
Anytime Approximate Bi-Objective Search
Han Zhang1, Oren Salzman2, T. K. Satish Kumar1, Ariel Felner3,

Carlos Hernández Ulloa4, Sven Koenig1

1 University of Southern California
2 Technion - Israel Institute of Technology

3 Ben-Gurion University
4 Universidad San Sebastian

zhan645@usc.edu, osalzman@cs.technion.ac.il, tkskwork@gmail.com, felner@bgu.ac.il,
carlos.hernandez@uss.cl, skoenig@usc.edu

Abstract

The Pareto-optimal frontier for a bi-objective search prob-
lem instance consists of all solutions that are not worse than
any other solution in both objectives. The size of the Pareto-
optimal frontier can be exponential in the size of the input
graph, and hence finding it can be hard. Some existing works
leverage a user-specified approximation factor ε to compute
an approximate Pareto-optimal frontier that can be signif-
icantly smaller than the Pareto-optimal frontier. In this pa-
per, we propose an anytime approximate bi-objective search
algorithm, called Anytime Bi-Objective A*-ε (A-BOA∗

ε).
A-BOA∗

ε is useful when deliberation time is limited. It first
finds an approximate Pareto-optimal frontier quickly, itera-
tively improves it while time allows, and eventually finds the
Pareto-optimal frontier. It efficiently reuses the search effort
from previous iterations and makes use of a novel pruning
technique. Our experimental results show that A-BOA∗

ε sub-
stantially outperforms baseline algorithms that do not reuse
previous search effort, both in terms of runtime and num-
ber of node expansions. In fact, the most advanced variant of
A-BOA∗

ε even slightly outperforms BOA∗, a state-of-the-art
bi-objective search algorithm, for finding the Pareto-optimal
frontier. Moreover, given only a limited amount of delibera-
tion time, A-BOA∗

ε finds solutions that collectively approx-
imate the Pareto-optimal frontier much better than the solu-
tions found by BOA∗.

1 Introduction and Related Work
Bi-objective search is a generalization of the single-
objective search used for shortest-path computations. We are
given a directed graph with two costs annotating each edge,
a start vertex, and a goal vertex. Given a solution path π, we
use c1(π) and c2(π) to denote the accumulated first and sec-
ond costs of the edges of π, respectively. A solution path π
is better than, i.e., dominates, another solution path π′ if
and only if (i) c1(π) ≤ c1(π

′) and c2(π) < c2(π
′) or

(ii) c1(π) < c1(π
′) and c2(π) ≤ c2(π

′). In bi-objective
search, a typical task is to find the Pareto-optimal frontier,
which consists of all those solution paths that are not domi-
nated by any other solution path.

Bi-objective search is important in many domains, such
as transportation and robotics (Bronfman et al. 2015; Bach-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mann et al. 2018; Fu et al. 2019; Fu, Salzman, and Al-
terovitz 2021). In such domains, search problems often have
two objectives that cannot be optimized at the same time.
For example, in the hazardous material transportation prob-
lem (Bronfman et al. 2015), we are required to plan a route
for transporting hazardous material while considering the
travel distance as well as the risk of exposure for residents.

State-of-the-art bi-objective search algorithms, such as
BOA∗ (Hernandez et al. 2020), NAMOA* (Mandow and
De La Cruz 2010), and NAMOA*dr (Pulido, Mandow, and
Pérez-de-la Cruz 2015), can be used to compute the Pareto-
optimal frontier. However, as the number of solution paths
in the Pareto-optimal frontier can be exponential in the size
of the input graph (Ehrgott 2005; Breugem, Dollevoet, and
van den Heuvel 2017), the problem of finding the Pareto-
optimal frontier is intrinsically hard. Therefore, exact ap-
proaches are often unacceptably slow. To this end, an al-
ternative approach calls for computing an approximation
of the Pareto-optimal frontier (Warburton 1987; Breugem,
Dollevoet, and van den Heuvel 2017; Tsaggouris and Zaro-
liagis 2009). Here, we are given a user-specified approxi-
mation factor ε ≥ 0. A path π ε-dominates another path
π′ if and only if each cost component of π is less than
or equal to (1 + ε) times the respective cost component
of π′. An ε-approximate Pareto-optimal frontier is a set
of solution paths Πε such that any Pareto-optimal solution
path is ε-dominated by some path in Πε. In structured real-
world problems, the ε-approximate Pareto-optimal frontier
can have substantially fewer solution paths than the Pareto-
optimal frontier even for small ε. Existing work (Goldin and
Salzman 2021) has already demonstrated that search algo-
rithms can find an ε-approximate Pareto-optimal frontier for
road networks much faster than the Pareto-optimal frontier.

Another dimension used to characterize search algorithms
is their anytime behavior. In anytime search, we are inter-
ested in quickly finding a “good” solution and progressively
finding better solutions if time allows (Likhachev, Gordon,
and Thrun 2003; van den Berg et al. 2011; Stern et al. 2014;
Cohen et al. 2018). Ideally, an anytime search algorithm ex-
hibits the “diminishing returns” property with regard to the
quality of the current solution against increasing time, even-
tually converging to an optimal solution. Such an algorithm
is useful when deliberation time is limited or unknown when
a search query is provided.

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

199

In this paper, we present an anytime approximate bi-
objective search algorithm, called Anytime Bi-Objective
A*-ε (A-BOA∗

ε). A-BOA∗
ε has the characteristics of an ap-

proximate bi-objective search algorithm as well as an any-
time search algorithm. It derives its anytime behavior from
progressively tightening the approximation factor.1 A-BOA∗

ε
starts by quickly finding an initial approximate Pareto-
optimal frontier, subsequently finds more solution paths to
improve the approximation factor, and eventually finds the
entire Pareto-optimal frontier.

Any approximate bi-objective search algorithm can be
naively converted into an anytime variant by invoking the
search algorithm for progressively smaller values of ε. How-
ever, this methodology is inefficient since search effort is du-
plicated across different values of ε. A-BOA∗

ε addresses this
inefficiency by reusing previous search effort. It does suf-
ficient bookkeeping to allow each invocation of the search
algorithm to build on the search effort of the previous invo-
cation. In doing so, it is significantly more efficient than the
naive approach. A-BOA∗

ε also employs a novel pruning tech-
nique to further improve its efficiency. This pruning tech-
nique is based on a heuristic function designed to estimate a
weighted sum of the two costs.

