
Bounded-Cost Bi-Objective Heuristic Search
Shawn Skyler1, Dor Atzmon1, Ariel Felner1, Oren Salzman2

Han Zhang3, Sven Koenig3, William Yeoh4, Carlos Hernández Ulloa5

1 Ben-Gurion University of the Negev
2 Technion - Israel Institute of Technology

3 University of Southern California
4 Washington University in St. Louis

5 Universidad Andrés Bello
shawn@post.bgu.ac.il, dorat@post.bgu.ac.il, felner@bgu.ac.il, osalzman@cs.technion.ac.il

zhan645@usc.edu, skoenig@usc.edu, wyeoh@wustl.edu, carlos.hernandez@uss.cl

Abstract

There are many settings that extend the basic shortest-path
search problem. In Bounded-Cost Search, we are given a
constant bound, and the task is to find a solution within the
bound. In Bi-Objective Search, each edge is associated with
two costs (objectives), and the task is to minimize both ob-
jectives. In this paper, we combine both settings into a new
setting of Bounded-Cost Bi-Objective Search. We are given
two bounds, one for each objective, and the task is to find a
solution within these bounds. We provide a scheme for nor-
malizing the two objectives, introduce several algorithms for
this new setting and compare them experimentally.

Introduction and Background
A∗ (Hart, Nilsson, and Raphael 1968) and its many variants
are used to solve classical shortest-path problems optimally.
Nodes n are expanded according to f(n) = g(n) + h(n). If
h(n) is admissible, an optimal solution path will be found.
Nevertheless, there are other settings that do not require opti-
mal solution paths. One such setting is Bounded-Cost Search
(BCS) (Stern et al. 2014). In BCS, we are given a bound C,
and the task is to quickly find a solution path with cost ≤ C.

Another setting is Bi-Objective Search (BOS) (Raith and
Ehrgott 2009). In BOS, we are given a graph (state-space)
where two types of costs are associated with its edges that
need to be minimized, e.g., travel distance and time for trans-
portation problems. BOS has many applications, ranging
from robotics (Fu et al. 2019; Fu, Salzman, and Alterovitz
2021) to transportation (Bronfman et al. 2015). The notion
of an optimal path does not exist here. Instead, the “best”
possible paths are those that are undominanted by other
paths. Path π is said to dominate path π′ iff both of π’s costs
are not larger than the corresponding costs of π′ and at least
one cost of π is strictly smaller than the corresponding cost
of π′. The Pareto-Optimal Frontier (POF) is the set of solu-
tion paths that are undominated by other solution paths. The
BOA∗ algorithm (Hernández Ulloa et al. 2020) is consid-
ered the state-of-the-art algorithm for finding the POF.

In this paper we combine both BCS and BOS to define the
problem of Bounded-Cost Bi-Objective Search (BC-BOS)

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where we are given a pair of bounds, one for each of the two
costs, and need to find a solution path whose costs are below
these bounds. In particular, in this paper, we are interested
in the more restrictive problem of finding a solution path in
the POF whose costs are below the bounds.

We first provide a normalization mechanism that con-
verts the costs of both objectives (which could have differ-
ent scales, e.g., time and distance) to values in the range of
[0 . . . 1]. This places the two objectives on the same scale
and, therefore, makes them directly comparable. We then in-
troduce the BCP-BOA∗ algorithm, which modifies BOA∗ to
return a POF solution path within the given bounds. BCP-
BOA∗ uses our new notion of bound pruning, which prunes
nodes that are not within the bounds. We introduce sev-
eral variants of BCP-BOA∗ that explore the set of required
nodes by using various ordering functions to order nodes
in OPEN. We then experimentally compare the variants of
BCP-BOA∗ on different pairs of cost bounds and study the
advantages and disadvantages of each algorithm. Indeed, all
variants run much faster than BOA∗, that generates the full
set of POF solution paths.

