can either stay at
their current location or transition to a neighbor vertex. The
goal of MAPF is to minimize the sum-of-costs i.e. the sum of
all agents’ path lengths. While this standard MAPF formula-
tion considers time discretized in unit timesteps and agents
as point objects, a more realistic variant is the MAPF with
continuous time, denoted MAPF (Andreychuk et al. 2022).
It allows actions to connect two vertices with arbitrary mo-
tion functions with non-unit durations and takes into account
the physical shape of the agents.

Conflict-Based Search (CBS) (Sharon et al. 2015) is
among the fastest optimal algorithms to solve the MAPF.
In (Andreychuk et al. 2022), Continuous CBS (CCBS) gen-
eralized this algorithm to solve the MAPFg. However, a fea-
ture of CBS that was not migrated to CCBS is the conflict
avoidance table (CAT). The CAT is used as a tie-breaking
strategy in single-agent path finding searches to prefer paths
leading to fewer conflicts with the other agents. In CBS, a

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

264

lookup table indexed by time—position pairs can be used for
this purpose. As the MAPFr, lifts some of the simplifying as-
sumptions of MAPF, the CAT needs to be represented by an-
other data structure. After summarizing how CBS and CCBS
work, we explain how R-Trees (Guttman 1984) can be used
as a CAT for MAPF;. Finally, we present the results of our
computational experiments before concluding the paper.

Conflict-Based Search

CBS (Sharon et al. 2015) is a two-level search procedure
where the high-level search explores a constraint tree (CT)
and the low-level search solves single-agent path finding
problems given the constraints of a CT node. A constraint

(i,a,t) prevents agent ¢ of performing action a at time ¢.
At the start of the algorithm, the root of the CT is created
with an empty set of constraints and a plan containing the
shortest path of each agent. Then, CT nodes are expanded in
best-first order, based on their plan cost. When a CT node
is processed, conflicts are detected in the plan it contains. If
no conflicts are found, then the plan is an optimal solution.
Otherwise, one of the conflicts found is selected according
to some criteria. For a conflict (a;, a;,t) happening at time ¢
between actions a; and a; of agents ¢ and j respectively, two
child nodes are created. On top of the constraints of the par-
ent CT node, the conflict is resolved by adding the constraint
(¢, a;,t) to the left child and (7, a;,) to the right child. In
both child nodes, a new path is computed by the low-level
search using space-time A* for the agent with the additional
constraint, they are then added to the set of open CT nodes.

CCBS (Andreychuk et al. 2022) is an adaptation of CBS
for the MAPFg. The major difference with respect to CBS
is that conflict resolution is more complex. Given a conflict
(a;,t;,a;,t;) between actions a; and a; starting at time ¢;
and ¢ ;, CCBS starts by computing the unsafe interval of each
action. The unsafe interval [t;,t}) of action a; is the max-
imal time interval during which starting the action would
conflict with a; performed at time ¢;. Then, the conflict is
resolved by adding constraints to the child CT nodes, which
prevent the agents from starting the actions within the un-
safe intervals computed. In the low-level search, Safe Inter-
val Path Planning (Phillips and Likhachev 2011) can be used
to find single-agent paths respecting time interval constraints
without needing to discretize time.

Conflict Avoidance

After creating a CT node with an additional constraint for
one agent, the low-level search is called to find a path re-
specting all its constraints. At this point, CBS applies the
mechanism of conflict avoidance introduced in (Standley
2010). The idea is store all actions of the other agents’ paths
in a CAT used to quickly detect if moves being planned con-
flict with any of them. A counter is kept in each node of the
search algorithm, which is then used as a tie-breaking rule
for nodes with the same f-value: nodes with fewer conflicts
will be preferred. As a result, the low-level search will favor
paths creating fewer conflicts with all other agents. By do-
ing so, some conflicts can be avoided and it prevents useless
branching in the high-level search.

In the case of MAPF, conflicts can occur between actions
that do not happen on the same edge or vertex since agents
have a physical shape and can follow complex motion func-
tions. In addition, time is not discretized. Consequently, a
CAT cannot be a simple lookup table indexed by vertex or
edge and time, as for the MAPF.

R-Trees R-Trees were first introduced in (Guttman 1984)
to efficiently store and query spatial data. As its name sug-
gests, the R-Tree is a tree data structure representing a hi-
erarchy of n-dimensional axis-aligned minimum bounding
boxes (MBBs). R-Trees are capable of answering intersec-
tion and containment queries, and also of retrieving the k-
nearest neighbors of a geometry. They are widely used in
database systems including geographic information systems
(GIS), multimedia databases and spatiotemporal databases.