In later sections, we first provide proof sketches for the
correctness and convergence properties of A-BOA∗

ε . We
then compare it empirically against BOA∗ and two base-
line algorithms that are derived from existing approximate
bi-objective search algorithms and do not reuse previous
search efforts. Our experimental results show that A-BOA∗

ε
significantly outperforms the baseline algorithms, both in
terms of runtime and number of node expansions. In fact,
the most advanced variant of A-BOA∗

ε even slightly outper-
forms BOA∗ for finding the Pareto-optimal frontier. More-
over, with a limited amount of time, A-BOA∗

ε finds solution
sets that collectively approximate the Pareto-optimal frontier
much better than the solutions found by BOA∗.

2 Terminology
In this paper, we use boldface font for 2-tuples (i.e., pairs).
We use vi, i ∈ {1, 2}, to denote the i-th component of tu-
ple v. The addition of two 2-tuples v and v′ is defined as
v + v′ = (v1 + v′1, v2 + v′2). We define the following types
of domination:
1. v ⪯ v′ denotes that v1 ≤ v′1 ∧ v2 ≤ v′2. In this case, we

say that v weakly dominates v′.
2. v ≺ v′ denotes that v ⪯ v′ ∧ v ̸= v′. In this case, we

say that v (strictly) dominates v′.
3. An approximation factor ε is a non-negative real number.

v ⪯ϵ v
′ denotes that v1 ≤ (1+ε)v′1∧v2 ≤ (1+ε)v′2. In

this case, we say that v ε-dominates v′. Note that, when
ε = 0, ε-domination is equal to weak domination.

A (bi-objective) search graph is a tuple ⟨S,E, c⟩, where S
is a finite set of states and E ⊆ S×S is a finite set of edges.
Cost function c : E → R>0 × R>0 maps an edge to two
positive real numbers. We define ci : E → R>0, i ∈ {1, 2},

1Therefore, ε is controlled by the algorithm and not user-
specified.

as the function that maps an edge e to the i-th component
of c(e). A path is a sequence of states π = [s1, s2 . . . sℓ]
such that ⟨sj , sj+1⟩ ∈ E for all j ∈ {1, 2 . . . ℓ − 1}.
The cost of path π is c(π) =

∑ℓ−1
j=1 c(⟨sj , sj+1⟩). We

use s(π) to denote the ending state of π, i.e., sℓ. We use
succ(s) = {s′ ∈ S|⟨s, s′⟩ ∈ E} to denote the successors of
state s. By extending π with an edge ⟨sℓ, sℓ+1⟩, we obtain a
new path [s1, s2 . . . sℓ, sℓ+1]. We say that a path π′ extends
another path π if and only if π′ can be obtained by applying
a sequence of extend operations on π.

A (bi-objective search) problem instance is a tuple P =
⟨S,E, c, sstart, sgoal⟩, where ⟨S,E, c⟩ is a search graph,
sstart ∈ S is the start state, and sgoal ∈ S is the goal state. A
path is a solution for problem instance P if and only if it is a
path from sstart to sgoal. For problem instance P , a heuristic
function h : S → R≥0 × R≥0 is an estimation of the cost
of a path from a given state to sgoal. h is consistent if and
only if h(sgoal) = 0 and h(s) ⪯ c(⟨s, s′⟩) + h(s′). In this
paper, we limit our discussion to consistent heuristic func-
tions. For any path π from sstart to some ending state s(π),
its g-value is defined as c(π), and its f -value is defined as
f(π) = g(π) + h(s(π)).

Let π and π′ be two paths from state sstart. We say that π
dominates (resp. weakly dominates and ε-dominates) π′ if
and only if f(π) ≺ f(π′) (resp. f(π) ⪯ f(π′) and f(π) ⪯ϵ

f(π′)). For a problem instance P , a Pareto-optimal solu-
tion is a solution that is not dominated by any other solution
of P . The Pareto-optimal frontier Π∗ is the set of all Pareto-
optimal solutions, and a cost-unique Pareto-optimal frontier
is a maximal subset of the Pareto-optimal frontier such that
no two solutions in it have the same cost. Given approx-
imation factor ε, an ε-approximate Pareto-optimal frontier
Πε is a subset of the Pareto-optimal frontier such that , for
any Pareto-optimal solution π of P , there exists a solution
π′ ∈ Πε with π′ ⪯ϵ π. Note that any cost-unique Pareto-
optimal frontier is also an ε-approximate Pareto-optimal
frontier for ε = 0.

We define the domination factor of a path π′ over another
path π as

DF(π′, π) = max

{
f1(π

′)

f1(π)
− 1,

f2(π
′)

f2(π)
− 1, 0

}
,

which measures how “good” f(π′) approximates f(π). It
is easy to verify that f(π′) ⪯ϵ f(π) if and only if ε ≥
DF(π′, π). For a set of solutions Π, we define its approxi-
mation factor as

ε(Π) = max
π∈Π∗

{
min
π′∈Π

DF(π′, π)

}
. (1)

We slightly abuse the ε notation and use it as a function here.
Roughly speaking, for each Pareto-optimal solution π, we
find a path π′ in Π that approximately dominates π the best,
compute the value of the domination factor, and then take
the maximum of these values over all Pareto-optimal solu-
tions. Π is an ε-approximate Pareto-optimal solution set if
and only if ε ≥ ε(Π).
Example 1. Fig. 1 shows a Pareto-optimal frontier with four
solutions, denoted as Π∗. Let Π = {π1, π2, π4} be a subset

200

f1

f2

π1, (1, 4)

π2, (2, 3)

π3, (3, 2)

π4, (4, 1)

Figure 1: The f -values of a Pareto-optimal frontier which
consists of four solutions π1, π2, π3, and π4. The pair of
numbers next to each path is its f -value.

of Π∗. For any solution π ∈ Π, minπ′∈Π DF(π′, π) = 0
because DF(π′, π) = 0 by definition for π′ = π. For solu-
tion π3, DF(π′, π3) is minimized for π′ = π4, and we have
DF(π4, π3) = 1

3 . Therefore, Π is a 1
3 -approximate Pareto-

optimal frontier.

