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Abstract

We interleave sampling based motion planning methods with
pruning ideas from minimum spanning tree algorithms to de-
velop a new approach for solving a Multi-Goal Path Finding
(MGPF) problem in high dimensional spaces. The approach
alternates between sampling points from selected regions in
the search space and de-emphasizing regions that may not
lead to good solutions for MGPF. Our approach provides an
asymptotic, 2-approximation guarantee for MGPF. We also
present extensive numerical results to illustrate the advan-
tages of our proposed approach over uniform sampling in
terms of the quality of the solutions found and computation
speed.

Introduction
Multi-Goal Path Finding (MGPF) problems aim to find a
least-cost path for a robot to travel from an origin (s) to a
destination (d) such that the path visits each node in a given
set of goals (T̄ ) at least once. In the process of finding a
least-cost path, MGPF algorithms also find an optimal se-
quence in which the goals must be visited. When the search
space is discrete (i.e., a finite graph), the cost of traveling
between any two nodes can be computed using an all-pairs
shortest paths algorithm. In this case, the MGPF encodes a
variant of the Steiner1 Traveling Salesman Problem (TSP)
and is NP-Hard (Kou, Markowsky, and Berman 1981). In
the general case, the search space is continuous and the least
cost to travel between any two nodes is not known a-priori.
This least-cost path computation between any two nodes in
the presence of obstacles, in itself, is one of the most widely
studied problems in robot motion planning (Kavraki et al.
1996; Kuffner and LaValle 2000). We address the general
case of MGPF as it naturally arises in active perception
(Best, Faigl, and Fitch 2016; McMahon and Plaku 2015),
surface inspection (Edelkamp, Secim, and Plaku 2017) and
logistical applications (Janoš, Vonásek, and Pěnička 2021;
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1Any node that is not required to be visited is referred to as a
Steiner node. A path may choose to visit a Steiner node if it helps
in either finding feasible solutions or reducing the cost of travel.

Figure 1: The Steiner tree (blue lines) computed from IST*,
showing the advantage of pruning. The environment has 2
U-shaped obstacles with open channels. Numbered nodes
are terminals to be spanned. Ellipses are an edge’s informed
set, with color intensity related to sampling probability.
Sampled points in free space are part of the roadmap (shown
in grey). Left: without pruning, all non-MST edges (thin-red
lines) are also sampled. Right: after pruning, the roadmap is
only densified around edges that can lead to an optimal MST
faster.

Otto et al. 2018; Macharet and Campos 2018). MGPF is no-
toriously hard as it combines the challenges in Steiner TSP
and the least-cost path computations in the presence of ob-
stacles; hence, we are interested in finding approximate so-
lutions for MGPF.

Irrespective of whether the search space is discrete or con-
tinuous, Steiner trees spanning the origin, goals and the des-
tination play a critical role in the development of approx-
imation algorithms for MGPF. In the discrete case, dou-
bling the edges in a suitable Steiner tree, and finding a
feasible path in the resulting Eulerian graph leads to 2-
approximation algorithms for MGPF (Kou, Markowsky, and
Berman 1981; Mehlhorn 1988; Chour, Rathinam, and Ravi
2021). This approach doesn’t readily extend to the contin-
uous case because we do not a-priori know the travel cost
between any two nodes in T := {s, t}

⋃
T̄ . One can ap-

peal to the well-known sampling-based methods (Karaman
and Frazzoli 2011; Kavraki et al. 1996; Gammell, Srinivasa,
and Barfoot 2014, 2015) to estimate the costs between the
nodes, but the following key questions remain: 1) How to
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Figure 2: Experimental results (99% confidence interval) for two types of environments: a) [0, 1]8 real-vector space (left); b)
SE(3) abstract environment (right).

sample the space so that the costs of the edges joining the
nodes in T can be estimated quickly so that we can get a de-
sired Steiner tree? 2) Should we estimate the cost of all the
edges or can we ignore some edges and focus our effort on
edges we think will likely end up in the Steiner tree?

Informed Steiner Trees (IST ∗)
IST∗ iteratively alternates between sampling points in the
search space and pruning edges. Throughout its execution, a
Steiner tree is maintained which is initially empty but even-
tually spans the nodes in T , possibly including a subset of
sampled points.

IST* relies on two key ideas. First, finding a Steiner tree
spanning T commonly involves finding a Minimum Span-
ning Tree (MST) in the metric completion2 of the nodes in
T . The MST is at most the cost of the optimal MGPF path,
and thus can be used to derive a 2-approximation guaran-
tee. For any two distinct terminals u, v, we maintain a lower
bound and an upper bound3 on the cost of the edge (u, v).
Using these bounds and cycle properties of an MST, we
identify edges which will never be part of the MST (Prun-
ing). This allows us to only sample regions corresponding
to the edges that are likely to be part of the MST. We fur-
ther bias our sampling by assigning a suitable probability
distribution over the search space based on the bounds on
the cost of the edges (See Fig. 1). Second, as the algorithm
progresses, a new set of points are added to the search graph
in each iteration. Each new sample added may facilitate a
lower-cost feasible path between terminals requiring us to
frequently update the Steiner tree. To address this efficiently,
we develop an incremental version of the Steiner tree algo-
rithm while maintaining its properties. Since this incremen-

2The metric completion here is a complete weighted graph on
all the nodes in T where the cost of an edge between a pair of nodes
in T is the minimum cost of a path between them.

3Upper bound is the cost of a feasible path from u to v.

tal approach correctly finds a Steiner tree, as the number of
sampled points tends to infinity, IST* provides an asymp-
totic 2-approximation guarantee for MGPF.

We use the sampling procedure developed in Informed
RRT* (Gammell, Barfoot, and Srinivasa 2018) to choose
points from selected regions in our approach. Informed sam-
pling in synergy with pruning enables faster convergence to
the optimal MST solution than uniform sampling.

Results
We evaluated the performance of IST ∗ against a baseline
that involves densifying a roadmap using PRM* (Karaman
and Frazzoli 2011) for a fixed amount of time via uniform
random sampling, and then running S* (S*-BS variant was
used) on the resulting roadmap to obtain an MST-based
Steiner tree (Chour, Rathinam, and Ravi 2021). For a given
environment, 50 terminals were randomly chosen in free
space and both algorithms were repeated 50 times. It was en-
sured that the combined time spent in growing the roadmap
and running S* exhausted a chosen time limit. The planners
(IST* and the Baseline) were implemented in Python 3.7
using OMPL (Şucan, Moll, and Kavraki 2012) v1.5.2 on
a desktop computer running Ubuntu 20.04, with 32 GB of
RAM and an Intel i7-8700k processor. Results for an ex-
periment on a [0, 1]8 real-vector space environment with a
[0.1, 0.8]8 central obstacle, and an SE(3) environment are
shown in Figure 2. We can observe in both subfigures, IST ∗

finds a cheaper Steiner tree in less time compared with the
baseline.

Future Work
In this work, we introduced Informed Steiner Trees to find an
asymptotic 2-approximation solution to the general case of
the MGPF problem. We plan to explore obtaining effective
lower bounds on the shortest path cost between two termi-
nals instead of using the Euclidean distance.
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