
Meeting at the Border of Two Separate Domains

Alexandru Paul Tabacaru, Dor Atzmon, Ariel Felner
Ben-Gurion University of the Negev

tabacaru@post.bgu.ac.il, dorat@post.bgu.ac.il, felner@bgu.ac.il

Abstract

To transmit information or transfer an object, two agents may
need to reach the same location and meet. Often, such two
agents operate in two separate environments and they can
only meet at border locations. For example, a ship, sailing
in the sea, needs to meet a truck traveling on land. These
two agents are able to meet only at the shoreline. We call
this problem the Meeting at the Border problem (MATB).
In MATB, the optimal meeting location at the border is re-
quired, where the cost of a meeting location is the sum of the
two shortest paths to that location. We show how to optimally
solve MATB with heuristic search and suggest a novel heuris-
tic function that estimates the cost of meeting at the border.
Indeed, our new heuristic significantly enhances search algo-
rithms in 2D and 3D domains.

Introduction and Related Work
In many cases, two agents must arrive at the same location in
order to transmit information or transfer an object. However,
the agents may not be able to meet at any location as the two
agents operate in two separate environments. Outdoors, each
of two such agents can be either a train on railway tracks, a
truck on the road, a ship in the sea, or a drone in the sky. In-
doors, the agents can be two different types of robots. For ex-
ample, in a warehouse, one robot delivers items from shelves
to a robot that travels on the ground. In all these cases, the
agents can only meet in specific locations at the joint border
of the two environments. We call the problem of finding a
meeting location, in this border, the Meeting at the Border
problem (MATB). The cost of a possible meeting location
is the sum of the two shortest paths to that location. We are
interested in finding the optimal (minimal-cost) meeting lo-
cation, among all locations on the border.

In this paper, for optimally solving MATB, we consider
the well-known unidirectional heuristic search algorithm
A* (Hart, Nilsson, and Raphael 1968), and the bidirectional
heuristic search algorithm MM (Holte et al. 2017) (details
on each algorithm, in the context of MATB, are provided be-
low). Search algorithms usually use a Front-To-End heuris-
tic function to estimate the remaining cost of reaching a goal
location from a given location.1

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Bidirectional search algorithms can also use a Front-To-Front

The main contribution of this paper is a novel heuristic
function that enhances heuristic search algorithms for solv-
ing MATB. This heuristic function is a Front-To-Border-to-
End heuristic, which estimates the cost of meeting at the
border. We also propose a fast method for calculating this
heuristic. We experimentally evaluate A* and MM with our
new heuristic function in 2D and 3D domains. Our experi-
ments show the significant benefit of our new function.

The problem of finding a meeting location for multiple
agents was investigated in the past (Yan, Zhao, and Ng 2015;
Atzmon et al. 2020, 2021). However, it is assumed that the
agents can meet at any location. Izmirlioglu et al. (2017)
considered a multi-agent meeting problem where the agents
must pass through specific locations before the meeting.
This is different from meeting in one of the locations on the
border. Other works showed how to find meeting locations
in continuous Euclidean spaces (Cooper 1968; Chen 1984;
Rosing 1992; Lanthier, Nussbaum, and Wang 2005).

There is also some resemblance between MATB and
Perimeter Search (Dillenburg and Nelson 1994), which is a
bidirectional search that creates a fixed perimeter from one
side of the search while the other side of the search pro-
gresses until it meets the perimeter. However, it results in a
shortest path from the start to the goal while MATB aims to
find two shortest paths to the border.

The Meeting at the Border Problem
The MATB problem receives as input two undirected graphs
G1 = (V1, E1) and G2 = (V2, E2), two start locations
s1 ∈ V1 and s2 ∈ V2, and a set of border locations
B = V1 ∩ V2 that belong to both graphs. We denote the
cost of traversing an edge e ∈ E1 ∪E2 by C(e). Each agent
must stay in its own graph and is not allowed to move to
the other graph, except for border vertices which belong to
both graphs. Let ϵ1 and ϵ2 denote the minimal edge cost in
G1 and G2, respectively, and ϵ = min(ϵ1, ϵ2) is the mini-
mal edge cost among the two graphs. In G1, two locations
vx, vy ∈ V1 are adjacent iff there is an edge (vx, vy) ∈ E1

(similarly in G2). A solution Π = (π1, π2) to MATB con-
sists of two paths π1 = (s1, . . . , vb) and π2 = (s2, . . . , vb)
where any two consecutive locations in π1 or π2 are adja-

heuristic function that estimates the cost of meeting with a frontier
of the other side of the search. We do not focus on such heuristics.