Definitions and Background
A Bi-Objective Search (BOS) problem is characterized by
a graph G = (V,E), where V is a set of vertices (states)
and E is a set of edges, a start vertex start ∈ V and a goal
vertex goal ∈ V . We use a boldface font to indicate a pair
of two numbers, e.g., b = (b1, b2). The addition of two pairs
x and y yields (x1 + y1, x2 + y2). We say that x dominates
y (x ≺ y) iff (x1 ≤ y1 ∧ x2 < y2) or (x1 < y1 ∧ x2 ≤
y2). Each edge e ∈ E is associated with two cost functions
c(e) = (c1(e), c2(e)), i.e., a cost for each objective. A path
π = [v1, . . . , vn] is a list of neighboring vertices. The cost
of path π is C(π) = (C1(π), C2(π)) =

∑n−1
i=1 c(vi, vi+1).

A solution path π is a path from start to goal. Since there
are two costs in BOS, the notion of an optimal solution path
does not exist. Instead, the Pareto-Optimal Frontier (POF)
is the set of solution paths Π such that each path π ∈ Π
is not dominated by any other solution path. The points in
Figure 1(a) show the POF costs where the x-axis represents
c1 and the y-axis represents c2.

For BOS, an admissible heuristic function h(n) =

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

239

(h1(n), h2(n)) is a lower bound on the costs of a path from
a given node n to goal. We denote the heuristic for the node
of the start vertex by h(start) (resp. h(goal) for the goal
vertex). We also assume that h is consistent (i.e., ∀i∧e∈E :
hi(goal) = 0 ∧ hi(n) ≤ ci(e = (n, n′)) + hi(n

′)). Specif-
ically, we follow the common practice in BOS and use the
individual shortest path heuristic function (Hernández Ulloa
et al. 2020; Goldin and Salzman 2021; Pulido, Mandow, and
Pérez-de-la Cruz 2015). That is, for h(n), hi(n) is the cost-
minimal path from n to goal using the ith objective only. For
example, consider a problem instance with only two solution
paths with cost (1, 10) and (11, 2). Then, h(start) = (1, 2).
Computing such cost-minimal paths can be done in time
polynomial in V (the number of vertices of the input graph).
This can be neglected compared to the complexity of BOS,
which is exponential in V . In fact, we can assume that the
all-pairs-shortest-path (cost-minimal) data for each of the
objectives is given as input along with the graph, e.g., by
running a polynomial time preprocessing phase.

Previous Work on BOS
In BOS, the number of nodes can be exponentially larger
than the number of vertices of the underlying graph be-
cause every path to a vertex has its unique node with pos-
sibly unique f -values. In fact, the POF itself can contain
an exponential number of paths (Ehrgott 2005; Breugem,
Dollevoet, and Heuvel 2017). Several A∗-based search al-
gorithms have been designed to find the POF. Examples in-
clude Multi-Objective A∗ (MOA∗) (Stewart and White III
1991), NAMOA∗ (Mandow and De La Cruz 2005) and
NAMOA∗-dr (Pulido, Mandow, and Pérez-de-la Cruz 2015).
All these algorithms use the same general best-first search
framework, denoted here by BO-BFS. BO-BFS employs the
traditional OPEN and CLOSED lists, and chooses a node
n ∈ OPEN for expansion that is undominated by other nodes
in OPEN. A common practice is to order nodes according
to their lexicographic order, i.e., first compare f1 and, in
a case of a tie, compare f2. BO-BFS performs dominance
checks on newly generated nodes to prune nodes that are
dominated by other nodes that have already been generated
or expanded. These dominance checks usually incur CPU
overhead which is linear in the size of OPEN. The BO-BFS
algorithms mainly differ in low-level implementation details
of the expansion cycle and the dominance checks.