3 BOA∗ and BOA∗
ε

BOA∗ (Hernandez et al. 2020) is a best-first bi-objective
search algorithm. It maintains an OPEN list, containing
the frontier of the search tree (i.e., the generated but not
yet expanded nodes) and a set of Pareto-optimal solutions
sols that it has found so far. In BOA∗, a node represents
a path π from sstart to some state. In this paper, we there-
fore use “node” and “path” interchangeably. For each state
s, BOA∗ uses gmin

2 (s) to store the minimum g2-value of all
expanded paths that end at state s. Alg. 1 shows the pseu-
docode of BOA∗. In the beginning, OPEN contains only
one path [sstart]. At each iteration, BOA∗ extracts a path
π with the lexicographically smallest f -value from OPEN.
The path π is pruned if there exists (i) an expanded path π′

with the same ending state as π, i.e., s(π) = s(π′), and
g(π′) ⪯ g(π) or (ii) an expanded path π′ with s(π′) = sgoal
and f(π′) ⪯ f(π). Hernandez et al. (2020) showed that test-
ing (i) and (ii) can be done by testing if

g2(π) ≥ gmin
2 (s(π))

and
f2(π) ≥ gmin

2 (sgoal), (2)

respectively. If s(π) = sgoal, BOA∗ then adds π to sols.
Otherwise, BOA∗ expands π and generates a child path for
each successor s′ of s(π). The child path is the path that
extends π with edge ⟨s, s′⟩.

Goldin and Salzman (2021) showed that, by a slight mod-
ification, BOA∗ can be made to find an approximate Pareto-
optimal frontier. To do so, we simply replace Eq. 2 with

(1 + ε)f2(π) ≥ gmin
2 (sgoal),

which means that path π is pruned if it is ε-dominated by
a found solution. The resulting algorithm is called BOA∗

ε .
Lines 7 and 15 of Alg. 1 need to be changed accordingly for
converting BOA∗ to BOA∗

ε .

Algorithm 1: BOA∗

Input : A problem instance ⟨S,E, c, sstart, sgoal⟩
Output: A cost-unique Pareto-optimal frontier

1 sols← ∅
2 OPEN← {[sstart]}
3 for each s ∈ S do
4 gmin

2 (s)←∞
5 while OPEN ̸= ∅ do
6 π ← OPEN.extract min()
7 if g2(π) ≥ gmin

2 (s(π)) ∨ f2(π) ≥ gmin
2 (sgoal) then

8 continue
9 gmin

2 (s(π))← g2(π)
10 if s(π) = sgoal then
11 add π to sols
12 continue
13 for each s′ ∈ succ(s(π)) do
14 π′ ← extend(π, ⟨s(π), s′⟩)
15 if g2(π′) ≥ gmin

2 (s′) ∨ f2(π
′) ≥ gmin

2 (sgoal) then
16 continue
17 add π′ to OPEN
18 return sols

4 A-BOA∗
ε

Conceptually, BOA∗ can be viewed as an anytime algo-
rithm. It can be stopped anytime and then return sols as
the set of solutions that it has found so far. However, BOA∗

finds Pareto-optimal solutions in lexicographically increas-
ing order of their f -values, and the solutions that it finds first
are the ones with small c1 and thus large c2. Therefore, if
stopped early, BOA∗ might return a solution set with a large
approximation factor (Eq. 1). On the other hand, we can run
BOA∗

ε multiple times with a sequence of decreasing ε-values
until ε = 0, and this process of repeatedly running BOA∗

ε
can be viewed as a basic anytime bi-objective search algo-
rithm. However, rerunning BOA∗

ε from scratch is not effi-
cient since it repeats the work of the previous iteration.

This motivates us to propose our new anytime bi-objective
search algorithm, called Anytime BOA∗

ε (A-BOA∗
ε). As we

will see shortly, A-BOA∗
ε makes use of intervals to keep

track of its progress in the previous iteration and avoid re-
peating work. We start by providing the definition and prop-
erties of intervals before we describe A-BOA∗

ε .

4.1 Preliminaries: Intervals
Definition 1 (Interval). Let πtl and πbr be two Pareto-
optimal solutions such that f1(πtl) < f1(πbr) (and hence
f2(πtl) > f2(πbr)). Furthermore, let Π be a set of paths
from sstart (not necessarily ending at sgoal) such that, ∀π ∈ Π
f1(πtl) ≤ f1(π) and f2(πbr) ≤ f2(π). We define its corre-
sponding interval as the 3-tuple I = ⟨πtl, πbr,Π⟩ and refer
to πtl, πbr, and Π as the top-left solution, the bottom-right
solution, and the to-expand paths of I , respectively.

The notion of an interval is visualized in Fig. 2. Roughly
speaking, Π is a set of paths whose f -values fall “between”
the f -values of πtl and πbr.
Definition 2 (Approximation Factor of an Interval).
Given an interval I = ⟨πtl, πbr,Π⟩, we define its approxi-

201

f1

f2

Π

πbr

πtl

Figure 2: An example interval I = ⟨πtl, πbr,Π⟩ in A-BOA∗
ε .

The two blue dots represent the f -values of Pareto-optimal
solutions πtl and πbr. The orange dots represent the f -values
of all paths in Π.

Algorithm 2: Anytime BOA∗
ε

Input : A problem instance ⟨S,E, c, sstart, sgoal⟩ and
parameter d for decreasing approximation factor

Output: An approximate Pareto-optimal frontier
1 πtl ← a Pareto-optimal solution with the lexicographically

smallest (c1, c2)
2 πbr ← a Pareto-optimal solution with the lexicographically

smallest (c2, c1)
3 Is ← ⟨πtl, πbr, {[sstart]}⟩
4 ILIST← {Is}
5 while ∃I ∈ ILIST: ε̂(I) ̸= 0 do
6 I ← argmaxI∈ILISTε̂(I)
7 ILIST′ ← Search(I, ε̂(I)/d)
8 remove I from ILIST
9 add all intervals of ILIST′ to ILIST

10 return ConstructSols(I)

mation factor ε̂(I) as

ε̂(I) = max
π∈Π

{min (DF(πtl, π),DF(πbr, π))}

if Π ̸= ∅, and ε̂(I) = 0 otherwise.
Note that, for any path π ∈ Π, π is ε̂(I)-dominated by

either πtl or πbr by definition.
As we will see shortly, A-BOA∗

ε maintains a set of in-
tervals ILIST. For each interval ⟨πtl, πbr,Π⟩ in ILIST, Π
contains all generated but not yet expanded paths that have
the potential to extend to a Pareto-optimal solution πsol
with f1(πtl) ≤ f1(πsol) and f2(πbr) ≤ f2(πsol). Although
A-BOA∗

ε does not explicitly maintain OPEN, the to-expand
paths of the intervals in ILIST can be conceptually viewed
as paths in OPEN, grouped by their f -values.

