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Abstract
Hierarchical search such as Contraction Hierarchies is a pop-
ular and successful branch of optimization techniques for
shortest path computation. Existing hierarchical techniques
have one component in common: they add edges to the graph,
so called shortcuts. This component usually causes a consid-
erable space overhead but is mandatory in order to preserve
correctness. In this work we show a hierarchical method that
requires to store only two additional bytes per node and no
shortcuts at all. We prove the correctness of our method and
experimentally show that it improves query times by one or-
der of magnitude compared to Dijkstra’s bidirectional algo-
rithm.

Introduction
In this work we address the problem of finding the shortest
path from a source node s to a target node t in a directed
graph G(V, E) with non-negative edge weights c : E →
R+. We define a path p = e1e2 . . . ek to be a sequence
of edges such that the target node of edge ei is the source
node of edge ei+1 for every 1 ≤ i < k − 1. A node v
is in path p if v is adjacent to an edge in p. Furthermore,
we say that p goes from node s to node t if e1 = (s, ·)
and ek = (·, t). The weight c (p) of a path p is defined
to be the sum of the weights of its edges. The path π(s, t)
from node s to node t with minimum weight is called short-
est st-path and its weight is the distance from s to t, also
written d (s, t). A basic, yet versatile approach to finding
π is Dijkstra’s algorithm, which performs a greedy search
based on the distances from the source node s. There is
also a bidirectional variant that starts a search from s and
from t. The search from node t traverses the edges back-
wards, hence we call it a backward search (in contrast to the
forward search from node s). In many large-scale applica-
tions, though, Dijkstra’s algorithm is too time consuming to
be practical. Hence, many speed-up techniques have been
proposed to improve the shortest path query times. A very
successful approach is to identify whether the shortest paths
exhibit a hierarchical structure during a preprocessing step
and to perform a search that takes this structure into account.

Important contributions to hierarchical search are, for in-
stance, Highway Hierarchies (Sanders and Schultes 2006),
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Highway Node Routing (Schultes and Sanders 2007) and
Contraction Hierarchies (Geisberger et al. 2008). All three
techniques have in common that they are in particular de-
signed for street networks. This is also the point of view we
take in our experiments. In the following, we discuss Con-
traction Hierarchies (CH) in more detail as they build the
basis for our method.

In CH, a (bijective) node ordering r : V →
{1, 2, . . . , n} is defined, where n is the number of nodes
in the graph. Given a node v ∈ V the mapping r(v) is
called the rank of v. The greater the rank, the more impor-
tant the node is supposed to be. With the ranks one can di-
vide the edges into upward edges and downward edges. An
edge e = (u, v) goes upwards if r(u) < r(v) and down-
wards otherwise. An upward (downward) path is a path that
only consist of upward (downward) edges. If this path is ad-
ditionally a shortest path we say that it is a shortest upward
(downward) path.

Let V (R) be the subset of V of all nodes with rank greater
than R. We say that a graph G (V, E) is unimodal with re-
spect to the node ordering r if for any value R the subgraph
of G induced by V (R) shows the same distances between
any two nodes in V (R) as in G itself. In other words, if
we computed the distance from any node s ∈ V (R) to
any node t ∈ V (R) first in G and then in the subgraph
of G induced by V (R) we would always get the same re-
sult (given that G was unimodal). Most graphs are not uni-
modal as shortest paths in G between nodes in V (R) typ-
ically also contain nodes in V \ V (R). The preprocessing
step of CH takes a graph G (V, E), defines a node ordering
r and computes a set of shortcuts E′ of minimum cardinal-
ity such that G′(V, E ∪ E′) is unimodal with respect to r
and all distances in G and G′ are identical. The name Con-
traction Hierarchies comes from the way the preprocessing
step finds the set E′ by performing node contraction oper-
ations. Nodes of low rank are contracted first. These con-
tractions are typically performed in a round-based manner.
In each round, a set of independent nodes is contracted si-
multaneously (see, for instance, (Geisberger et al. 2012) for
further details). If a graph G is unimodal, one can show
that between any two nodes s and t there is a shortest path
π := (s, v2) (v2, v3) . . . (u, w) . . . (vk−1, t) that is the con-
catenation of an upward and downward path (Geisberger
et al. 2008). Thus, we find a node w of greatest rank in π
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such that r(s) < r(v2) < r(v3) < · · · < r(w) > · · · >
r(vk−1) > r(t). We call such a path π a shortest up-down
path. Hence, we can modify Dijkstra’s bidirectional search
to prune all paths that are not up-down paths. We do so by
only expanding upward edges in the forward direction and
downward edges in the backward direction. In the context
of minimizing travel time in street networks, CH has proven
to be a very effective speed-up technique with modest space
overhead (Geisberger et al. 2012).