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

244



cent and π1 ∩ π2 = vb ∈ B. The cost C(π) of a path
π = (v1, . . . , vn) is the sum of costs of all edges traversed
in π, i.e., C(π) =

∑n−1
i=1 C((vi, vi+1)). Therefore, the cost

of solution Π = (π1, π2) is C(Π) = C(π1)+C(π2). An op-
timal solution Π∗ has the minimal cost among all solutions.

Solving MATB with Heuristic Search
In this section, we elaborate on how MATB can be optimally
solved with heuristic search. We start by defining MATB as
a unidirectional search (Uni-HS). Then, we extend our def-
inition to bidirectional search (Bi-HS). Finally, we explain
how all searches can exploit heuristic functions in MATB.

Unidirectional Heuristic Search (Uni-HS)
In MATB, we receive two start locations. Thus, to perform
Uni-HS, we start the search from one of the start locations
and set the other as a goal location. We next describe the
corresponding state-space.

Node. Each Node in the search space contains (1) a ver-
tex location (Node.v ), (2) a back pointer to the location
Node.v is reached from (Node.prev ), and (3) a Boolean flag
that marks if the border is already crossed (Node.crossed ).
Crossing the border by the search corresponds to perform-
ing a backward search to the other start location. Each node
N is associated with a g-value and an h-value, where g(N)
is the cost of reaching location N.v and h(N) estimates the
cost of reaching the goal location from location N.v. The
Boolean flag, defined above, is mainly used for the heuristic
function, as explained below.

Root. The search starts by initializing a Root node with
(1) one of the start locations (e.g., Root .v ← s1), (2)
Node.prev ← Null , and (3) Node.crossed ← False . Ex-
perimentally, we saw that starting the search from the side
with the higher minimal edge cost (ϵ1 or ϵ2) results in lower
number of expansions and lower runtime. Therefore, in our
experiments below, we always start from that side of the
search. The higher cost side approaches the optimal cost
faster and thus expands fewer nodes. Root is inserted into
the open list (OPEN), which is ordered according to the pri-
oritization of the selected search algorithm.

Goal. The Goal node is a node that contains the location
of the other original start location that was not selected for
the Root (e.g., Goal .v = s2).

Expansion Cycle. Repeatedly, we select from OPEN the
node N with the lowest f -value. In our experiments, we con-
sider the A* algorithm, which uses f(N) = g(N) + h(N).
When node N is expanded, for each location adjacent to lo-
cation N.v, a node N ′ is created, with g(N ′) ← g(N) +
C((N.v,N ′.v)). To prevent nodes from being re-expanded,
we maintain a closed list (CLOSED). For each newly cre-
ated node N ′, we check if ∃N ′′ ∈ OPEN ∪ CLOSED
s.t. N ′.v = N ′′.v. In case it is false, N ′ is inserted into
OPEN. Otherwise, if g(N ′′) ≤ g(N ′), N ′ is pruned and, if
g(N ′′) > g(N ′), N ′ is inserted into OPEN while N ′′ is ex-
tracted from OPEN or CLOSED. We track the current path by
setting N ′.prev ← N . If N ′.v ∈ B, we set N ′.crossed ←
True . Otherwise, we set N ′.crossed ← N .crossed . The cy-
cle halts when the goal is expanded or when OPEN is empty.

Bidirectional Heuristic Search (Bi-HS)
In contrast to Uni-HS, Bi-HS algorithms progress from both
directions of the search until frontiers of the two searches
meet and the optimal solution can be determined (Holte et al.
2017). We maintain two open lists OPENF and OPENB for
the forward and backward sides of the search, respectively.
Thus, two search trees are created, one for each side. Simi-
larly, we keep CLOSEDF and CLOSEDB.

Node. Nodes in Bi-HS are defined similarly to Uni-HS.
However, here, gF (N) of node N in OPENF (resp. OPENB)
denotes the cost of reaching location N.v from the start lo-
cation s1 (resp. s2) and hF (N) estimates the cost of getting
to the other start location s2 (resp. s1) from N.v.