4.2 Algorithmic Framework
Alg. 2 shows the pseudocode of A-BOA∗

ε . The algo-
rithm initializes ILIST with only one interval Is =
⟨πtl, πbr, {[sstart]}⟩, where πtl and πbr are the Pareto-optimal
solutions with the lexicographically smallest (c1, c2)- and
(c2, c1)-values, respectively (Line 4). Such solutions can be
found quickly using any single-objective search algorithm,
such as A* (Hart, Nilsson, and Raphael 1968). A-BOA∗

ε then

Algorithm 3: Search
Input : An interval I = ⟨πtl, πbr,Π⟩ and an

approximation factor ε
Output: A list of intervals, each with an approximation

factor not larger than ε
1 OPEN← Π, Πtmp ← ∅, πtmp ← πtl
2 for each s ∈ S do
3 gmin

2 (s)←∞
4 while OPEN ̸= ∅ do
5 π ← OPEN.extract min()
6 if is dominated(π) then
7 continue
8 gmin

2 (s(π))← g2(π)
9 if s(π) = sgoal then

10 add ⟨πtmp, π,Πtmp⟩ to ILIST
11 πtmp ← π, Πtmp ← ∅
12 continue
13 for each s′ ∈ succ(s(π)) do
14 π′ ← extend(π, ⟨s(π), s′⟩)
15 if is dominated(π′) then
16 continue
17 add π′ to OPEN
18 add ⟨πtmp, πbr,Πtmp⟩ to ILIST
19 return ILIST

20 Define is dominated(π):
21 if f1(π) ≥ f1(πbr) ∨ f2(π) ≥ f2(πtl) ∨

can prune wsh(π) then
22 return True
23 if g2(π) ≥ gmin

2 (s(π)) ∨ (1 + ε)f2(π) ≥ gmin
2 (sgoal)

then
24 if g2(π) < gmin

2 (s(π)) ∧ f2(π) < gmin
2 (sgoal) then

25 add π to Πtmp
26 return True
27 return False

repeatedly picks the interval in ILIST with the largest ap-
proximation factor and invokes Alg. 3 to continue the search
on its to-expand paths.

Alg. 3 takes an interval I and an approximation factor ε
as inputs and returns a set of new intervals, each with an ap-
proximation factor not larger than ε. In A-BOA∗

ε , the input ε
for Alg. 3 is set to ε̂(I)/d (Line 7), where d is a parameter
that specifies how fast the approximation factor decreases in
A-BOA∗

ε . Other strategies for decreasing ε could be easily
implemented for A-BOA∗

ε but are out of scope for this work.
A-BOA∗

ε terminates when all intervals in ILIST have an ap-
proximation factor of zero. As we will show in Sec. 6, this
means that A-BOA∗

ε has found a cost-unique Pareto-optimal
frontier. At any point in time, the Pareto-optimal solutions
that A-BOA∗

ε has found so far can be constructed as the set of
top-left and bottom-right solutions of all intervals in ILIST.
This set is a max{ε̂(I)|I ∈ ILIST}-approximate Pareto-
optimal frontier.

Alg. 3 is similar to BOA∗
ε with differences only in initial-

ization and dominance checking. Alg. 3 initializes OPEN
with the to-expand paths of the input interval so that it does
not start from scratch. Dominance checking is encapsulated
in Function is dominated (Lines 20-27). Aside from ap-

202

Figure 3: An example problem instance whose Pareto-
optimal frontier consists of four paths. The pair of numbers
inside each state is its h-value. The pair of numbers annotat-
ing each edge is its cost.

plying the pruning conditions of BOA∗
ε on Lines 23-26,

Alg. 3 also prunes a path if it is dominated by either the
top-left solution or the bottom-right solution of the input in-
terval (Lines 21-22). Function can prune wsh on Line 21
encapsulates another pruning technique that we will explain
in Sec. 5. Alg. 3 also stores those paths that are ε-dominated
by a solution that has been found but do not satisfy the prun-
ing conditions of BOA∗ (Lines 24-25). Such paths are safe to
prune for the input ε-value but still have the potential to ex-
tend to Pareto-optimal solutions. A-BOA∗

ε temporally stores
these paths in Πtmp. Each time a solution is found, a new in-
terval is created with the previously found solution πtmp as
its top-left solution, the newly found solution as its bottom-
right solution, and Πtmp as its to-expand paths, πtmp is then
set to the newly found solution and Πtmp is emptied. When
OPEN becomes empty, Alg. 3 creates a new interval with
the previously found solution πtmp as its top-left solution, πbr
as its bottom-right solution, and Πtmp as its to-expand paths
and returns the list of all new intervals. Each of these inter-
vals has an approximation factor not larger than the input
ε-value because all of its to-expand paths are ε-dominated
by its top-left solution.

Example 2. Fig. 3 shows a problem instance whose Pareto-
optimal frontier consists of four solutions. Assume that d =
4. In the beginning, A-BOA∗

ε finds two Pareto-optimal so-
lutions π1 = [sstart, s1, sgoal] and π4 = [sstart, s4, sgoal] and
initializes ILIST with interval Is = ⟨π1, π4, {[sstart]}⟩. The
f -values for π1, π4, and path [sstart] are (2, 10), (10, 2),
and (2, 2), respectively. The approximation factor for Is is
ε̂(Is) = min(DF(π1, [sstart]),DF(π4, [sstart])) = 4.

