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Abstract

Pathfinding is a central topic in AI for games, with many ap-
proaches having been suggested. But comparing different al-
gorithms is tricky, because design choices stem from differ-
ent practical considerations; e.g., some pathfinding systems
are grid-based, others rely on a navigation mesh or visibil-
ity graph and so on. Current benchmarks mirror this trend,
focusing on one set of assumptions while ignoring the rest.
In this work we present a new unified benchmark using data
from the game Iron Harvest. For 35 different levels in the
game we generate several complementary map representa-
tions (grid, mesh and obstacle-set) and we provide a common
set of challenging instances. We describe and analyse the new
benchmark and then compare several leading pathfinding al-
gorithms that begin from different assumption sets. Our goal
is to allow researchers and practitioners to better understand
the relative strengths and weakness of competing techniques.

Introduction
Pathfinding search is a fundamental operation for game AI.
Most often pathfinding facilitates movement, by providing
agents with collision-free trajectories through the virtual
environment (Stout 1996). However pathfinding also plays
other roles, for example in tactical decision-making, where
agents must decide which resource points to mine or which
cover points to seek (Johnson 2019). Similarly in strate-
gic decision-making, such as Goal-oriented Action Plan-
ning (Orkin 2006), where pathfinding data usually provides
a necessary input for higher-level tasks.

Because of its central role, a large variety of pathfind-
ing approaches have been suggested in the research litera-
ture. Yet deciding between competing methods can be tricky,
because algorithmic design choices often reflect developer
tooling and design constraints. For example, some prac-
titioners prefer grids (Sturtevant 2007; Kring, Champan-
dard, and Samarin 2010); others use navigation meshes (De-
myen and Buro 2006; Brewer 2019); and still others recom-
mend different kinds of graphs, such as waypoint (Sturte-
vant 2019) or visibility (Young 2001; Oh and Leong 2017).
Experimental evaluations meanwhile can be application-
specific, maps may not be publicly available and compar-
isons can be limited to other similarly compatible solvers.
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Figure 1: In-game screenshot of Iron Harvest. From the
KING Art Games Press Kit.

For 2D pathfinding there exists a popular set of grid-
based benchmarks (Sturtevant 2012) that feature data drawn
from real games. These benchmarks help to address some
of the mentioned issues. However, recent progress has re-
duced solve times on many of these grid maps to single-
digit micro-seconds per query and sometimes less (Uras and
Koenig 2018; Harabor et al. 2019; Hu et al. 2021). More-
over, being grid-based, these maps are of limited utility for
practitioners that are not working with grid-based setups. To
the best of our knowledge no benchmarks currently exist
for mesh-based pathfinding; no current graph-based bench-
marks use data from real games and no single benchmark
exists which allows developers to measure performance, and
analyse tradeoffs, across all three map representation types
at the same time. We introduce a new, unified and more chal-
lenging pathfinding benchmark to fill this gap.

Using data from Iron Harvest, a recent real-time strat-
egy game, we provide 35 distinct maps and 70,000 as-
sociated problem instances. Each map has three differ-
ent representations: navigation mesh, obstacle map and
grid. There are 2,000 co-feasible instances per map
which allow comparisons across the different representa-
tions. We describe the benchmark, our instance genera-
tion approach and provide experimental results for some
currently leading grid-based and mesh-based path plan-
ners. The data is publicly available for download from
https://bitbucket.org/shortestpathlab/benchmarks
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Figure 2: We show examples (2a-2c) of different map representations for the level scene sp sax 07. We also report (2d) the
effect that grid resolution has on path length (grid-optimal vs mesh-optimal) for a set of 100 co-solvable instances.

Iron Harvest

Developed by KING Art Games, and set in the alternate his-
tory of 1920+, Iron Harvest gives players control over large
armies of cooperative agents. The armies compete in a va-
riety of environments, each characterised by different types
of static obstacles that the agents must avoid while moving.
We give a brief description of the Iron Harvest pathfinding
system and then we describe a set of 35 maps from the game
which are the the basis for the new benchmark.