Storing and querying actions We represent timed actions
as 3-dimensional MBBs with one temporal dimension and
two spatial dimensions. On the time axis, the extremities of
the MBB are simply the start and end times of the interval
during which the action takes place. For the spatial axes, the
MBB should enclose the physical shape of the agent posi-
tioned at the extreme points of the action’s trajectory. Us-
ing these MBBs, we can fill the R-Tree with all the existing
timed actions in a plan and query it in the low-level search
of CCBS with the timed actions an agent wishes to perform.
When planning an action in the low-level search, its MBB is
created and used to query the R-Tree. However, the MBBs
are rough approximations of the trajectories of the agents.
Thus, when queries return some timed actions, we must per-
form the real collision detection procedure, as in two-phase
collision detection (LaValle 2006).

Computational Experiments

To evaluate the impact of the CAT on the performance of
CCBS, we extended the source code developed for the pa-
per (Andreychuk et al. 2022) with two versions of CAT. The
naive implementation simply loops through all actions of
the plan and performs collision detection for actions over-
lapping in time. The other uses the R-Tree implementation
from the Boost libraries (Boost 2022). We replicated the ex-
perimental process of (Andreychuk et al. 2021) with maps
and scenarios taken from the Moving Al repository (Sturte-
vant 2012). For each map, experiments are made with 2"-

265

empty-16-16 warehouse-10-20-10-2-2 den520d
; 7101 :

= s
153 4+ [107 7 : '
Rl ; /
g
5 10
8
]
2 10
—
U T T T T T T T
0 1000 2000 0 5000 0 2000
Instances solved Instances solved Instances solved
-------- CCBS —-— CCBS+CAT (Naive) —---- CCBS+CAT (R-Tree)

Figure 1: Number of instances solved by each algorithm
within a given number of CT nodes expanded.

empty-16-16 warehouse-10-20-10-2-2 den520d

Y TL e mex x m0cx wo0ccm TL x P TL 4
g 1024 v 102 102
& XK e
B K 2

10! 4 2 N oL 1 1
S e o
O 10° 4 ! 10° 100§
O

10° 10! 10t

102 TL 10° 102 TL 100 10* 102 TL
CCBS (s) CCBS (s) CCBS (s)

2o x| TL x| TL
i
&
N 2 2
510 10
g
3 1014 10!
e
g .
S 104 10° 4

100 100 102 TL 100 10! 102 TL 100 100 102 TL

CCBS+CAT (Naive) (S) CCBS+CAT (Naive) (S) CCBS+CAT (Naive) (S)

Figure 2: Comparison of the runtime for each instance.

neighborhoods with k ranging from 2 to 5. The algorithms
have 5 minutes to solve each scenario.

Figure 1 compares the number of instances solved by each
algorithm within a fixed number of CT nodes expanded. Ex-
cept for some instances not solved by the naive implemen-
tation, the lines for CCBS+CAT (Naive) and CCBS+CAT
(R-Tree) coincide as they both implement the same conflict
avoidance behavior. Compared to CCBS, the number of CT
nodes expanded by either version of CCBS+CAT is reduced
significantly. The first row of Figure 2 compares the run-
time of CCBS+CAT (R-Tree) and CCBS for each individual
instance. CCBS+CAT (R-Tree) is able to solve many more
instances than CCBS and is generally faster, especially on
larger maps — the first map is 16x 16 while the two others
are 161x63 and 256 x257. There is little difference between
the two versions of CCBS+CAT for the first map probably
because the paths are short. For larger maps, however, using
R-Trees is almost always faster and reaches speedups of one
order of magnitude in some cases.

Conclusion

This paper showed how R-Trees can be used to implement
an efficient CAT allowing for actions of any duration and
rules of motion, and agents with arbitrary physical shapes.
The experiments demonstrated the positive impact of adding
a CAT to CCBS: reducing the number of CT nodes and im-
proving the overall computation time of the algorithm.

Acknowledgments

We would like to thank the authors of (Andreychuk et al.
2022) for making their source code publicly available.

References

Andreychuk, A.; Yakovlev, K.; Boyarski, E.; and Stern, R.
2021. Improving Continuous-time Conflict Based Search.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 35(13): 11220-11227.

Andreychuk, A.; Yakovlev, K.; Surynek, P.; Atzmon, D.; and
Stern, R. 2022. Multi-agent pathfinding with continuous
time. Artificial Intelligence, 305: 103662.

Boost. 2022. Boost C++ Libraries. boost.org. Accessed:
2022-06-01.

Guttman, A. 1984. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM SIG-
MOD international conference on Management of data, 47—
57.

LaValle, S. M. 2006. Planning algorithms. Cambridge uni-
versity press.

Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In 2071 IEEE In-
ternational Conference on Robotics and Automation, 5628—
5635. IEEE.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40-66.

Standley, T. 2010. Finding Optimal Solutions to Cooperative
Pathfinding Problems. Proceedings of the AAAI Conference
on Artificial Intelligence, 24(1): 173-178.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-

ing. IEEE Transactions on Computational Intelligence and
Al in Games, 4(2): 144—148.

266