BOA∗ (Hernández Ulloa et al. 2020) is a BO-BFS al-
gorithm, which is considered the current state-of-the-art.
BOA∗ exploits the fact that nodes are ordered in lexico-
graphic order of their f -values to perform all dominance
checks in constant time. Unlike the other algorithms, when
a node n is generated, BOA∗ compares its g2-value (the g-
value of the second objective) only against the best seen g2-
value for vertex v of node n. Additionally, BOA∗ compares
f(n) with the cost of the best known solution path.

Bounded-Cost BOS
The Bounded-Cost Bi-Objective Search (BC-BOS) problem
is a BOS problem which is also characterized by a pair of
bounds (budgets) b = (b1, b2). A solution path is now a path
π = [start, . . . , goal] whose costs are within the bounds,

i.e., C(π) ⪯ b. The task is to find a solution path as fast
as possible. In this paper, we focus on the more restrictive
problem of finding a solution path that is also in the POF.1
We call this restricted problem BCP-BOS to differentiate it
from the general BC-BOS problem that seeks a solution path
which may or may not be in the POF.

Normalizing the Two Objectives
In many problem instances, the two objectives may not be
measured on the same scale, e.g., time in minutes and dis-
tance in miles. Therefore, we introduce a normalizing pro-
cedure that maps all values into the range [0 . . . 1], which
allows us to compare and combine both objectives since
they are now on the same scale. We use this normalization
method in this paper, but it is general and can be used by
other BOS algorithms too.

Extreme Costs of Solution Paths
Let min1 = h1(start) (the c1-cost of the cost-minimal path
from start to goal), and let OPT1 be the set of all solution
paths with cost min1. Now, let max2 = minπ∈OPT1

C2(π)
(namely, max2 is the minimal c2-cost of paths whose c1-cost
is min1). min2, OPT2 and max1 are defined analogously.
Note that mini can be computed in time O(E) by running
a Single-Objective A∗ search with only the costs of the ith
objective, and breaking ties according to the minimal cost of
the other objective. As we use the individual shortest path
heuristic functions for each objective, this computation is
extremely fast.

(min1,max2) and (max1,min2) are the most extreme so-
lution costs in the POF (see the top-left and bottom-right
points in Figure 1(a)), and h(start) = (min1,min2). For
example, assume that the two extreme POF solution paths
have costs (1, 10) and (11, 2). Then min1 = 1, max1 = 11,
min2 = 2 and max2 = 10. Naturally, the costs of any other
POF solution paths are between these values.

Given mini and maxi, we can easily solve the BCP-BOS
problem in the following cases: (i) If one of the bounds sat-
isfies bi < mini then no solution path exists. (ii) If one of
the bounds satisfies bi > maxi then one of the extreme so-
lution paths in the POF (within the bounds) is a valid solu-
tion. Thus, henceforth, we limit our discussion to the setting
where mini ≤ bi ≤ maxi for both i ∈ {1, 2}.

Normalizing the Costs
We now define a normalization function for any cost value xi

with mini ≤ xi ≤ maxi (for i ∈ {1, 2}). We define:

x̄i =
xi −mini

maxi −mini

This normalization maps all cost values into the interval
[0 . . . 1] (visualized in Figure 1(b)). Hence, the two (now
normalized) cost functions can be compared and combined.
Moreover, the extreme solution paths in the POF now have

1In classical single-objective search, there is only one optimal
solution cost, so finding an optimal solution path below a given
bound makes no sense. One must run A∗ and find an optimal solu-
tion path.

240

(a) (b) (c) (d) 𝑙𝑒𝑥1 (e) 𝑙𝑒𝑥2

(f) 𝑚𝑖𝑛 (g) 𝑚𝑎𝑥 (h) 𝑎𝑣𝑔 (i) (j)

Figure 1: Bi-objective search illustration.

normalized costs (0, 1) and (1, 0), respectively (see the top-
left and bottom-right points in Figure 1(b)).

An Algorithm for Solving BCP-BOS
We now present BCP-BOA∗, an algorithm that solves BCP-
BOS. BCP-BOA∗ uses the BO-BFS framework described
above but modifies it to fit BCP-BOS.