Roots. The two roots RootF and RootB are set similarly
to the unidirectional case, but with the two start locations of
MATB, i.e., RootF .v ← s1 and RootB .v ← s2 . Each of the
two open lists is initialized with its corresponding root node.

Prioritizing Nodes. Following MM (Holte et al. 2017),
to guarantee that the search frontiers meet in the middle,
nodes N in OPENF (resp. OPENB) are ordered by prF (N) =
max(fF (N), 2gF (n)+ ϵ). Let prminF and prminB be the
minimum priority on OPENF and OPENB. MM expands next
a node with priority C = min(prminF , prminB).

Halting Condition. Instead of a goal node, here, we have
a halting condition. When a location v is generated from
both sides of the search, we know the cost of a solution
in which one of the agents passes through v. We update
an upper bound variable U (initialized with ∞) with the
lowest cost found. Following MM (Holte et al. 2017), the
search halts when U ≤ max(C, fminF , fminB , gminF +
gminB + ϵ), where fminF and fminB are the lowest f
values in OPENF and OPENB, and gminF and gminB are
the lowest g values.

Importantly, when applying Bi-HS on MATB, the two
search frontiers may cross the border and search backwards
in the opposite graph (i.e., towards the other start location).
Thus, the two search frontiers may meet in any location, not
necessarily in a border location. However, the solution re-
turned represents two paths that start at locations s1 and s2
and meet in a border location.

Heuristic Function (Front-to-End)
For a given node N , the heuristic function h(N) esti-
mates the cost from location N.v to a goal location s (=
h(N.v, s)). Let h∗(N) be the exact cost of the optimal
path from location N.v to the goal (the other start loca-
tion). A heuristic function h is admissible iff it never over-
estimates, i.e., ∀N : h(N) ≤ h∗(N). Given an admis-
sible heuristic function, it is guaranteed for both A* and
MM to return an optimal solution. While the edge costs
are different between the two domains, in many cases it
is possible to estimate the distance between the two loca-
tions N.v and the goal location, e.g., by Manhattan distance,
Octile distance, or Straight-line distance. Let d(vx, vy) de-
note an admissible estimate on the number of edge traver-
sals needed for reaching from vx to vy . Assume N is a node
in OPENF (resp. OPENB) such that Node.crossed = False .
Thus, h(N) = ϵ · d(N.v, s2) (resp. h(N) = ϵ · d(N.v, s1))

245



Figure 1: (a) FE heuristic and (b) FBE heuristic examples.

is an admissible heuristic for N , where ϵ = min(ϵ1, ϵ2).
When Node.crossed = True , h(N) = ϵ2 ·d(N.v, s2) (resp.
h(N) = ϵ1 · d(N.v, s1)) is also an admissible heuristic, as
all edges left are in G2 (resp. G1). This is a Front-to-End
(FE) heuristic as it estimates the cost to the end location.

Front-to-Border-to-End Heuristic
Assume two start locations in MATB that are close to each
other while the closest border location is far from both start
locations. In this case, a front-to-end heuristic function, as
presented above, provides an extremely inaccurate estimate
for MATB. Figure 1(a) presents an example of the case
described above. The vertical green line separates two 8-
connected grids. The blue dots denote the solution returned
by A*, started from the left side. The light green and red
dots denote the nodes that are in OPEN and CLOSED, respec-
tively. There is only one border location at the bottom of the
figure, where the blue dot of the solution passes through the
vertical green line. Here, A* had to expand 450 nodes.

Hence, we develop the Front-to-Border-to-End (FBE)
heuristic function. This heuristic estimates the cost of get-
ting to one of the border locations and then to the goal. Given
a node N in OPENF such that N .crossed = False , the agent
may need to arrive at any location b in the border B. For a
given border location b ∈ B, the following value is a lower
bound of the optimal solution in which an agent is at location
N.v and the agents meet at border location b:

h(N, b) = h(N.v, b) + h(b, s2). (1)

Therefore, we suggest the following heuristic function:

h(N) = min
b∈B

h(N, b). (2)

This heuristic estimates the cost for arriving at each loca-
tion in the border. Then, it takes the minimal value among
all border locations. Because the agent must get to one of
the border locations, it is easy to see that the FBE heuristic
is admissible. Figure 1(b) shows the same example for ex-
ecuting A* with FBE heuristic. Clearly, significantly fewer
nodes are expanded (only 53 expansions).