In the first iteration, A-BOA∗
ε invokes Alg. 3 with Is

and ε = 1. Alg. 3 expands path [sstart] and generates
paths [sstart, s1], [sstart, s2], [sstart, s3], and [sstart, s4]. Paths
[sstart, s1] and [sstart, s4] are pruned on Lines 21-22 be-
cause they are weakly dominated by π1 and π4, respectively.
A-BOA∗

ε then expands [sstart, s2] and π2 = [sstart, s2, sgoal]
in sequence and finds a new solution π2. gmin

2 (sgoal) is up-
dated to g2(π2) = 6. Path [sstart, s3] is pruned and put

into Πtmp. Alg. 3 returns the two intervals I1 = ⟨π1, π2, ∅⟩
and I2 = ⟨π2, π4, {[sstart, s3]}⟩. Thus, up until this point,,
A-BOA∗

ε has found the three Pareto-optimal solutions π1,
π2, and π4.

We have ε̂(I1) = 0 by definition and ε̂(I2) =
min(DF(π2, [sstart, s3]),DF(π4, [sstart, s3])) = 0.2. In the
second iteration, A-BOA∗

ε invokes Alg. 3 with I2 and
ε = 0.05. Eventually, Alg. 3 finds solution π3 =
[sstart, s3, sgoal] and returns two intervals ⟨π2, π3, ∅⟩ and
⟨π3, π4, ∅⟩. A-BOA∗

ε then terminates with all four Pareto-
optimal solutions found.

5 Weighted-Sum Heuristic Pruning
In this section, we describe a novel pruning technique for
A-BOA∗

ε , called weighted-sum heuristic pruning, that allows
it to discard paths that cannot be extended to Pareto-optimal
solutions. Many bi-objective search algorithms (Hernandez
et al. 2020; Goldin and Salzman 2021) use a heuristic func-
tion to estimate the cost from a given state to the goal state
for each of the two objectives individually. Such a heuris-
tic function can be computed quickly via a single-objective
search, such as Dijkstra’s algorithm, from the goal state.
This motivates us to design other heuristic functions that can
be computed via single-objective searches to further aid the
bi-objective search, even though they do not use heuristic
functions to guide the search but to prune paths.

Let w > 0 be a user-defined real-valued parameter. The
weighted-sum heuristic function hw : S → R estimates the
weighted sum of the cost c1 + w · c2 from a given state
to the goal state. This heuristic function can be computed
quickly via a single-objective search from the goal state us-
ing c1(e) + w · c2(e) as the cost of each edge e. This way,
the exact minimum weighted-sum values are obtained for all
states and used as an admissible (that is, non-overestimating)
heuristic function. In this paper, we limit our discussion to
admissible weighted-sum heuristic functions.
Property 1. Let π be some path, and let π′ and π′′ be two
Pareto-optimal solutions that have been found by A-BOA∗

ε
and satisfy (i) f1(π

′) ≤ f1(π), (ii) f2(π
′′) ≤ f2(π), and

(iii) f1(π′) < f1(π
′′). If

g1(π) +w · g2(π) + hw(s(π)) ≥ f1(π
′′) +w · f2(π′), (3)

then any solution extending π is weakly dominated by π′ or
π′′.

Proof. Assume π, π′, and π′′ satisfy Eqs. (i), (ii), (iii), and 3.
Let πsol be any solution that extends π. Because the heuristic
function h is consistent, we have f1(πsol) ≥ f1(π) ≥ f1(π

′)
and f2(πsol) ≥ f2(π) ≥ f2(π

′′). Assuming that πsol is not
weakly dominated by π′ or π′′, we have

f2(πsol) < f2(π
′) and f1(πsol) < f1(π

′′) (4)
because πsol is not worse than or equal to π′ or π′′ in both
objectives. Given that hw is admissible and Eq. 3 is satisfied,
we have
f1(πsol) + w · f2(πsol) = c1(πsol) + w · c2(πsol)

≥ g1(π) + w · g2(π) + hw(s(π))

≥ f1(π
′′) + w · f2(π′).

(5)

203

f1

f2

⇡0

⇡00
⇡ `

f1

f2

⇡0

⇡00
⇡ `

f1

f2

⇡0

⇡00
⇡ `

f1

f2

⇡0

⇡00
⇡ `

(a) (b)

(c) (d)f1

f2

⇡0

⇡00
⇡ `

Figure 4: An example of weighted-sum heuristic pruning.
π is the path that we consider for pruning. π′ and π′′ are
two known solutions. The f -value of any path that extends
π must lie in the shaded area of (a) because the heuristic
function h is consistent. The shaded area in (b) represents f -
values (f1, f2) that satisfy f1+w ·f2 ≥ g1(π)+w ·g2(π)+
hw(s(π)) for a given weighted-sum heuristic function hw.
The f -value of any solution that extends π must lie in this
area since hw is admissible. The shaded area in (c) is the in-
tersection of the shaded areas in (a) and (b). The shaded area
in (d) represents the f -values that are weakly dominated by
the f -value of π′ or π′′. The shaded area in (c) is contained
in the shaded area in (d), which means that any solution that
extends π is weakly dominated by π′ or π′′, and hence π is
safe to prune.

However, given Eq. 4, we have

f1(πsol) + w · f2(πsol) < f1(π
′′) + w · f2(π′),

which contradicts Eq. 5

Fig. 4 shows a visualization of the proof of Property 1.
Here, π, π′, and π′′ are paths as defined in Property 1. With
only information about h1 and h2, the shaded area in Fig. 4a
shows where the f -value of a solution extending π can possi-
bly be. π still seems to have the potential to extend to a solu-
tion that is not weakly dominated by π′ or π′′, that is, whose
f -value lies outside of the shaded area in Fig. 4d. However,
with a weighted-sum heuristic function, we show that π is
safe to prune.

Alg. 3 can incorporate this pruning technique by using
πtmp and πbr as π′ and π′′, respectively. A path π can be
pruned if, given weighted-sum heuristic function hw,

g1(π) + w · g2(π) + hw(s(π)) ≥ f1(πbr) + w · f2(πtmp).

Function can prune wsh on Line 21 of Alg. 3 returns true
iff this pruning condition holds. Since BOA∗ expands paths
in lexicographic order of their f -values, it is not straightfor-
ward to see which path can be used as π′′ for weighted-sum
heuristic pruning. One might consider using a solution with
the lexicographically smallest (c2, c1)-value as π′′. How-
ever, by doing this, weighted-sum heuristic pruning only
happens near the end of the search, and our preliminary re-
sults show that the total runtime of BOA∗ usually become

worse due to the overhead of computing the weighted-sum
heuristic function.