During development of the game, human designers cre-
ate levels by placing buildings and other polygonal obsta-
cles on a 2.5D map1. When the player enters a new level a
large amount of data is loaded from persistent storage into
memory. At this time the game generates navigation meshes
from the level’s obstacle set. A mesh is simply a collection of
non-overlapping convex polygons, each entirely traversable
or non-traversable (Snook 2000; Tozour 2002). Together,
these polygons completely describe the navigable and non-
navigable areas in a level. There exist many ways to gener-
ate a navigation mesh (Mononen 2009; van Toll et al. 2020)
but the Iron Harvest system always produces a Constrained
Delaunay Triangulation. This approach is well known in the
pathfinding literature (Kallmann, Bieri, and Thalmann 2004;
Demyen and Buro 2006; Cui, Harabor, and Grastien 2017)
and has small overhead costs, typically extending a level’s
load time by only a few seconds.

Given a pair of traversable points, resp. the start and tar-
get location of an agent, the Polyanya algorithm (Cui, Hara-
bor, and Grastien 2017) searches the mesh to identify a
Euclidean-optimal start-target path. Agents follow their as-
signed paths, as part of a subsequent execution procedure.
The complete navigation system has a variety of other com-
ponents that can be considered pathfinding-adjacent (e.g.,
for updating the mesh when obstacles are added or removed,
for handling agent geometry and for collision avoidance).

1The level assets are rendered in 3D but their positions in the
world, and agent movement, are all mapped onto a 2D plane.

Map Descriptions
For each of the 35 levels from Iron Harvest we generate three
distinct representations: navigation meshes, obstacle maps,
and grid maps. Examples of each are shown in Figure 2 and
in Table 1 we report a variety of key statistics. Note that in
the table, as in the game, the maps are divided into different
subsets: one for each single-player campaign and one (mp)
for the set of competitive multiplayer maps. The file descrip-
tion for each format is included in the repository.

Navigation Meshes
A navigation mesh is a data structure that describes the
traversable and non-traversable areas of the map. Con-
structed online using KING Art’s internal tooling, each mesh
takes the form of a Constrained Delaunay Triangulation. We
give a full decomposition, including non-traversable faces
located inside obstacles on the mesh. To store navigation
mesh data we define a mesh file format which is a small
extension of the well known face-vertex standard (our ex-
tensions add support for describing non-traversable faces).

Obstacle Maps
Generated from mesh data, an obstacle map describes a
level’s terrain and play area. An enclosure is a polygon that
specifies the bounds of a navigable region (i.e., valid paths
never leave their enclosure). An obstacle is a polygon that
cannot be crossed by any valid path. Multiple enclosures
can exist per map, each disconnected from others. To store
obstacle maps we use a simple text format where each line
specifies the vertices of an obstacle polygon, in CW order.
To distinguish enclosure polygons, we use a CCW order.

Grid Maps
Generated from mesh data, a grid map describes a level’s
terrain in terms of traversable and non-traversable cells. We
rasterise the (outermost) enclosure of each mesh using a
square grid and mark as non-traversable any cell that over-
laps with any part of an obstacle (other cells are marked
traversable). For a mesh with dimensions H×W , we gener-
ate kH × kW grid cells, where k is the specified resolution.
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Figure 3: Clustering efficacy for the map scene sp sax 07. We look at the distribution of selected instances in Figure 3a
and the rank of each instance according to A* expansion cost and path length metrics, in Figure 3b. In Figures 3c and 3d,
we analyse how well the A* expansion cost and path length ranking compare to the expansion cost rank of different planning
algorithms (here, for improved clarity, we only plot every 10th instance).

Looking at Figure 2d, we see that resolutions below 8x
produce large deviations, when comparing the length of a
Euclidean-optimal mesh path vs. a grid-optimal path. This
is due to topology-altering rasterisation effects; e.g., narrow
corridors that are traversable on the mesh become blocked
on the grid. To mitigate rasterisation effects we select only
8x resolution grid maps. To store the grid data we follow the
standard map format described in (Sturtevant 2012).

Generating Benchmarks
When evaluating path planning systems, practitioners gener-
ate and solve benchmark problem instances; so as to under-
stand runtime performance for a range of realistic settings.