In fact, the FBE heuristic is always more informed than
FE. For a given node N that has not crossed the border
(N.crossed = False), the two heuristic functions return
the same heuristic value only if (1) the two domains have
the same minimal edge cost, namely, ϵ1 = ϵ2, (2) the two

Figure 2: (a) 2D Cauldron map. (b) 3D Complex map.

domains have a similar distance estimation d, and (3) there
is a border location between location N.v and the goal lo-
cation s2, such that d(N.v, s2) is the actual number of edge
traversals needed to reach the goal location.

Enhanced FBE (E-FBE)
While FBE is more informed than FE, it obviously requires
more computation time as all border locations are consid-
ered. Thus, we develop the enhanced version E-FBE that
calculates FBE without going over all border locations.

When the search starts, we create a static list BO, ini-
tialized with the following value for each border location b:
BO(b) ← h(s1, b) + h(b, s2). This value is a lower bound
of an optimal solution in which the agents meet at location
b. We order BO in ascending order by this value. Then,
when the heuristic needs to be calculated for a given node
N whose N.crossed = False, we iterate over the bor-
der locations in BO according to their order and calculate
h(N, b) (Equation 1). We set an upper bound UB (initial-
ized with∞) with UB ← min(UB, g(N)+h(N, b)). When
UB ≤ BO(b) for a border location b, the heuristic calcula-
tion halts and UB − g(N) is returned as the heuristic value
of node N (its f value is UB).

As was calculated at the beginning of the search, all other
border locations that were not considered in the heuristic cal-
culation have a higher cost for a meeting. Therefore, UB is
set with the lowest value, without scanning these locations.

Experimental Study
To test our new heuristic function for MATB, we consider
the 2D Cauldron map and the 3D Complex map, available
in the movingai repository (Sturtevant 2012; Brewer and
Sturtevant 2018), and random 3D maps. In the 2D map, we
consider an 8-neighbor movement, where moving vertically
or horizontally costs ϵ1 and ϵ2 (in G1 and G2) and moving
diagonally costs

√
2ϵ1 and

√
2ϵ2. In 3D maps, we consider

a 26-neighbor movement. Moving across one axis is equal
to moving vertically or horizontally in 2D; moving across
two axes is equal to moving diagonally; moving across three
axes costs

√
3ϵ1 and

√
3ϵ2.

In our experiments, we explore the impact of two at-
tributes on Uni-HS (A*) and Bi-HS (MM) with the different
heuristics (FE, FBE, and E-FBE). The two attributes we ex-
amine are: (1) the weight factor (WF) between ϵ1 and ϵ2, i.e.,

246



Border Density (BD) Weight Factor (WF)
5% 10% 40% 100% 5% 10% 40% 100% 1 2 4 10 1 2 4 10

#Expansions (millions) Runtime (s) #Expansions (millions) Runtime (s)
A*+FE 1.73 1.73 1.71 1.72 5.7 5.7 5.8 5.8 1.12 1.62 1.81 1.92 7.3 6.6 6.2 6.3
A*+FBE 0.77 0.78 0.77 0.78 5.5 5.9 7.6 11.2 1.12 0.91 0.78 0.72 10.0 7.9 6.5 5.5
A*+E-FBE 0.77 0.78 0.77 0.78 5.0 5.1 5.3 6.0 1.12 0.91 0.78 0.72 8.7 6.8 5.8 5.3
MM+FE 5.05 5.03 5.00 5.00 12.4 12.9 14.2 15.1 1.30 3.56 5.16 6.01 4.4 10.0 13.4 15.1
MM+FBE 1.57 1.57 1.56 1.57 7.7 9.3 19.1 39.2 1.30 1.42 1.72 2.70 9.4 10.9 13.8 22.2
MM+E-FBE 1.57 1.57 1.56 1.57 6.3 6.5 7.7 9.8 1.30 1.42 1.72 2.70 6.5 6.6 7.6 11.4

Table 1: Number of expansions (in millions) and average runtime (in seconds) on the 2D Cauldron map.

