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1 Introduction
In bi-objective search we are given a graph G in which each
arc, and thus each path, is associated with a pair of non-
negative costs, which represent meaningful objective func-
tions. For example, in transportation, one function could re-
fer to the time required to traverse an edge while the other
could refer to fuel consumption. To compare two paths, a
dominance relation is used. Path π1 dominates path π2 if
both components of the cost of π1 are less than or equal to
the respective components of the cost of π2 and their costs
are not equal. Given a start vertex and a goal vertex in G,
the problem consists of finding a Pareto-optimal solution set
which contains all paths from start to goal which are not
dominated by another path from start to goal.

Bi-objective search is required for several real-world ap-
plications; notably in transportation and logistics when time
and cost (e.g., fare) are minimized (e.g., Pallottino and
Scutella 1998; Bronfman et al. 2015; Müller-Hannemann
and Weihe 2006), or when time and risk are minimized
for cycling (Ehrgott et al. 2012). Recently, it has also been
used in AI problems like robot planning (Davoodi 2017) and
multi-agent path finding (Ren, Rathinam, and Choset 2021).

An important hurdle to bi-objective search is the size of
the solution set, which can be exponential on the size of the
graph (Hansen 1980). As a consequence, bi-objective search
algorithms may only compute a handful of solutions before
running out of time. Worse even, because of the exhaustive
nature of their search, such solutions may not represent the
diversity of the solution set. To address this problem, ap-
proaches to approximating the solution set have been pro-
posed. One line of work proposes algorithms that reduce
high runtimes by computing a solution set with approxi-
mate solutions whose suboptimality is bounded (e.g., War-
burton 1987; Perny and Spanjaard 2008; Goldin and Salz-
man 2021). Another less explored line of work computes
subset approximations (e.g., Cohon 1978; Henig 1986), in
which a subset of the solution set is computed. A limitation
of the former approach is that even though approximate so-
lutions may be faster to compute still a large number of so-
lutions may have to be computed. The main limitation of the
latter approach is that the maximum number of computable
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solutions is fixed and task-dependent. This does not allow
returning more solutions if more search time is available.

2 Notation
Boldface lower case letters indicate column vectors in R2.
The first and second component of p are denoted by p1 and
p2, respectively. We consider standard addition and mul-
tiplication by scalar of vectors. We say that p � q, iff
p1 ≤ q1 and p2 ≤ q2; in addition, p ≺ q iff p � q
and p 6= q. We say that p dominates q when p ≺ q, and
that p weakly dominates q when p � q

A path π from s1 to sn on a graph G = (S,E) is a se-
quence of states s1, s2, . . . , sn such that (si, si+1) ∈ E for
all i ∈ {1, . . . , n− 1}. Given a path π = s1, . . . , sn, its cost
is given by

∑n−1
i=1 c(si, si+1) and denoted by c(π). Path π

dominates path π′ if and only if c(π) ≺ c(π′).
A bi-objective search instance is as a tuple

(S,E, c, s0, sg), where (S,E) is a graph, s0 and sg
are, respectively, the start state and the goal state, and
c : E → R≥0 × R≥0 is a non-negative cost func-
tion. A start-to-goal path is a path from s0 to sg . The
Pareto-optimal solution set, denoted by solsP , contains all
start-to-goal paths that are not dominated by another one.

3 Solution Subsets via Bi-Objective Search
Now we describe our approach to obtain a subset of the
Pareto-optimal solution set. The approach can be used along
with any bi-objective search algorithm. Our idea is to map
the problem P into another search problem Pα,β where α
and β are two parameters that control the precision of our
approximation.

We shall assume that α, β ∈ (0, 1] with α + β > 1. To
build Pα,β we define the matrix Mα,β given by:

Mα,β =

(
α 1− α

1− β β

)
,

and define Pα,β = (S,E, cα,β , s0, sg), where for each e ∈
E, we define cα,β(e) as the result of applying the matrix
Mα,β to c(e) that is

Mα,β (c(e)) = (αc1(e)+(1−α)c1(e), (1−β)c1+βc2(e)).

This new instance Pα,β has two important properties. The
first property is that it defines a dominance relation �α,β in
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which u is dominated by v if and only if αu1+(1−α)u2 ≤
αv1 + (1 − α)v2 and (1 − β)u1 + βu2 ≤ (1 − β)v1 +
βv2, and u 6= v, or much shorter, Mα,βu � Mα,βv. The
second important property is that the solution set of Pα,β is
contained in the solution set of P .

Theorem 1. Let P = (S,E, c, s0, sg) be a bi-objective
search instance and let Pα,β be defined as above with α, β ∈
(0, 1] and α+ β > 1. Then solsPα,β ⊆ solsP .

We can find solutions to the new instance Pα,β using ex-
isting bi-objective search technology. Indeed, if we have a
heuristic function h for the original problem P , we can ob-
tain a heuristic for the new problem by applying Mα,β to
the original heuristic h. Henceforth, we denote by hα,β the
result of applying Mα,β to h.