Another important hierarchical approach to compute
shortest paths is Hierarchical Hub Labeling (HHL) (Abra-
ham et al. 2012), which is based on the work of (Cohen et al.
2003). Although unconventional, HHL can be considered as
a CH with more shortcuts such that the bidirectional search
has to expand only the edges of the source node and of the
target node. In other words, the resulting up-down path π
consists of at most two edges. A generalization of the idea
to restrict the number of edges of the up-down paths in CH
to a certain value can be found in (Bahrdt et al. 2022). HHL
further improves the query times compared to CH but typi-
cally requires to store many more shortcuts.

All mentioned hierarchical approaches heavily rely on the
idea of adding shortcuts to the graph. There is also no doubt
that shortcuts greatly help to improve query times. However,
these algorithms do not only use shortcuts to improve query
times but require them in order to ensure correctness. Hence,
it is worth raising the question whether there is an efficient
way to perform hierarchical search without using any short-
cuts. This work is about answering this question with yes.

Our Contribution
We propose a new hierarchical approach to compute short-
est paths based on CH that does not require any shortcuts
during the query phase. In fact, it suffices to store two ad-
ditional bytes per node and, therefore, the space overhead is
significantly reduced compared to existing hierarchical ap-
proaches. Furthermore, our method is very simple to im-
plement as soon as a way to construct CH is available. Our
method is able to improve Dijkstra’s bidirectional algorithm
in terms of query times by one order of magnitude.

Related Work
We are aware of merely one hierarchical search technique
that does not require shortcuts. It is called REACH (Gut-
man 2004), an early contribution to hierarchical search. It
stores one number per node that describes the importance of
the node regarding long-distance journeys. This number is
called reach. In the following, we describe how this number
is defined given a graph G(V, E). Let π(s, t) be the short-
est st-path in G and let u be any node in π. The reach of u
regarding π is then defined as

re (u, π) := min {d (s, u) , d (u, t)}.
The (global) reach of u, written as re (u), is then simply
the maximum reach over all shortest paths that contain u.
This number is computed and stored for each node in V
during the preprocessing step. In the query phase a mod-
ified version of Dijkstra’s bidirectional algorithm is per-
formed that prunes all nodes w for which it is already

known from the preliminary search results that re(w) <
min {d (s, w) , d (w, t)}. The results stay correct because
if re(w) < min {d (s, w) , d (w, t)} is true, then w is cer-
tainly not part of the shortest st-path. The main drawback of
REACH is the complexity of its preprocessing step, which
requires an all-to-all shortest path computation. This is not
feasible for many applications. It is possible to reduce the
computational effort in the preprocessing step by comput-
ing upper bounds of the reach values as shown in (Gutman
2004). While the idea behind REACH is similar to ours, our
method is simpler, requires less additional space and can be
implemented in a straightforward manner as soon as a way
to construct CH is available. Our method therefore inherits
the efficient preprocessing step of CH but requires less space
than CH during the query phase.

A survey that still covers most important speed-up tech-
niques in transportation networks can be found in (Bast et al.
2016).