BCP-BOA∗ executes a best-first search, which maintains
an OPEN list and a CLOSED list. OPEN contains all leaf
nodes of the current (partial) search tree, and CLOSED con-
tains all already-expanded non-leaf nodes of the tree. Each
node contains a vertex v, a g-value (g1, g2) (with the cost of
reaching vertex v from start) and an h-value (h1, h2) (with
a consistent estimate of cost of reaching goal from v). As
described above, we use the individual shortest path heuris-
tic function.

BCP-BOA∗ starts by inserting a root node r into OPEN
that contains the start vertex start and f(r) = g(r)+h(r) =
(0, 0) + (min1,min2) = (min1,min2) (= (0, 0) after nor-
malizing the values). In each iteration, BCP-BOA∗ chooses
the best node for expansion and expands it. Below, we dis-
cuss different methods for choosing which node to expand
next. When a node n that contains vertex v is expanded,
BCP-BOA∗ moves n from OPEN to CLOSED and cre-
ates a new node n′ for each successor vertex v′ of v with
g(n′) = g(n) + c((v, v′)). Next, to address the bounded-
cost requirement for each new node n′, BCP-BOA∗ dis-
cards n′ if one of its fi-values exceeds the bounds (i.e., if
f1(n

′) = g1(n
′) + h1(n

′) > b1 or if f2(n′) = g2(n
′) +

h2(n
′) > b2). This step is called bound pruning. If both

costs are within their bounds, BCP-BOA∗ performs a dom-
inance check. That is, BCP-BOA∗ checks if there is a node
n′′ ∈ OPEN ∪ CLOSED with g(n′′) ⪯ g(n′) that contains
the same vertex as n′. In this case, it prunes n′. Otherwise,
it inserts n′ into OPEN. The search terminates when a node
that contains the goal vertex is expanded. Other BO-BFS al-
gorithms might perform the dominance checks differently,
but the ideas behind BCP-BOA∗ apply to them as well.

All BO-BFS algorithms mentioned above return the en-
tire POF (by expanding all nodes in the grey area in Fig-
ure 1(b)). In contrast, BCP-BOA∗ uses bound pruning to
expand nodes only in the rectangle in Figure 1(c), which
is bounded by the two bounds. BCP-BOA∗ can be tuned
to continue the search with bound pruning until OPEN is
empty. In this case, it will find all solutions that are both in
the POF and the rectangle.

All BO-BFS algorithms mentioned above store f1(n) and
f2(n) for each node n ∈ OPEN. They typically order OPEN
in lexicographic order of the f -values of the nodes. That is,
the best node in OPEN is the node with the smallest f1-
value, and the smallest f2-value among all nodes with the
smallest f1-value. This allows BOA∗ to perform dominance
checks in constant time (Hernández Ulloa et al. 2020). The
implication of using this lexicographic ordering is that so-
lution paths are found from the top-left of the POF to its
bottom-right. However, since we are only interested in find-
ing one solution path, BCP-BOA∗ has more flexibility in
how it orders the nodes in OPEN. We describe several ap-
proaches for this purpose next.

Choosing the Best Node in OPEN

Given the normalized bounds b̄1 and b̄2, BCP-BOA∗ has
to search the rectangle whose extreme points are (0,0) and
(b̄1, b̄2), as illustrated in Figure 1(c). If a solution path exists,
the POF points cross this rectangle diagonally (see again
Figure 1(c)). We now describe strategies that search this
rectangle systematically to find a solution path as fast as
possible (see Figures 1(d-h) for visualizations). We define
such strategies using an ordering function. A general order-
ing function O maps two single objective functions F1 and
F2, and two nodes n and m to the suggested node for ex-
pansion among n and m. It creates a total order between all
nodes, thereby determining the order of the nodes in OPEN.
O is defined as follows:

241

O(F1, F2, n,m) =


n if F1(n) < F1(m)

n if (F1(n) = F1(m))∧
(F2(n) < F2(m))

m otherwise.