6 Theoretical Results
In this section, we provide theoretical results about
A-BOA∗

ε . After describing properties of ILIST and intervals,
we show that (i) the set of solutions that A-BOA∗

ε has found
at any point of time is a max{ε̂(I)|I ∈ ILIST}-approximate
Pareto-optimal frontier (Thm. 1) and that (ii) A-BOA∗

ε even-
tually finds a cost-unique Pareto-optimal frontier (Thm. 2).

Property 2. Let [I1, I2 . . . IM] be the sequence of intervals
obtained when sorting ILIST in ascending order according
to the f1-value of the top-left solution of each interval. For
any i ∈ {1, 2 . . .M − 1}, the bottom-right solution of Ii is
also the top-left solution of Ii+1.

Proof. The property is trivially true in the beginning when
ILIST is initialized on Line 4 of Alg. 2. Assume that the
property holds in the beginning of an iteration of Alg. 2. An
interval I is then chosen and sent to Alg. 3. Alg. 3 creates
intervals in ascending order of the f1-values of their top-
left solutions. When an interval is created, its bottom-right
solution is stored in πtmp and becomes the top-left solution
of the interval that is created next. Moreover, the first and
last created intervals have the same top-left and bottom-right
solutions as I , respectively. Therefore, after replacing I in
ILIST with the list of intervals returned by Alg. 3, Property 2
still holds.

Property 3. Consider the sequence of intervals
[I1, I2 . . . IN] in Property 2, and let Π = [π1, π2 . . . πN+1]
be the sequence of solutions such that, for every i = 1 . . . N ,
πi and πi+1 are the top-left and bottom-right solutions of
Ii, respectively. The solutions in Π have strictly increasing
f1-values and strictly decreasing f2-values.

Proof sketch. This property holds because, according to
Definition 1, the top-left solution has a smaller f1-value and
a larger f2-value than the bottom-right solution. We skip the
details due to space limit.

Lemma 1. When A-BOA∗
ε prunes a path in Alg. 3 and this

prevents it in the future from adding a solution πsol (that ex-
tends π) to the solution set, then A-BOA∗

ε has already found
or will find in the future a solution that weakly dominates
πsol.

Proof. There are three cases when A-BOA∗
ε prunes a path π:

1. It prunes path π on Line 21 of Alg. 3 because f1(π) ≥
f1(πbr) ∨ f2(π) ≥ f2(πtl). Then, A-BOA∗

ε has already
found a solution, namely πtl or πbr, that weakly domi-
nates π (and hence also πsol). This solution will eventu-
ally be included in the solution set.

2. It prunes path π on Line 21 of Alg. 3 because
can prune wsh(π) holds. Then, according to Property 1,
πtmp or πbr weakly dominates πsol. Both πtmp or πbr are
solutions and will eventually be included in the solution
set.

204

3. It prunes path π on Line 26 of Alg. 3 after storing this
path in Πtmp. Then, the pruned path is stored as a to-
expand path for an interval and extracted again in the
future for expansion.

4. It prunes path π on Line 26 of Alg. 3 without storing
it in Πtmp. Then, path π satisfies g2(π) ≥ gmin

2 (s(π)) ∨
f2(π) ≥ gmin

2 (sgoal). This is the pruning condition of
BOA∗, and thus the proof of Lemma 7 of Hernandez et al.
(2020) applies.

Lemma 2. In A-BOA∗
ε , the top-left and bottom-right solu-

tions of any interval are Pareto-optimal solutions.

Proof. Assume that a solution πsol is the top-left or bottom-
right solution of an interval in ILIST but is dominated by
a solution π′. From Lemma 1, A-BOA∗

ε eventually finds
a solution π′′ that weakly dominates π′ (and hence domi-
nates πsol) to the solution set. Then, both πsol and π′′ are the
top-left or bottom-right solutions of some intervals in ILIST.
This contradicts Property 3 because πsol and π′′ cannot be
part of a sequence of solutions with increasing f1-values and
decreasing f2-values at the same time.

The following two theorems show that A-BOA∗
ε finds ap-

proximate Pareto-optimal frontiers with approximation fac-
tor guarantees and eventually finds a cost-unique Pareto-
optimal frontier.

Theorem 1. The set of solutions that A-BOA∗
ε finds af-

ter each iteration (namely, the set of top-left and bottom-
right solutions of all intervals in ILIST) is a max{ε̂(I)|I ∈
ILIST}-approximate Pareto-optimal frontier.

Proof. Let Π denote the set of solutions that A-BOA∗
ε finds

after an iteration and Π∗ denote the Pareto-optimal fron-
tier. From Lemma 1, for any π ∈ Π∗ \ Π, there exists a
to-expand path π̂ that can be extended to a solution πsol
that weakly dominates π. Because A-BOA∗

ε uses consis-
tent heuristic functions, we have f(π̂) ⪯ f(πsol) ⪯ f(π),
and hence DF(π′, π) ≤ DF(π′, π̂) for any path π′. Let
I = ⟨πtl, πbr,ΠI⟩ denote the interval with π̂ ∈ ΠI . From
Definition 1, we have f1(πtl) ≤ f1(π̂) ≤ f1(πbr) and
f2(πbr) ≤ f2(π̂) ≤ f2(πtl) and hence

DF(πtl, π̂) =
f2(πtl)

f2(π̂)
− 1 and DF(πbr, π̂) =

f1(πbr)

f1(π̂)
− 1.

From Property 3, for any solution π′ ∈ Π \ {πtl, πbr}, we ei-
ther have (1) f1(π′) < f1(πtl) and f2(π

′) > f2(πtl), which
implies that DF(π′, π̂) = f2(π

′)
f2(π̂)

− 1 > DF(πtl, π̂), or (2)
f1(π

′) > f1(πbr) and f2(π
′) < f2(πbr), which implies

that DF(π′, π̂) = f1(π
′)

f1(π̂)
− 1 > DF(πbr, π̂). Therefore, we

have minπ′∈Π {DF(π′, π̂)} = min(DF(πtl, π̂),DF(πbr, π̂)).
From Definition 2, we have min(DF(πtl, π̂),DF(πbr, π̂)) ≤
ε̂(I) because π̂ ∈ ΠI . To summarize, minπ′∈Π {DF(π′, π)}
is upper-bounded by the approximation factor of some
interval in ILIST. Therefore, ε(Π) is upper-bounded by
max{ε̂(I)|I ∈ ILIST}.