Border Density (BD) Weight Factor (WF)
5% 10% 40% 100% 5% 10% 40% 100% 1 2 4 10 1 2 4 10

Success Rate Runtime (s) Success Rate Runtime (s)
A*+FE 49 49 50 49 92.7 93.1 91.5 91.8 49 48 50 50 13.0 88.2 77.7 87.4
A*+FBE 50 50 50 50 2.5 2.5 2.7 2.9 49 50 50 50 14.4 2.4 1.4 1.2
A*+E-FBE 50 50 50 50 2.7 2.7 2.9 3.0 49 50 50 50 14.6 2.1 1.5 1.3
MM+FE 9 9 7 6 284.5 285.3 287.9 288.0 50 16 7 1 10.3 255.5 289.3 300.0
MM+FBE 50 50 50 49 3.2 5.2 13.9 36.4 50 50 50 50 24.2 2.3 3.4 5.5
MM+E-FBE 50 50 50 50 1.6 1.6 1.5 1.8 50 50 50 50 11.4 0.6 1.2 2.0

Table 2: Success rate (for 50 problem instances) and average runtime (in seconds) on the 3D Complex map.

WF 1 2 4 10
A*+FE 8.82 59.60 62.05 62.59
A*+FBE 7.61 1.83 1.65 1.15
A*+E-FBE 5.60 0.93 0.86 0.36
MM+FE 7.72 212.55 289.27 300.00
MM+FBE 18.46 55.67 66.20 137.76
MM+E-FBE 7.99 5.55 11.45 29.84

Table 3: Average runtime (in sec) on random 3D maps.

ϵ1
ϵ2

, assuming ϵ1 ≥ ϵ2, and (2) border density (BD), which is
the percentage of border locations on the separating area be-
tween the two domains. We consider WF={1, 2, 4, 10} with
BD=20%, and BD={5%, 10%, 40%, 100%} with WF=4.
We experimented on an AMD® EPYC 64 core-7702P
@2.00GHz processor with 16GB of RAM.

First, we experimented on 50 problems instances of the
2D Cauldron map. To create large instances, we duplicated
the 2D Cauldron map 16 times, as illustrated in Figure 2(a).
The border locations are the purple vertical line between the
two domains. We measured the average number of expan-
sions (in millions) and average runtime (in seconds). Ta-
ble 1 shows the results for this experiment. The first three
rows present results for A* and the three other rows present
results for MM. As can be seen, while A* with FBE and
E-FBE had the lowest number of expansions, their heuristic
calculation consumes time and A*+FE had almost the ex-
act same runtime. Clearly, E-FBE runs faster than FBE for
both A* and MM. WF has greater impact on the algorithms
than BD. As mentioned, our A* search starts from the side
of the search with the higher weight and, thus, when WF in-
creases, fewer nodes are expanded on the side with the lower
weight; however, the heuristic of FE becomes less informed.
As MM searches from both sides, when WF increases, more
nodes need to be expanded.

We performed a similar experiment on the 3D Complex

map. The 3D Complex map was duplicated twice, one for
each agent, and the border locations are located on the
plane between the two domains (Figure 2(b)). Here, some
of the algorithms could not solve some of the instances
within a time limit of 5 minutes. We present, in Table 2,
the number of instances each algorithm solved within the
time limit (success rate) and the average runtime. The run-
time of unsolved instances was set to the time limit (300
seconds) and the average runtime was computed out of all
instances. While all solvers solved almost all problem in-
stances, MM+FE was not able to solve many of the in-
stances. Here also, WF influenced on the algorithms more
than BD. While MM+FE solved all 50 instances with WF=1,
only one instance was solved with WF=10. Here, both FBE
and E-FBE ran much faster than FE for both A* and MM.

We also experimented on random 3D maps. We created
two 200x200x200 cubes, one for each agent, connected
on one side of each cube. We created 50 instances with
BD=20%, WF={1, 2, 4, 10}, and 10% random obstacles.
Some instances were not solved by MM+FE and MM+FBE.
Table 3 shows the average runtime for this experiment. Here
too, E-FBE outperformed FBE, and FBE outperforms FE.

A* and MM can be seen as two extremes, namely, A*
only searches from one side of the search and MM searches
from both sides equally. Solving MATB is more beneficial
when we progress more from the side with the larger weight.
Thus, MM is less effective. Other Bi-HS algorithms, such as
fMM (Shaham et al. 2017), have a parameter (a fraction)
that defines how much each side progresses. Selecting the
best fraction for a MATB instance is left for future work.