Light Contraction Hierarchies
In this section we describe our method to compute shortest
paths and prove its correctness. As it essentially takes a CH
and removes its shortcuts we call the method Light Contrac-
tion Hierarchies or LCH. Let G(V, E) be our street network
andG′(V, E∪E′), r : V → {1, 2, . . . , n} the correspond-
ing output of the CH preprocessing step as described in the
introduction. Since all distances between nodes in G and G′
are identical, for each shortest path π′ (s, t) in G′ we find
a shortest path π (s, t) in G such that each node w ∈ π′ is
also contained in π. Let Π be the function that maps shortest
paths inG′ to their corresponding shortest path inG. We say
that Π unpacks the paths in G′ to their original form in G.
Note that each shortcut e′ := (u, v) ∈ E′ is a shortest path
itself. Let π (u, v) ∈ Π (e′) be the unpacked path of e′, what
ranks do the nodes in π have? Can it happen that there is a
node w ∈ π with greater rank than u and v? Lemma 1 an-
swers this question with no, which is going to be important
for our further considerations.

Lemma 1. For every shortcut e′ := (u, v) ∈ E′ and ev-
ery node w ∈ Π (e′) with w /∈ {u, v} it holds r (w) <
min{r (u) , r (v)}.

Proof. We assume that r (u) < r (v). The other case can
be shown analogously. Let path π := Π (e′) and suppose
that we find a node w ∈ π with r (w) > r (u) and w 6= v.
The edge set E′ is, by definition, of minimum cardinality
such that G′ is unimodal with respect to the node ordering
r. Thus, if we remove edge e′ from G′, the distance from
u to v in the subgraph of G′ induced by V (r (u)− 1) (as
defined in the introduction) must be greater than d (u, v).
However, we have d (u, w) + d (w, v) = d (u, v), which is
a contradiction. Thus, such a node w cannot exist.

We define the rank rE (e) of an edge or shortcut e as fol-
lows.

rE : E ∪ E′ → {1, 2, . . . , n},
rE ((u, v)) = min {r (u) , r (v)}
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(a) Example CH G′ with dashed shortcuts. The path π′ = v1v4v6
in G′ consisting of two shortcuts (dashed black arrows). The cor-
responding mimicked path in the original graph G (without short-
cuts) is π = v1v2v3v4v5v6.

v1 v2 v3 v4 v5 v6

r (v) 4 2 1 5 3 6
rmax (v) 4 4 4 5 5 6

(b) The mappings r and rmax of the example CH
G′. The node v3, for instance, is part of two short-
cuts (v1, v4) and (v2, v4). Therefore, rmax (v3) =
max {r (v3) , min {r (v2) , r (v4)}, min {r (v1) , r (v4)}} = 4.

Figure 1: An example CH to demonstrate the mappings r
and rmax and what it means to mimic a path.

The overall idea of our method is to save for each node u the
rank of the most important shortcut e′ for which u ∈ Π(e′)
holds. We call this new mapping rmax. Hence, if rmax (u)
is small for a node u, it means that u is not part of any im-
portant shortcut and we may be able to ignore u during our
bidirectional search. We formally define rmax as follows.

rmax : V → {1, 2, . . . , n},
rmax (u) = max {r (u) , max

{e′∈E′:u∈Π(e′)}
rE (e′)}

Furthermore, let rP (π) := maxu∈π r (u) for a path π. Our
method tries to mimic the CH query algorithm in G′ with-
out having access to the shortcuts E′. That means, if the up-
ward searchG′ expands an edge e ∈ E, our method expands
this edge as well. And if the upward search in G′ expands a
shortcut e′ ∈ E′, our method follows along the unpacked
path Π (e′). See Figure 1 for an example. However, since
E′ is unavailable, it is unclear how to find the path Π (e′).
In the following lemma we show how the mappings r and
rmax can help with this task.
Lemma 2. Given a shortest upward (or downward) path
π′ (s, t) in G′. For every node w ∈ Π (π′) it holds
rmax (w) ≥ rP (π (s, w)), where π is the subpath of Π (π′)
in G that starts in s and ends in w.

Proof. Let π′ (s, t) be a shortest upward path in G′ and
let node w and path π (s, w) be defined as above. Clearly,
there is an edge e := (u, v) in π′ with w ∈ Π (e). Thus,
rmax (w) ≥ rE (e) = r (u). As π′ is an upward path, it fol-
lows from Lemma 1 that rP (π) = r (u). The case when π′
is a shortest downward path can be shown analogously.