Perhaps the simplest approach to generating instances is
random sampling. Here the practitioner selects k start-target
problems and measures the performance of the planner by
solving these instances. With a sample size of 10,000, as
suggested in (Sturtevant and Geisberger 2010; Antsfeld et al.
2012), our standard error estimate can be reduced to ±2%
of the sample mean. The main drawback of the sampling
approach is that good performance on average is not suffi-
cient to guarantee real-time performance. In practice, game
developers need to understand how the path planner behaves
across the entire range of possible queries. Some developers
suggest to overcome this problem by recording and testing
all instances that appear during play (Gillberg 2019). This
benchmark is representative but requires extensive telemetry
and the resulting set of problems can be prohibitively large.

Our approach to generating benchmark instances strikes a
middle ground: we combine large random sampling with a
clustering algorithm that produces a much smaller but rep-
resentative test set. For each map we begin with 50,000 fea-
sible problem instances, selected at random, which gives a
standard error estimate ±0.9%. We then solve each instance
using A* (octile heuristic) search. We use the grid version
of each map as this guarantees that instances are co-feasible
for the obstacle map and navigation mesh representations.
Next, we group instances into buckets, based on the number
of nodes expanded and from those buckes we select a rep-
resentative test set. Our approach produces 2,000 problem

instances per map, which is sufficient to evaluate planner
performance across the entire range of the sample set.

Creating Buckets
Let ci denote the minimum expansion cost of an instance i,
as measured by grid A* (octile heuristic) while computing
an optimal solution for i in both the forward and backward
search (start to target and target to start), then choosing the
minimum between the two to reduce search direction bias.
We sort the instances by ci and place them into a single
bucket B0. We define L(B) as the minimum cost for any
instance in bucket B, and H(B) as the maximum. We now
recursively split the buckets as follows:
If |Bi| < 20: end recursion.
Else if H(Bi) = L(Bi): we split Bi evenly into new buckets
of size 10, extra elements go into the first (new) bucket.
Else: we split Bi into n buckets spanning range s,
where n = ⌊|Bi| ÷ 10⌋ and s = (H(Bi)− L(Bi))÷ n.
Each new bucket Pj receives items of cost[
L(Bi) + js, L(Bi) + (j + 1)s

)
. We drop empty buckets.

After splitting, we loop over buckets in order. If the cur-
rent bucket |Bi| < 10 we merge it with the next bucket
(if one exists). Afterward, we repeat this process, merging
the last bucket with the previous bucket until the size of
the (new) last bucket is at least 10. Finally, for every bucket
where |Bi| ≥ 20, we evenly split it. This whole process will
result in a set of ordered buckets of sizes 10-19.

Choosing Instances
To generate our representative instances we first choose the
bucket with lowest and highest cost. We then perform a k-
means clustering on the remaining buckets (k = 198) in or-
der, where each cluster is placed on a 1D line, spanning the
locations from L(BL) (BL lowest cost bucket in cluster) to
H(BH) (BH highest bucket cost). We then find the cluster-
ing that will give the maximum value of the minimum span-
ning length. This was done with dynamic programming. We
then select the maximum cost bucket in each cluster, bring-
ing us a total of 200 buckets. From each bucket we select the
10 instances with the highest expansion cost and discard all
the rest (i.e., 2,000 instances per map).
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maps # #obst #face #trav trav-D #vert vert-D cells fit inc µ inc σ inc max
cha 4 371 11 806 5722 2.12 5906 6.00 7 337 056 98.95% 1.08 0.048 2.51
pol 6 371 15 150 6522 2.09 7578 6.00 6 545 639 98.68% 1.06 0.038 1.78
rus 7 353 16 378 6946 2.08 8192 6.00 5 530 591 98.25% 1.14 0.35 13.3
sax 7 282 13 934 5869 2.08 6970 6.00 7 072 777 98.70% 1.06 0.033 3.07
mp 10 285 12 571 5388 2.08 6288 6.00 5 721 490 98.91% 1.06 0.027 1.68
end 1 639 23 826 11 332 2.09 11 916 6.00 24 548 064 99.27% 1.06 0.026 1.56
all 35 332 14 281 6198 2.09 7144 6.00 6 817 389 98.76% 1.08 0.16 13.3

Table 1: maps: the map group; #obst: avg no. of obstacles; #face: avg no. of mesh faces; #trav: avg no. of trav. faces;
trav-D: avg deg. for trav. faces; #vert: avg no. of mesh vertices; vert-D: avg deg of mesh vertices; cells: avg no. of
trav. grid cells; fit: % trav. grid area vs. trav. mesh area; inc: path length increase (grid ÷ mesh) reported as mean µ, stdev
σ and max