Conclusions
In this research, we studied MATB, where a meeting loca-
tion at the border is required. We solved MATB with Uni-HS
(A*) and Bi-HS (MM). We suggested a new type of heuristic
function for MATB, called Front-to-Border-to-End (FBE)

247



and an enhanced method for calculating FBE (E-FBE). Our
experiments show that FBE outperforms FE, and that E-FBE
reduces the runtime. Future work may: (1) generalize MATB
for multiple agents, for multiple tasks, or for continuous en-
vironments; (2) adjust advanced Bi-HS methods for solv-
ing MATB faster, such as NBS (Chen et al. 2017), Bounds
Propagation (Shperberg et al. 2019a) and DVCBS (Shper-
berg et al. 2019b); or (3) improve E-FBE by passing border
heuristics from a node to its successors.

Acknowledgments
This research was sponsored by the United States-Israel Bi-
national Science Foundation (BSF) under grant numbers
2017692 and 2021643, and by Israel Science Foundation
(ISF) under grant number 844/17.

References
Atzmon, D.; Freiman, S. I.; Epshtein, O.; Shichman, O.; and
Felner, A. 2021. Conflict-Free Multi-Agent Meeting. In
the International Conference on Automated Planning and
Scheduling (ICASP), 16–24.
Atzmon, D.; Li, J.; Felner, A.; Nachmani, E.; Shperberg,
S. S.; Sturtevant, N.; and Koenig, S. 2020. Multi-Directional
Heuristic Search. In the International Joint Conference on
Artificial Intelligence (IJCAI), 4062–4068.
Brewer, D.; and Sturtevant, N. R. 2018. Benchmarks for
Pathfinding in 3D Voxel Space. In the International Sympo-
sium on Combinatorial Search (SoCS), 143–147.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-End Bidirectional Heuristic Search with
Near-Optimal Node Expansions. In the International Joint
Conference on Artificial Intelligence (IJCAI), 489–495.
Chen, R. 1984. Location problems with costs being sums
of powers of Euclidean distances. Computers & Operations
Research, 11(3): 285–294.
Cooper, L. 1968. An extension of the generalized Weber
problem. Journal of Regional Science, 8(2): 181–197.
Dillenburg, J. F.; and Nelson, P. C. 1994. Perimeter search.
Artificial Intelligence, 65: 165–178.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, SSC-4(2): 100–107.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. MM: A bidirectional search algorithm that
is guaranteed to meet in the middle. Artificial Intelligence,
252: 232–266.
Izmirlioglu, Y.; Pehlivan, B. A.; Turp, M.; and Erdem, E.
2017. A general formal framework for multi-agent meeting
problems. In the IEEE International Conference on Robotics
and Automation (ICRA), 1299–1306.
Lanthier, M. A.; Nussbaum, D.; and Wang, T.-J. 2005. Cal-
culating the meeting point of scattered robots on weighted
terrain surfaces. In the Australasian Theory Symposium, vol-
ume 41, 107–118.

Rosing, K. E. 1992. An optimal method for solving the (gen-
eralized) multi-Weber problem. European Journal of Oper-
ational Research, 58(3): 414–426.
Shaham, E.; Felner, A.; Chen, J.; and Sturtevant, N. R. 2017.
The Minimal Set of States that Must Be Expanded in a
Front-to-End Bidirectional Search. In the International Sym-
posium on Combinatorial Search (SoCS), 82–90.
Shperberg, S.; Felner, A.; Shimony, S.; Sturtevant, N.; and
Hayoun, A. 2019a. Improving bidirectional heuristic search
by bounds propagation. In the International Symposium on
Combinatorial Search (SoCS), 106–114.
Shperberg, S. S.; Felner, A.; Sturtevant, N. R.; Shimony,
S. E.; and Hayoun, A. 2019b. Enriching non-parametric
bidirectional search algorithms. In the AAAI Conference on
Artificial Intelligence (AAAI), 2379–2386.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games, 4(2):
144–148.
Yan, D.; Zhao, Z.; and Ng, W. 2015. Efficient processing of
optimal meeting point queries in Euclidean space and road
networks. Knowledge and Information Systems, 42(2): 319–
351.

248


