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Abstract

Online MAPF extends the classical Multi-Agent Path Finding
problem (MAPF) by considering a more realistic problem in
which new agents may appear over time. As online solvers are
not aware of which agents will join in the future, the notion of
snapshot-optimal was defined, where only current knowledge
is considered. In this paper, we perform an extensive com-
parison between oracle-optimal solutions (where the solver
is preinformed of future agents), snapshot-optimal solutions,
and suboptimal solutions obtained by prioritised planning.

Introduction

In the Multi-agent path finding problem (MAPF) the task
is to find a set of non-conflicting paths for multiple agents
from their start vertex to their goal vertex on a given graph.
MAPF can be found in real-world applications such as rout-
ing autonomous vehicles on road networks and multi-robot
systems (Ma et al. 2019; éép, Vokrinek, and Kleiner 2015;
Dresner and Stone 2008; Ho et al. 2019). Many efficient al-
gorithms that solve the MAPF problem optimally for a large
number of agents exist (Li et al. 2019; Lam et al. 2019;
Gange, Harabor, and Stuckey 2019; Felner et al. 2017).

The standard MAPF problem assumes that all agents start
moving at the same time and finish their task when arriving
at their goals. However, in real-life applications, it is most
likely that new agents will appear while some agents are still
executing their paths, e.g., a new autonomous vehicle can
get on the road. Online MAPF is a MAPF setting in which
agents can appear at different times. A prominent work on
this topic was done by Svancara et al. (2019). Hereafter, we
refer to that paper as S19. Because of the online nature of
this problem, a solver does not know in advance where and
at what time new agents will appear. As a result, an existing
agent may be routed in a way that seems efficient at the cur-
rent point in time, but eventually results in many conflicts
with agents that appear in the future. An oracle-optimal so-
lution (also called offline-optimal) is the minimal cost solu-
tion among all possible solutions while having full knowl-
edge about the schedule and location of appearance of new
agents in the future. This definition is inadequate for online
MAPF because the knowledge about the future is not avail-
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able. Consequently, no online solver can guarantee to return
an oracle-optimal solution (S19).

S19 suggested a new type of optimality for online MAPF
called snapshot optimality. A solution is snapshot-optimal
if it is optimal for the current known agents, i.e., assum-
ing no new agent will appear.! 519 developed several al-
gorithms for finding snapshot-optimal solutions. The qual-
ity of snapshot-optimal solutions in terms of the cost func-
tion, when compared to oracle (offline) optimal, has been
analysed in term of the competitive ratio (asymptotic ra-
tio of costs) (Ma 2021). However, it has not been empiri-
cally evaluated. So, it is an open question whether finding
snapshot-optimal solutions is a good idea or not. This pa-
per aims to answer this question. We evaluate the quality
of snapshot-optimal solutions compared to oracle-optimal
solutions both theoretically and empirically, showing the
pros and cons of snapshot-optimality. Since even snapshot-
optimality does not guarantee the best solution, sub-optimal
algorithms may also be considered, as they are typically
much faster than optimal algorithms. One such algorithm is
Replan Single (S19) which is based on prioritised planning.
We also compare the quality of Replan Single solutions with
oracle-optimal and snapshot-optimal solutions.

A closely related setting to online MAPF is multi-agent
pickup and delivery (Ma et al. 2017), called the warehouse
model by Stern et al. (2019). In this online setting agents
cannot join or leave the problem space. Instead, new pickup-
and-delivery tasks appear over time.

Definitions and Background

The input to the Multi-Agent Path Finding problem (MAPF)
is atuple (G, A), where G = (V, E) is a unit cost graph, and
A ={aq,...,ar} is a set of k agents, where each agent a; is
associated with a start vertex s; € V and a goal vertex g; €
V' (Stern et al. 2019). A solution to a MAPF problem is a list
m = {m,...,m} of individual agent paths such that each
agent a; € A is associated with a single path 7; from its start
to its goal. 7; is a sequence of vertices such that m;(t) € V
is the planned vertex for agent a; at time ¢, where time is
discrete. The length of a path 7; is marked |7;| and defined

"This is reminiscent of the free space assumption (Koenig and
Likachev 2002) which assumes that a cell in a grid that is not par-
ticularly known as an obstacle is considered free.



as the number of vertices (non-unique) in the path, minus 1.
A MAPEF solution is valid only if none of the paths within
it conflict. Two paths m; and 7; conflict if at any time ¢ the
two agents are planned to occupy the same vertex (m;(t)
wj(t)), which is called a vertex conflict, or are planned to
swap their vertices (m; (t) = m;(t — 1) Am(t —1) = m;(¢)),
which is called a swapping conflict (Stern et al. 2019). A
common cost function in MAPF is the sum of costs (SOC).
SOC is defined as the sum of the lengths of all individual
paths, SOC(w) = Zle |7;|. A solution is optimal if it is
valid and has the minimal cost among all valid solutions.