Theorem 2. A-BOA∗
ε eventually finds a cost-unique Pareto-

optimal frontier.

Proof. In each iteration, Alg. 3 invokes Alg. 3 with an in-
terval I and an ε-value that is strictly smaller than the ap-
proximation factor of I . All intervals that are outputted by
Alg. 3 have approximation factors that are not larger than
the input ε-value because, for each one of them, the top-
left solution ε-dominates every path in set of to-expand
paths. From Thm. 1, the solution set found by A-BOA∗

ε is
a max{ε̂(I)|I ∈ ILIST}-approximate Pareto-optimal fron-
tier. Therefore, A-BOA∗

ε progressively reduces the approxi-
mation factor of the solution set by replacing an interval with
intervals that have smaller approximation factors. Since the
graph is finite, the number of distinctive costs of all paths
that are not dominated by any Pareto-optimal solution is fi-
nite. Eventually, the approximation factor of the solution set
is so small that none of the found solutions ε-dominates any
such path. No path is stored as a to-expand path, and hence
all intervals in ILIST have an approximation factor of zero
and Alg. 2 terminates.

7 Experimental Results
In this section, we evaluate A-BOA∗

ε experimentally by com-
paring it with the following algorithms:

1. BOA∗.
2. Basic-A-BOA∗

ε: Basic-A-BOA∗
ε iteratively invokes

BOA∗
ε , each time with the input approximation factor

divided by a constant d. Basic-A-BOA∗
ε is similar to

A-BOA∗
ε except that it does not reuse previous search ef-

fort.
3. Iterative-PP-A∗: Iterative-PP-A∗ is based on

PP-A∗ (Goldin and Salzman 2021), a state-of-the art ap-
proximate bi-objective search algorithm. Given problem
instance P and approximation factor ε, PP-A∗ finds a set
of solutions Π such that, for any solution π of P , there
exists a solution π′ ∈ Π that ε-dominates π, although
π′ is not necessarily a Pareto-optimal solution.2 PP-A∗

uses more complicated data structures than BOA∗, and
hence we do not know how to reuse the search effort of
PP-A∗. In our experiments, Iterative-PP-A∗ iteratively
invokes PP-A∗ with a decreasing sequence of ε-values,
namely 0.01, 0.001, 0.0001, and 0.

We evaluate two variants of A-BOA∗
ε , one with the

weighted-sum heuristic pruning technique (denoted as
A-BOA∗

ε-w) and one without this optimization (denoted as
A-BOA∗

ε). All algorithms were implemented in C++ and
shared the code base as much as possible.3

We use three road maps from the 9th DIMACS Implemen-
tation Challenge4, namely BAY (321,270 states, 794,830
edges), FLA (1,070,376 states, 2,712,798 edges), and NE
(1,524,453 states, 3,897,636 edges). For each road map, we

2This statement corrects a statement by Goldin and Salzman
(2021).

3https://github.com/HanZhang39/anytime BOA.git.
4http://users.diag.uniroma1.it/challenge9/download.shtml

205

BAY FLA NE
|sols| = 102 on average |sols| = 457 on average |sols| = 930 on average

Solved Runtime #Expansion Solved Runtime #Expansion Solved Runtime #Expansion
BOA∗ 25/25 0.20 161K 25/25 4.17 1,985K 25/25 37.28 10,072K

Basic-A-BOA∗
ε 25/25 9.45 1,641K 19/25 97.80 14,194K 15/25 178.57 29,567K

Iterative-PP-A∗ 25/25 2.41 530K 23/25 45.44 4,124K 18/25 123.23 9,517K
A-BOA∗

ε 25/25 0.34 271K 25/25 5.74 2,843K 23/25 61.23 12,403K
A-BOA∗

ε-w 25/25 0.29 153K 25/25 3.80 1,759K 25/25 34.58 8,729K

Table 1: Experimental results for different road maps.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Runtime (s)

10 4

10 3

10 2

10 1

Ap
pr

ox
im

at
io

n
Fa

ct
or

(a) BAY, sstart = 75608, sgoal = 287676

0 5 10 15 20
Runtime (s)

10 4

10 3

10 2

10 1

Ap
pr

ox
im

at
io

n
Fa

ct
or

(b) FLA, sstart = 450000, sgoal = 497452

0 10 20 30 40 50 60
Runtime (s)

10 4

10 3

10 2

10 1

Ap
pr

ox
im

at
io

n
Fa

ct
or

(c) NE, sstart = 447786, sgoal = 1331803

Figure 5: Anytime behaviors of different algorithms on three representative problem instances. The x-axis represents the delib-
eration time, and each graph shows the approximation factor of the solution set found over time. The faster the approximation
factor decreases, the better.

generated 25 instances with randomly selected start and goal
states. The h-values are the exact minimum costs to the
goal state for each single objective, computed with Dijk-
stra’s algorithm. These h-values are used by all algorithms,
and the reported runtimes do not include this computation.
However, the reported runtimes do include the computation
of the weighted-sum heuristic function for A-BOA∗

ε-w, the
only algorithm that uses it. For all algorithms, we set a five-
minute runtime limit for solving each problem instance. We
set parameter d for both Basic-A-BOA∗

ε and A-BOA∗
ε to 4.

A-BOA∗
ε-w uses the weighted-sum heuristic function with

w = 1. We run all experiments on a MacBook Pro with an
M1 Pro chip and 32GB of memory.

Table 1 shows the number of problem instances that
are solved (that is, for which the algorithm finds a cost-
unique Pareto-optimal frontier) within the runtime limit, the
average runtime (in seconds, where timeout instances are
counted as five minutes), and the average number of ex-
panded nodes for different algorithms. Both Basic-A-BOA∗

ε
and Iterative-PP-A∗ have much larger average runtimes
than A-BOA∗

ε and A-BOA∗
ε-w on all three road maps be-

cause they do not reuse previous search effort. A-BOA∗
ε-

w has smaller average runtimes than A-BOA∗
ε on all three

road maps. It also has smaller average numbers of node ex-
pansions than BOA∗ on all three road maps and a smaller
average runtime than BOA∗ on FLA and NE. Overall, for
larger road maps, the overhead of computing the weighted-
sum heuristic function is outweighed by the resulting accel-
eration of the search.