We next describe a number of ordering functions that are
obtained from the general ordering function by defining F1

and F2 differently.

Lexicographic Orderings

We define the Lex1 and Lex2 ordering functions as follows:

Olex1(n,m) = O(f1, f2, n,m)

Olex2(n,m) = O(f2, f1, n,m)

Their orders of node expansions are shown in Figures 1(d,e).
Olex1 first expands nodes along the left vertical line from
bottom to top, then the second left vertical line from bottom
to top, and so on. Olex2 first expands nodes along the bottom
horizontal line from left to right, then the nodes along the
second horizontal line from the bottom, and so on. In the
figure, b̄1 is larger than b̄2. Since the POF crosses the top-
right part of the rectangle defined by the bounds diagonally,
Olex2 has an advantage over Olex1 as it expands a node in the
POF earlier (node b in Figure 1(e)) after scanning less than
half of the rectangle. In contrast, Olex1 scans the rectangle
from left to right and needs to scan more than half of the
rectangle before expanding node a in the POF. Therefore,
when b̄1 is larger than b̄2, Olex2 often outperforms Olex1 and
vice versa.

Minimum and Maximum Orderings

Let Fmin(n) and Fmax(n) be two functions returning the
minimal and maximal normalized f -values of a node n,
respectively. Namely, Fmin(n) = min(f̄1(n), f̄2(n)) and
Fmax(n) = max(f̄1(n), f̄2(n)). We define the Min and
Max ordering functions (see Figures 1(f,g)) as follows:

Omin(n,m) = O(Fmin, Fmax, n,m)

Omax(n,m) = O(Fmax, Fmin, n,m)

Min combines Lex1 and Lex2, while Max is similar to a
depth-first search.

Average Ordering

Let Favg(n) be the average normalized f -values of a node.
Namely, Favg(n) = (f̄1(n) + f̄2(n))/2. We define the Aver-
age ordering function (visualized in Figure 1(h)) as follows:

Oavg(n,m) = (Favg, Fmin, n,m)

Ties are broken according to the minimal f -value of
each node. We also tried other ordering functions, such
as weighted average, circle-shaped f̄1(n)

2 + f̄2(n)
2 and

hyperbole-shaped f̄1(n) · f̄2(n) ordering functions. We do
not report them as we did not observe any important bene-
fits for them.

Experimental Results
We compared all variants of BCP-BOA∗ on the BAY road
map2. A common practice is to use time and distance as
objectives on this map (Hernández Ulloa et al. 2020). For
the purpose of the experiments, we first found the POF for
each problem instance. We then chose five nodes from the
POF as pivots to set the two bounds between mini and maxi
(i ∈ {1, 2}). The pivots selected are (see Figure 1(i)): (1)
FTL, which is the farthest top-left POF solution path that
is not an extreme solution path; (2) FBR, which is the far-
thest bottom-right POF solution path that is not an extreme
solution path (analog to FTL); (3) MD, which is the POF
solution path that has the smallest difference between its c̄1
and c̄2 costs; (4) TL, which is the POF solution path that
is closest to the middle between MD and FTL; and (5) BR,
which is the POF solution path that is closest to the middle
between MD and FBR.