Online MAPF

Most previous works on MAPF focused on the offline MAPF
setting, where paths are found before the agents start their
movement. As soon as a solution is chosen, it is assumed
that the agents can execute that solution, without any modifi-
cation during execution. In online MAPF (S19), new agents
may appear over time and wish to join the problem space
while existing agents are still executing their paths. This
problem is relevant to real-world problems, such as au-
tonomous intersections, robot warehouses, airport traffic etc.

The input for online MAPF (G, A) contains a graph G,
similarly to offline MAPF, but instead of a set of agents, it
contains a stream of sets of agents A = (Ao, ..., A,). At
each time step ¢, a set A; of 0 or more new agents (cou-
pled with their start and goal vertices) is produced from the
stream. n is the time of appearance of the last set of new
agents. Each agent a; is associated with a time of appearance
TOA(a;). Accordingly, each path 7; in an online MAPF so-
lution starts at that agent’s time of appearance.

S19 defined two types of online MAPF: the warehouse
model and the intersection model. In this work, we focus on
the intersection model, where new agents appear over time,
and when they reach their goal they disappear. Appearing
agents are only revealed to an online solver at the time of
their appearance. At TOA(a;) agent a; may either immedi-
ately enter the underlying graph G at s; or choose to wait
a few time steps outside the problem space. This wait ac-
tion incurs a cost similar to waiting inside G. This is akin to
agents appearing from within a private garage at their start
vertex, and leaving into one at their goal vertex. Practically,
this can be implemented by having each agent’s start and
goal vertices changed to private vertices connected to the
original graph with directed edges. While the stream of new
agents A is not exhausted, time is incremented by 1. For
each time step ¢ the agents that are already in the problem
space are advanced to their planned vertices at ¢, and A is
queried to reveal the set A; of new agents appearing at t.
If A; is not empty, a new solution 7' (that starts at time t)
that contains paths for both the existing agents (from their
current positions) and the new agents, must then be found.

A solution to online MAPF is a sequence of all the solu-
tions found at the different times when new agents appeared
I = {#° ...,7"}, where 7t is the solution found at time
0 < t < n (within 7¢, Wf denotes the path for agent a,; found
at time ¢). A partial solution 7[z : y] is the part of a solution
7 that is planned for time steps x, x + 1, ..., y. The executed
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solution Exz(II) is the paths that the agents ended up fol-
lowing. It is derived from II using partial paths. Formally
Ex(Il) =7°[0: ¢, —1]o it [t} :th —1]o...om™[n: o0,
where o is the concatenation of partial paths and the ¢} se-
quence is the times where at least one agent appears.

An online MAPF solution IT is valid iff none of the paths
in Ez(IT) have a conflict. The cost of an online solution is
the sum of costs of its executed solution (SOC (Ex(I1))).

Snapshot Optimal Online MAPF

An online solver for online MAPF does not know when and
which agents may appear in the future. Consequently, a so-
lution with a lower cost than that of the executed solution
may exist (S19). An algorithm that always returns a so-
lution for the current set of agents that is optimal, assum-
ing no new agents appear in the future, is called snapshot-
optimal (S19). Two snapshot-optimal algorithms for online
MAPF have been suggested by S19:

(1) Replan All. Whenever new agents appear, a new So-
lution is found by optimally re-planning for all agents from
their current positions and all existing paths are discarded.

(2) Online Independence Detection (S19) (OID) is based
on Independence Detection by Standley (2010). OID finds
snapshot-optimal solutions, while attempting to minimise
the number of times agents are re-planned for.

Sub-Optimal Online MAPF

Perhaps the simplest algorithm for solving online MAPF
problems is Replan Single (S19). Replan Single involves
finding an individual path for each agent as they appear,
while avoiding the paths of all previous agents. This is sim-
ilar to Prioritised Planning (Latombe 1991).

Windowed MAPF (Li et al. 2020) is another approach to
solving Online MAPF suboptimaly. The solver provides so-
lutions that are valid up to a certain time horizon. As time
progresses, the time horizon is advanced accordingly.