Fig. 5 shows the anytime behaviors of all algorithms for
three problem instances of different difficulties, each from a
different road network. A-BOA∗

ε-w has a similar behaviour

5.2 5.4 5.6
c1 1e6

6.0

6.2

6.4

6.6

6.8

7.0

7.2

c 2

1e6

0-3s
3-6s
6-9s
9s+

(a) BOA∗

5.2 5.4 5.6
c1 1e6

6.0

6.2

6.4

6.6

6.8

7.0

7.2

c 2

1e6

0-3s
3-6s
6-9s
9s+

(b) A-BOA∗
ε-w

Figure 6: The solution sets that BOA∗ and A-BOA∗
ε-w find

for the problem instance of Fig. 5b. Colors indicate the run-
time when solutions were found.

as A-BOA∗
ε in the beginning of the anytime search and

then reduces the approximation factor much faster A-BOA∗
ε ,

which shows that the weighted-sum heuristic pruning is
most effective in the later stages of the anytime search. In
both problem instances (b) and (c), Iterative-PP-A∗ is the
first algorithm to find a solution set with an approximation
factor of less than 0.01 because it does not guarantee to find
Pareto-optimal solutions and hence solves an arguably eas-
ier problem than the other four algorithms. However, since
Iterative-PP-A∗ does not reuse its previous search effort, it
needs more time than A-BOA∗

ε and A-BOA∗
ε-w to decrease

the approximation factor to below 0.001.
Fig. 6 shows the Pareto-optimal frontier for the problem

instance in Figure 5b, marked with different colors accord-

206

ing to the runtime when each solution was found. BOA∗

finds solutions in a lexicographic order, while A-BOA∗
ε-w

first finds a set of solutions with diverse costs and then adds
more solutions to the solution set.

8 Conclusion
In this paper, we proposed an anytime approximate bi-
objective search algorithm, called A-BOA∗

ε . It efficiently
reuses its search effort from previous iterations and uses a
novel pruning technique. Our experimental results show that
it is substantially more efficient than an anytime approxi-
mate bi-objective search algorithm that does not reuse pre-
vious search effort. When given a limited amount of deliber-
ation time, A-BOA∗

ε often finds Pareto-optimal solution sets
with much smaller approximation factors than those found
by BOA∗.

There are several interesting directions for future work.
One direction is to develop anytime bi-objective search algo-
rithms which find solutions that are not necessarily Pareto-
optimal. PP-A∗ leverages this relaxed objective to find a
set of solutions with a small approximation factor quickly.
However, it is currently unclear how to reuse the search ef-
fort of PP-A∗ efficiently in this case. Another direction is
to generalize anytime approximate bi-objective search algo-
rithms to search problems with more than two objectives.

Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grant numbers 1409987, 1724392, 1817189, 1837779,
1935712, 2112533, and 2121028. The research was also
supported by the United States-Israel Binational Science
Foundation (BSF) under grant number 2021643 and Cen-
tro Nacional de Inteligencia Artificial CENIA, FB210017,
BASAL, ANID. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, or the
U.S. government.

References
Bachmann, D.; Bökler, F.; Kopec, J.; Popp, K.; Schwarze,
B.; and Weichert, F. 2018. Multi-Objective Optimisation
Based Planning of Power-Line Grid Expansions. ISPRS In-
ternational Journal of Geo-Information, 7(7): 258.
Breugem, T.; Dollevoet, T.; and van den Heuvel, W. 2017.
Analysis of FPTASes for the Multi-Objective Shortest Path
Problem. Computers & Operations Research, 78: 44–58.
Bronfman, A.; Marianov, V.; Paredes-Belmar, G.; and Lüer-
Villagra, A. 2015. The Maximin HAZMAT Routing Prob-
lem. European Journal of Operational Research, 241(1):
15–27.
Cohen, L.; Greco, M.; Ma, H.; Hernández, C.; Felner, A.;
Kumar, T. K. S.; and Koenig, S. 2018. Anytime Focal Search
with Applications. In IJCAI, 1434–1441.
Ehrgott, M. 2005. Multicriteria Optimization. Springer, 2nd
edition.

Fu, M.; Kuntz, A.; Salzman, O.; and Alterovitz, R. 2019. To-
ward Asymptotically-Optimal Inspection Planning via Effi-
cient Near-Optimal Graph Search. In RSS.
Fu, M.; Salzman, O.; and Alterovitz, R. 2021.
Computationally-Efficient Roadmap-Based Inspection
Planning via Incremental Lazy Search. In ICRA, 7449–
7456.
Goldin, B.; and Salzman, O. 2021. Approximate Bi-Criteria
Search by Efficient Representation of Subsets of the Pareto-
Optimal Frontier. In ICAPS, 149–158.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Hernandez, C. U.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazoy,
L.; and Koenig, S. 2020. A Simple and Fast Bi-Objective
Search Algorithm. In ICAPS, 143–151.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In
NIPS, 767–774.
Mandow, L.; and De La Cruz, J. L. P. 2010. Multiobjective
A* Search with Consistent Heuristics. Journal of the ACM
(JACM), 57(5): 1–25.
Pulido, F.-J.; Mandow, L.; and Pérez-de-la Cruz, J.-L. 2015.
Dimensionality Reduction in Multiobjective Shortest Path
Search. Computers & Operations Research, 64: 60–70.
Stern, R.; Felner, A.; van den Berg, J.; Puzis, R.; Shah,
R.; and Goldberg, K. 2014. Potential-Based Bounded-Cost
Search and Anytime Non-Parametric A*. Artificial intelli-
gence, 214: 1–25.
Tsaggouris, G.; and Zaroliagis, C. D. 2009. Multiobjective
Optimization: Improved FPTAS for Shortest Paths and Non-
Linear Objectives with Applications. Theory of Computing
Systems, 45(1): 162–186.
van den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K. Y.
2011. Anytime Nonparametric A*. In AAAI, 105–111.
Warburton, A. 1987. Approximation of Pareto Optima in
Multiple-Objective, Shortest-Path Problems. Operations
Research, 35(1): 70–79.

207