For a given pivot with costs C̄ = (x, y), we divide the
space of solution paths into six zones, as shown in Fig-
ure 1(j). In Zone 0, we set b̄ = (x− ϵ, y − ϵ), and therefore
there are no solution paths in that zone. In Zone 1, we set
b̄ = (x, y), and the cost of the path to the pivot is the only
possible cost. In Zone 5, we set b̄ = (1, 1), and it contains all
POF solution paths. The most interesting zones are 2, 3 and
4, which divide the area between (x, y) and (1, 1) into three
zones (that all include at least one but not all POF solutions).
For these zones, the bounds are b̄ = (14 (3x+1), 1

4 (3y+1)),
b̄ = (12 (x + 1), 1

2 (y + 1)), and b̄ = (14 (x + 3), 1
4 (y + 3)),

respectively.
Table 1 presents the average number of node expansions

over 135 problem instances for Zones 2, 3, 4 and 5. For
Zones 2–4, we report numbers for the five pivots defined
above. The first two rows present the average bounds. Then,
each row represents a different ordering function. For Zone
5, we only report one number. Zone 5 always contains all
nodes in the POF and is thus similar for all pivots. Zones
0 and 1 are not included since all variants of BCP-BOA∗

need to expand the same number of nodes in these zones.
In general, given two nodes n1 ≺ n2, BCP-BOA∗ with all
ordering methods expands n1 before n2. Thus, when there
is no solution path or when only a single solution path with
cost b̄ exists (Zones 0 and 1), all variants expand the same
number of nodes.

In Zones 2–4, Lex1 was almost always better than Lex2
in FTL and TL, while Lex2 was better than Lex1 in MD, BR
and FBR. The advantage of Lex2 for MD is probably due
to some skewing of the exact map and the order of the pa-
rameters (time and distance). Selective Lex is an intelligent
variant which selects Lex2 if b̄1 > b̄2 and Lex1 otherwise.
Thus, it exploits the benefits of both Lex variants. Our re-
sults confirm that Selective Lex was the most robust variant:
it was either the best ordering function or very close to it.
Min also performed relatively well and was sometimes the
best. The remaining ordering functions performed poorly.

We do no report runtimes because the runtimes per node
expansion were very similar for all ordering functions.
BCP-BOA∗ with the Lex ordering functions can exploit

2http://www.diag.uniroma1.it// challenge9/download.shtml

242

Zone 2 Zone 3 Zone 4 Zone 5
Ordering FTL TL MD BR FBR FTL TL MD BR FBR FTL TL MD BR FBR Any

b̄1 .26 .42 .51 .60 .96 .50 .61 .67 .73 .97 .74 .80 .83 .85 .98 1.00
b̄2 .95 .60 .51 .43 .21 .97 .74 .76 .62 .50 .98 .87 .84 .81 .75 1.00

Lex1 1.1 83.6 105.8 110.3 81.6 1.1 61.1 88.2 107.6 106.9 1.1 26.7 52.6 55.8 84.3 1.1
Lex2 117.7 107.4 78.3 49.1 0.8 103.7 68.5 44.3 24.6 0.8 38.5 19.5 11.3 6.3 0.8 0.8

Selective Lex 1.1 83.6 92.8 49.1 0.8 1.1 61.1 59.7 24.6 0.8 1.1 26.6 16.5 6.3 0.8 0.8
Min 1.5 96.6 107.2 65.3 0.9 1.8 60.4 71.0 36.3 1.0 2.1 18.7 15.3 9.5 1.2 1.3
Max 117.8 123.8 124.5 120.5 87.9 123.7 124.0 124.5 124.2 120.6 124.5 124.5 124.5 124.5 124.5 124.4

Average 141.6 174.7 175.4 161.1 113.6 173.6 180.7 183.4 179.1 166.0 181.0 182.1 181.3 181.3 182.1 181.3
All POF 162.8 226.0 241.5 245.9 202.8 264.4 303.9 312.4 314.0 306.1 337.6 349.2 353.6 356.3 354.0 369.4

#POF Solutions 67 56 56 51 50 98 92 88 84 86 124 120 118 115 116 147

Table 1: Number of expanded nodes (in thousands) for Normalized BCP-BOA∗.

the constant-time dominance checks of BOA∗. While BCP-
BOA∗ with the other ordering functions has only linear-time
dominance checks, they are linear in the number of nodes
that contain the same vertex. Since we used bound pruning,
that number was very small and did not affect the runtimes.