Lemma 2 says that whenever we find a shortest path
π (s, w) during our search with rP (π) > rmax (w) we

Germany South America
Nodes 25, 115, 477 62, 562, 908
Edges 50, 774, 067 129, 634, 220

Shortcuts of CH 40, 956, 462 122, 964, 150

Table 1: Details about the size of the street networks that
were subject of our experiments.

know that π cannot be a subpath of an unpacked shortest
upward (or downward) path in G′. Therefore and because
we aim to mimic the upward search in G′ we do not need to
continue our search at w.

We are now ready to describe our hierarchical search,
which is a modification of Dijkstra’s bidirectional algorithm
similar to the query algorithm of CH. We only describe the
forward search as the backward search is analogous with
flipped edges. Our search performs the same operations as
Dijkstra’s algorithm but additionally keeps track of rP (π)
for each search branch π. Furthermore, the method only ex-
pands an edge e = (u, v) if the condition rP (π (s, u)) ≤
rmax (v) is satisfied. If this is not the case, it follows from
Lemma 2 that we do not need to settle node v.

The mappings r and rmax cause the only space overhead
of LCH. In theory, a rank is a number between one and n,
where n is the number of nodes in G. Fortunately, the rank
can be replaced by the contraction round in which the node
was contracted. In this way, many nodes share the same rank
and it suffices to spend one byte per rank even for large
graphs without any negative impact on the correctness and
the query performance. If the CH happens to have more than
256 contraction rounds, we map all nodes contracted after
round 255 to rank 255. This does not affect correctness but
may slightly slow down the queries. Similar rank plateaus
are, for instance, proposed in (Funke, Laue, and Storandt
2017). Hence, in summary we spend two additional bytes
per node. This space overhead is compensated by an effi-
cient way to store the edges as we show and discuss in the
following section.

Experiments
We tested our method on the road network of Germany
and of South America, which we both obtained from Open-
StreetMap (OpenStreetMap contributors 2018). We con-
ducted all experiments on an AMD Threadripper 2950X
with 256 RAM and Ubuntu 20.04 as operating system. Our
implementations of CH, Dijkstra’s bidirectional algorithm
and LCH are written in C++ (using g++, version 9.3.0)
and are publicly available1. An experiment consisted of one
thousand source-target shortest path queries, selected uni-
formly at random. We built our CH using a standard ap-
proach described in (Geisberger et al. 2012), which always
contracts independent sets of nodes with low edge differ-
ence. Our CH queries conduct the common speed-up tech-
nique stall-on-demand (Geisberger et al. 2008).

The construction of the LCH that takes a CH as input,
computes the mapping rmax and removes the shortcuts took

1https://github.com/proisscs/chlight
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Germany South America
BiDijk 3, 024 5, 693

LCH 347 349
CH 2 9

Table 2: Average shortest path query times in milliseconds.

Germany South America
|VBiDijk| 7, 578, 599 21, 384, 160
|VLCH | 973, 928 1, 232, 816
|V ∧G | 405, 612 598, 501
|V ∧| 898 984

Table 3: Comparison of the average number of visited nodes
in the forward and backward search of BiDijk (|VBiDijk|),
LCH (|VLCH |), CH (|V ∧|) and the average number of nodes
that are part of edges/shortcuts expanded during CH queries
(|V ∧G |). The size of V ∧G is a lower bound of the size of VLCH .

68 seconds for Germany and 166 seconds for South Amer-
ica (both conducted on a single core). The input CH can be
constructed within a couple of minutes in both cases. The
CH of Germany was constructed within 303 and the CH of
South America within 332 contraction rounds. In both cases
less than 120 nodes were contracted after round 255.