Oracle-Optimal Online MAPF

Any online MAPF problem may be converted into an equiv-
alent offline problem. This is done by informing the solver of
all the agents that will appear in the future, rather than hiding
them until their time of appearance. By optimally solving
the equivalent offline problem, we can find the lowest cost
possible for a solution to the online problem. We designate
such a solution as an oracle-optimal solution. Naturally, on-
line problems can not be solved offline in practice. However,
the cost of the oracle-optimal solution is useful for theoreti-
cal and practical comparisons. We are interested in studying
how close snapshot-optimal is to oracle-optimal.

Figure 1 demonstrates a scenario where the oracle-
optimal solver would find a better solution than a snapshot-
optimal solver. Agent a; appears at time 0 and wishes to
travel from vertex s; to g;. Agent ay appears at time 2, and
wishes to travel from sy to g2 (= s1). The oracle-optimal
solver would know about both agents in advance, and choose
the path that goes around the obstacle for agent a; (7o,1,
defined below, marked by a blue dashed arrow), and the di-
rect path for agent as (7,2, marked by a solid red arrow).
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Figure 1: An illustrative example

Note that |m,r1| = 11, and |m,r2| = 5, resulting in an
oracle-optimal solution ,, where SOC(7,,.) = 16. The
snapshot-optimal solver does not know about agent a, at
time 0, and so it chooses the direct (shortest) path for a;
(¥ marked by a solid blue line, with |7?| = 7). At time
1, agent a; has moved one cell to the left. At time 2, agent
as appears. Now, a new snapshot-optimal solution is cho-
sen. ag waits outside the problem space until a; passes ver-
tex sy (|73| = 10), while a; executes the remainder of its
existing path (|7%] = 5), so SOC(n?) = 15 . However,
SOC(Ez(Il)) = 17 as it includes the steps taken by a; be-
fore as appeared, meaning the snapshot-optimal solution has
a higher cost than the oracle-optimal solution in this case.

Theoretical Comparison

Next, we present three observations regarding differences
in costs of snapshot-optimal and oracle-optimal solutions.
Their proofs are omitted and can be found in the supple-
mentary materials 2.

Let P be an online MAPF problem. Let II,.(P) and
II,(P) be the solutions to P generated by an oracle-
optimal solver and snapshot-optimal solver, respectively. Let
P+ be an online MAPF problem that is identical to P ex-
cept that there is an additional new agent a; and Va; #
a; (TOA(G,Z) > TOA(GJ)) Let tt := TOA(G,Z) Let 71';»k
be a path for agent a; that has minimal length while ignoring
all other agents. Let A(P) be the difference in SOC between
11, (P) and I1,,.(P), that is,

A(P) = SOC(Hsn(P)) - SOC(HOT(P))

Note that if A(P*) > A(P) it means that adding a new
agent caused the cost difference to increase.

Observation 1. If A(P1) > A(P) then for every minimal-
length path for the new agent there exists a conflict with the
paths of the other agents in any I1,, (P).

Observation 2. If A(PT) > A(P) then for every snapshot-
optimal solution I, (P*) there exists at least one agent
whose plan was made longer. For an old agent it means its
new path is longer than its old path (IT,,(P)). For a new
agent a;, it would mean its path is longer than ;.

A solution IT is a prefix of I’ up to time ¢ if all agents
occupy the same vertices in both solutions at every time
t' < t meaning V;Vy <¢(Ex(I1);(t') = Ex(II');(t")). This
includes agents that have already disappeared.

Zhttps://github.com/J-morag/Papers/blob/main/OnlineMAPF_
SoCS22_Supplementary_Materials.pdf
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Figure 2: Maps used for experiments

Observation 3. If A(P*) > A(P) then for every oracle-
optimal solution I1,,,.(P*), it holds that I1,,, (P) is not a pre-
fix of IL,-(PT) up to time step ¢+.

The scenario in Figure 1 exemplifies these observations:
(1) 73 conflicts with 7¥. (2) Path |73] is longer than |73]. (3)
7Y is not a prefix of the only oracle-optimal solution for this
example (7,,) up to time 2.

From these observations we conclude that for a significant
difference in quality to exist between an oracle-optimal so-
lution and a snapshot-optimal solution for an online MAPF
problem, that problem would have to contain many situa-
tions where the scenarios implied by the observations are
met. We hypothesize that they are rare in practice, and con-
duct experiments to examine that hypothesis.