When BCP-BOA∗ keeps running after it finds the first
POF solution path, it finds all possible POF solution paths
within the given bounds. The number of node expansions
for this continuous variant of BCP-BOA∗ is also presented
(ALL POF) as well as the number of solution paths that it
found. On average, there were 147 different POF solution
paths, and 369K node expansions were needed to find them.
In contrast, for any given bounds, BCP-BOA∗ with the best
ordering function reduced the number of node expansions
by factors from 2.7 (Zone 2, TL) to over 400 (Zone 4, FBR)
when finding a single POF solution path.

Conclusions

We presented BCP-BOA∗ and several variants of it, and
concluded that Selective Lex is the best ordering function
for ordering nodes in OPEN. It is future work to lift the
requirement that the returned solution path must be in the
POF, thereby allowing variants of Potential Search (Stern
et al. 2014) to be used. Our normalization scheme can be
adapted to other BOS algorithms. Finally, our work can be
generalized to Multi-Objective Search.

Acknowledgements

This research was supported by the United States-Israel Bi-
national Science Foundation (BSF) under grant numbers
2017692 and 2021643, Israel Science Foundation (ISF)
under grant number 844/17, the National Science Foun-
dation (NSF) under grant numbers 1409987, 1724392,
1817189, 1837779, 1935712, 2112533, 2121028, and by
Centro Nacional de Inteligencia Artificial under grant num-
ber FB210017. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, or the
U.S. government.

References
Breugem, T.; Dollevoet, T.; and Heuvel, W. 2017. Analysis
of FPTASes for the Multi-Objective Shortest Path Problem.
Computers & Operations Research, 78: 44–58.
Bronfman, A.; Marianov, V.; Paredes-Belmar, G.; and Lüer-
Villagra, A. 2015. The Maximin HAZMAT Routing Prob-
lem. European Journal of Operational Research, 241(1):
15–27.
Ehrgott, M. 2005. Multicriteria Optimization, volume 491.
Springer Science & Business Media.
Fu, M.; Kuntz, A.; Salzman, O.; and Alterovitz, R. 2019. To-
ward Asymptotically-Optimal Inspection Planning Via Effi-
cient Near-Optimal Graph Search. In Robotics: Science and
Systems XV.
Fu, M.; Salzman, O.; and Alterovitz, R. 2021.
Computationally-Efficient Roadmap-Based Inspection
Planning via Incremental Lazy Search. In ICRA, 7449–
7456.
Goldin, B.; and Salzman, O. 2021. Approximate Bi-Criteria
Search by Efficient Representation of Subsets of the Pareto-
Optimal Frontier. In ICAPS, 149–158.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Hernández Ulloa, C.; Yeoh, W.; Baier, J. A.; Zhang, H.;
Suazo, L.; and Koenig, S. 2020. A Simple and Fast Bi-
Objective Search Algorithm. In ICAPS, 143–151.
Mandow, L.; and De La Cruz, J. L. P. 2005. A New Ap-
proach to Multi-Objective A* Search. In IJCAI, 218–223.
Pulido, F.-J.; Mandow, L.; and Pérez-de-la Cruz, J.-L. 2015.
Dimensionality Reduction in Multiobjective Shortest Path
Search. Computers & Operations Research, 64: 60–70.
Raith, A.; and Ehrgott, M. 2009. A Comparison Cf Solution
Strategies for Biobjective Shortest Path Problems. Comput-
ers & Operations Research, 36(4): 1299–1331.
Stern, R.; Felner, A.; van den Berg, J.; Puzis, R.; Shah,
R.; and Goldberg, K. 2014. Potential-Based Bounded-Cost
Search and Anytime Non-Parametric A*. Artificial Intelli-
gence, 214: 1–25.
Stewart, B. S.; and White III, C. C. 1991. Multiobjective A*.
Journal of the ACM, 38(4): 775–814.

243