The k-means clustering was done to provide a more bal-
anced representation of instances based on cost. In Figure 3a
we compare our method to a uniform selection strategy,
where the sample set is divided into 200 groups of roughly
uniform size (± 1 instance) and then selecting from each
bucket the 10 highest-cost instances. Notice that the uniform
distribution strongly favours easy instances as they are much
more numerous. Our approach meanwhile selects instances
from across the difficulty spectrum. This allows practitioners
to better understand performance in a wider range of practi-
cal settings. We provide our implementations as part of the
benchmark, for a further contribution.

Grouping Metric
When the reference planner is the same as the planner under
evaluation the expansion cost metric is a perfect guide for
ranking and grouping instances. When the reference planner
is different to the planner under evaluation the cost metric
may become misleading; e.g., ci < cj according to reference
planner A but cj < ci according to planner-of-interest B.

In Sturtevant’s popular benchmark set (Sturtevant 2012)
the instances are grouped using a path length metric. Being
independent of any particular planner, this approach seems
advantageous compared to expansion cost. In Figure 3b we
show the expansion cost rank and path length rank for one
set of benchmark problems. We see that our clustering ap-
proach selects instances with a similar rank according to
both metrics. Next we report, in Figure 3c, the expansion
cost rank of grid A* vs. the expansion cost rank of two op-
timal planners: grid-based Jump Point Search (Harabor and
Grastien 2014) and mesh-based Polyanya (Cui, Harabor, and
Grastien 2017). Again, we see a strong correlation, despite
differences in map representation and searching and pruning
strategies. In Figure 3d we re-cluster the sample using the
path length metric and repeat the same experiment. Notice
that now instances which have similar rank for path length
can have very different rank according to expansion cost.
This is the main weakness of the path length metric.

Experiments
We test several currently leading methods and baselines
from the academic literature. The idea is to provide perfor-
mance indicators and examine tradeoffs. The comparisons

instances # Polyanya A* JPS
cha 8 k 18.99 5891 53.05
pol 12 k 20.51 4757 47.24
rus 14 k 24.88 6305 62.62
sax 14 k 23.86 7172 56.44
mp 20 k 26.30 6055 50.02
end 2 k 9.195 2948 25.60
all 70 k 123.7 33 130 295.0

Table 2: Runtime results for all instances in each map group.
Results are given as cumulative runtimes (in seconds).

are apples-to-oranges and there is no winner.

• Polyanya (Cui, Harabor, and Grastien 2017), is a leading
online mesh-based planner, and also the algorithm used
in Iron Harvest. For our experiments we use a C++ im-
plementation due to the original authors (Cui, Harabor,
and Grastien 2017). Note that we slightly modify their
code, including adding support for our new mesh format.

• JPS (B+P) (Harabor and Grastien 2014). This is a leading
planner for online grid search. We use C++ implementa-
tions from the Warthog pathfinding library 2.

• Grid A*. This is a standard reference algorithm. Our C++
implementation shares a common base with JPS.

Experiments were conducted on an Intel Core i7-8750H
CPU. fixed at 2.2GHz with boost turned off. Our operating
system is Arch Linux (Kernel version 5.17.5) and we com-
pile with G++ 11.2.0. We run one map at a time, single query
and in input order. Results are reported in Table 2. The total
runtime of A*, over all 70K queries, was ∼9 hours, as com-
pared to ∼5 minutes for JPS and ∼2 minutes for Polyanya.
Both Polyanya and JPS are online and optimal algorithms,
although they use different representations. An advantage of
Polyanya over JPS is that it guarantees to return Euclidean
shortest paths, rather than grid-optimal shortest paths. An
advantage of JPS is that the grid is faster to update in case of
dynamic changes.

2https://bitbucket.org/dharabor/pathfinding
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Conclusion
We introduce a new unified pathfinding benchmark using
data from the game Iron Harvest. Containing larger and
more challenging maps and instances than those currently
available in the literature, our benchmark is also the first
which allows for “fair” comparison of pathfinding algo-
rithms that start from different assumption sets. Future work
includes extending the benchmark to other query types; e.g.
dynamically changing terrain and multi-target search.
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