Table 2 shows the average query times of Dijkstra’s
bidirectional algorithm (BiDijk), LCH and CH. Note that
we do not compare LCH to REACH as the preprocess-
ing of REACH would be too time consuming for the cho-
sen graphs. First, we can observe that LCH is able to im-
prove the query times compared to BiDijk considerably for
both street networks. However, the factor of improvement is
smaller for Germany (8.71) than for South America (16.31).
The average query time of LCH for South America is al-
most equal to that of Germany despite South America being
the larger street network (see Table 1). We see the opposite
when comparing the query times of BiDijk and CH. Here,
the factor of improvement is 1, 414 for Germany and 622
for South America. This result indicates that optimizing the
query times of CH and of LCH (by choosing appropriate
node orderings) are two different objectives. Note that if it is
not necessary to have a complete representation of the short-
est path, the CH queries can be considerably faster.

We now address the question whether our method is able
to mimic the CH upward search efficiently. Let VBiDijk and
VLCH be the set of nodes visited during the BiDijk query
and LCH query, respectively. Furthermore, let V ∧G be the set
of nodes that are adjacent to edges or part of unpacked short-
cuts expanded during the CH query. If our method was able
to mimic the CH search perfectly, the two sets V ∧G and VLCH
would be equal. Thus, the size of V ∧G is a lower bound of the
size of VLCH . We examine the efficiency of our method by
comparing these two numbers. Table 3 shows the results.
In both cases, our method is surprisingly close to the lower
bound and visits significantly less nodes than BiDijk. The
factor to the lower bound is 2.4 for Germany and 2.1 for
South America. This shows that the mapping rmax is a good
indicator whether a node is part of V ∧G .

Germany South America
BiDijk 0.94 GB 2.40 GB

LCH 0.91 GB 2.41 GB
CH 1.21 GB 3.27 GB

Table 4: Comparison of space requirements.

Finally, we look at the actual space requirements of
BiDijk, LCH and CH. The edges and shortcuts of our CH
are stored in separate arrays to save space as the shortcuts
additionally need to contain information about how to un-
pack them. This could either be two pointers to their child
shortcuts/edges or one pointer to the midnode of the short-
cut (see (Geisberger et al. 2008) and (Geisberger et al. 2012)
for details). The first option allows to unpack the shortcut
faster while the second is space conservative. We decided to
implement the second option to have a fair comparison. Ta-
ble 4 shows the results. We observe that the space overhead
of LCH compared to BiDijk is almost non-existent (South
America) or even negative (Germany). LCH does save a con-
siderable amount of space compared to CH but probably not
as much as one might have expected. The reason is that for
BiDijk it is necessary to store each edge (u, v) twice, once
as forward edge for u and once as backward edge for v, to
allow an efficient bidirectional search. CH have the great
advantage that it suffices to store each edge only once de-
spite conducting bidirectional search. This is because in CH
each edge is either an upward edge or a downward edge (as
explained in the introduction). The forward search only ex-
pands upward edges and the backward search only expands
downward edges. In the case of LCH, an edge e = (u, v)
is an upward edge if rmax (u) < r (v). Analogously, the
edge e is a downward edge if r (u) > rmax (v). These edges
need to be stored only once. This is the reason why LCH can
achieve a negative space overhead compared to BiDijk. Most
edges are neither an upward nor a downward edge, though,
and must be stored for both directions.

Conclusions
We presented a method to perform hierarchical search with-
out shortcuts. We call it Light Contraction Hierarchies or
LCH as it is based on Contraction Herarchies, one of the
most popular hierarchical search techniques. Our method is
very simple to implement (provided a way to construct CH
is available). We showed that our method, despite its very
modest space overhead, is able to improve the average query
time of shortest path computations by one order of magni-
tude compared to Dijkstra’s bidirectional algorithm. Further-
more, we were able to show that our method is also efficient
with respect to the number of visited nodes.

An interesting open problem is the relationship between
the query times of CH and LCH. Our results indicate that
finding a node ordering that achieves good CH query times is
a different objective than finding such an ordering for LCH.
Furthermore, a drawback of our method is that the prepro-
cessing step needs a CH as input. We plan to investigate if it
is possible to construct the LCH efficiently without having
the complete CH.
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