Our theoretical analysis implies that when using small
values of α and β more pruning is performed, and thus we
shall expect faster executions. As a consequence, we pro-
pose a simple approach leading to an anytime bi-objective
search algorithm. The main idea is to solve the target task for
an initial pair of values, e.g. α = β = 0.8, to then increase
both parameters, and repeat until we reach α = β = 1.

4 Experimental Evaluation
Our evaluation had the objective of evaluating the perfor-
mance of BOA* (Hernández et al. 2020), a state-of-the-art
bi-objective search algorithm, run over Pα,β with different
(α, β).

We evaluated our approach, implemented in C, on maps of
the 9th DIMACS Implementation Challenge: Shortest Path1;
specifically, 50 random instances for each of four USA road
maps used by Machuca and Mandow (2012). The cost com-
ponents represent travel distances (c1) and times (c2). The
heuristic h corresponds to the exact travel distances and
times to the goal state, computed with Dijkstra’s algorithm.

Dividing the Pareto Frontier in Buckets To report the di-
versity of solutions, imagine that we divide the upper-right
quadrant of the plane (i.e. when both coordinates are pos-
itive) into five slices by drawing rays starting at the origin
forming 18, 36, 54, and 72 degrees with the x-axis. We call
each 18-degree slice a “bucket”. By counting how many so-
lutions are in each bucket we obtain a measure of diversity.

Table 1 reports our results for 50 random instances for
each road map. It reports the total runtime in seconds re-
quired to compute the solution set for Pα,β for each (α, β)
pair, and the percentage of solutions that appear in each
bucket. In addition, the table reports the total number of so-
lutions in each bucket. We have the following observations:

• We obtain solutions that, on average, are diverse. Indeed
the maximum percentage difference between two buckets
is equal to 13%.

• 10% of solutions is obtained in about one order of mag-
nitude less time than that required to find all solutions.

• When (α, β) values increase, the runtime increases and
the number of solutions found in each bucket increases.

1http://users.diag.uniroma1.it/challenge9/download.shtml

Bucket
α = β t(s) 1 2 3 4 5

New York City (NY): 264,346 states, 730,100 edges
0.80 0.5 15% 19% 18% 18% 21%
0.84 0.7 22% 25% 25% 27% 32%
0.88 1.1 34% 37% 36% 36% 42%
0.92 1.7 53% 54% 57% 60% 65%
0.96 2.5 68% 67% 73% 74% 76%
1 3.9 100% 100% 100% 100% 100%
# solutions: 1,924 2,744 3,370 2,001 1,931

San Francisco Bay (BAY): 321,270 states, 794,830 edges
0.80 0.5 4% 7% 11% 13% 17%
0.84 0.8 8% 12% 17% 16% 21%
0.88 1.4 16% 20% 26% 22% 26%
0.92 2.4 28% 33% 38% 32% 39%
0.96 4.0 48% 54% 59% 49% 56%
1 8.5 100% 100% 100% 100% 100%
# solutions: 3,509 2,989 3,343 2,230 2,245

Colorado (COL): 435,666 states, 1,042,400 edges
0.80 1.3 5% 5% 4% 6% 15%
0.84 2.1 9% 10% 6% 8% 18%
0.88 3.7 15% 15% 9% 13% 24%
0.92 7.2 27% 26% 20% 23% 31%
0.96 15.6 45% 44% 36% 41% 45%
1 46.5 100% 100% 100% 100% 100%
# solutions: 8,272 8,140 6,946 4,937 6,431

Florida (FL): 1,070,376 states, 2,712,798 edges.
0.80 9.7 7% 6% 9% 8% 11%
0.84 16.8 13% 11% 15% 18% 20%
0.88 32.2 22% 20% 26% 32% 31%
0.92 50.8 35% 36% 40% 46% 45%
0.96 85.4 60% 61% 66% 71% 68%
1 210.9 100% 100% 100% 100% 100%
# solutions: 13,019 16,817 17,143 8,689 11,009

Table 1: Results on 50 random instances for different road
maps. In all these experiments we set α = β. The table
shows the α (and β), and the total runtime to solve all the
instances, and the percentage of solutions in each bucket.

• The relation between computation time and percentage
of solutions does not appear to be proportional as one
would expect. For example in the FL map we compute
approximately 8% of the solutions in about 9.7/210.9 =
4.6% of the time that is needed to compute 100% of so-
lutions. Likewise, to compute around 15% of the solu-
tions we require 16.8/210.9 = 8% of the time required
to compute 100% of the solutions.

5 Conclusions
We presented a new approach to subset approximation of
the solution set, that can be used as the basis for an anytime
bi-objective search algorithm. Our approach transforms the
given task into a target bi-objective search task using two
real parameters. For each parameter setting, the solutions to
the target task is a subset of the solution set of the original
task. Depending on the parameters used, the solution set of
the target task may be computed very quickly. We prove that
our approach is correct and that Bi-Objective A* prunes at
least as many nodes when run over the target task.
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