Experimental Comparison

We compared the quality of oracle-optimal, snapshot-
optimal, and Replan Single solutions®. We used a diverse
set of maps shown in Figure 2, representing the various map
types and sizes from a common MAPF benchmark described
in Stern et al. (2019), which contains a set of 4-connected
grid-maps and a set of (offline) MAPF scenarios for each
map. Each scenario had a list of start-goal pairs. We also
used a 15x15 maze, for which we generated offline instances
in a manner similar to the offline instances in the benchmark.

We created online MAPF problem instances based on
these offline instances. We used two methods of selecting
the start-goal pairs for the agents. (1) Repeating method
where agents repeatedly used a fixed set of start-goal pairs.
This simulates for example, gate-runway pairs at an airport.
(2) Uniform method where agents were uniformly scattered.
This simulates for example, cars driving in a city. The re-
peating method was done as follows:

30ur implementation is available at: https:/github.com/J-
morag/MAPF/tree/Online_MAPF
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Table 1: Comparison of the different algorithms

(1) Select an offline benchmark instance. Randomly se-
lect 20 start-goal pairs from the list for initializing agents.
(2) Agents may appear at different frequencies. For every
time step, draw the number of new agents that appear from
a Poisson distribution. We experimented with different rates
of appearance (average appearances per time step), which is
expressed as different values for the A parameter of the Pois-
son distribution. (3) Every time a new agent appears, draw a
start-goal pair from a standard normal distribution over the
fixed set of 20 pairs.
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For the uniform method the selection was done differently.
Step (1) was canceled. Step (2) was done in a similar man-
ner. For step (3), draw a start-goal pair from a uniform dis-
tribution over all start-goal pairs from the list.

We compared the quality of oracle-optimal (OO),
snapshot-optimal (SO), and Replan Single (RS) solutions on
50 problem instances per map and appearance rate. We tried
appearance rates (A) of 0.05, 0.3, 0.6, and 1 agents per time
step (average). In each instance, appearance of new agents
was stopped after a total of 50 agents had appeared. We set a
time limit of 300 seconds to solve each instance. We tried
both the repeated (R) and uniform (U) start-goal pair se-
lection methods. The results for six representative maps are
presented in Table 1 (results for more maps are available in
the supplementary materials). For the instances solved by all
solvers (sums shown under #), we report the average cost of
solutions found by each solver. We also report the percent-
age of instances where no cost difference was observed be-
tween oracle-optimal and snapshot optimal solutions (0A),
and the average (4A) and maximal (M A) A as a percent of
the oracle-optimal cost, out of instances with A > 0.

Most importantly, the cost of snapshot-optimal solutions
was on average very close to the oracle-optimal cost, and
in many cases (0A) was very large. This was true for both
selection methods. Generally, as A increases, the agents are
more dense and therefore 0A decreases. Note that the set of
solved instances (#) shrinks when increasing A\ . Thus, the
average solution cost may also decrease.

The repeating method was less dense because agents may
follow the same pattern as their predecessors from the same
start-goal pair. Thus, in general (depending on the map), its
success rate and its 0A rate were higher than the uniform
method where no such patterns exist. By contrast, the re-
peated method might suffer from large conflicts occurring
repeatedly. Thus, its A and M A were sometimes larger.

Additionally, we observe that Replan Single achieves av-
erage costs that are close to snapshot-optimal. In accordance
with our previous observations, these costs are also close
to oracle-optimal. The largest cost difference between Re-
plan Single and oracle-optimal was 12 (3.3%), on maze-
15-15 with A = 1.5. A narrower experiment performed by
S19 showed similar results. These observations make Re-
plan Single an appealing practical solver for online MAPF,
as it is simple to understand and implement, has polynomial
computational complexity (S19), and usually produces so-
lutions that are close to oracle-optimal.

Summary and Future Work

The experimental results validate our claim that the scenar-
ios implied by the observations above can be very rare. In
view of these results, we conclude that snapshot-optimal al-
gorithms seem very powerful as they are practical to imple-
ment and their solution quality is very close to that of the
oracle (offline) optimal solution, which is the best possible
solution. We also conclude that Replan Single is a practical
alternative to snapshot-optimal when computation time is a
primary concern, as it is very close in its solution quality,
while also being simple to implement and efficient.



Future work may consider different cost functions that are
uniquely relevant to online MAPF, such as fairness.
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