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Abstract

Work in machine learning has grown tremendously in the past
years, but has had little to no impact on optimal search ap-
proaches. This paper looks at challenges in using deep learn-
ing as a part of optimal search, including what is feasible
using current public frameworks, and what barriers exist for
further adoption. The primary contribution of the paper is to
show how to learn admissible heuristics through supervised
learning from an existing heuristic. Several approaches are
described, with the most successful approach being based on
learning a heuristic as a classifier and then adjusting the quan-
tile used with the classifier to ensure heuristic admissibility,
which is required for optimal solutions. A secondary contri-
bution is a description of the Batch A* algorithm, which can
batch evaluations for more efficient use by the GPU. While
ANNs can effectively learn heuristics that produce smaller
search trees than alternate compression approaches, there still
exists a time overhead when compared to efficient C++ imple-
mentations. This point of evaluation points out a challenge for
future work.

Introduction
Admissible heuristics have rigid properties that must be
maintained in order to be used with search algorithms such
as A* (Hart, Nilsson, and Raphael 1968) and IDA* (Korf
1985). But, progress in building improved heuristics has
slowed significantly. In 2014 Robert Holte challenged re-
searchers to consider where future improvements to heuris-
tics will arise (Holte 2014), citing the need for research
on external memory heuristics, heuristic compression, and
alternate representations of heuristics, such as neural net-
works. There have only been limited efforts to explore these
ideas more deeply, and thus progress has been slow.

While deep learning has become immensely popular in
many fields of Artificial Intelligence, it has not made sig-
nificant headway into optimal heuristic search algorithms.
This is primarily because the approximation inherent in most
learning techniques conflicts with the need for admissibil-
ity (non-overestimation), which is required for A* search.
While some older work (Samadi et al. 2008) was able to
learn admissible heuristics, it had no learning guarantees
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and needed explicit hash tables to correct overestimated en-
tries. Given the recent advances in deep learning, it is time
to revisit the problem of using Artificial Neural Networks
(ANNs) to learn admissible heuristics.

However, this requires mixing research in machine learn-
ing and heuristic search. Attempts from machine learning to
do heuristic search have not always clearly met the standards
of heuristic search research. For instance, Shah et al. (2020)
describes a method to learn a heuristic with at most ε er-
ror, but in empirical discussions it is conceded that this is
only with high probability - under the assumption that the
heuristic function can be precisely learned. High probabil-
ity is not good enough for A*, although it could work for
other algorithms (Ernandes and Gori 2004; Stern, Felner,
and Holte 2011; Lelis et al. 2016). Similarly, other recent
work (Yonetani et al. 2021) proposed that a neural architec-
ture could learn to do suboptimal pathfinding ‘better’ than
A* and Weighted A*. However, timing results reveal that
the approach is orders of magnitude slower than many of the
optimal 2014 Grid-Based Pathfinding Competition solvers
(Sturtevant et al. 2015).

Within this context, this paper provides advances to the
understanding of learning truly admissible heuristics for op-
timal search by (1) describing several novel techniques that
ensure that an ANN learns a heuristic without losing admis-
sibility and (2) developing a novel variant of A*, BatchA*,
that can be used with ANNs and still ensure optimality.

Our approach uses supervised learning of pattern database
heuristics (Culberson and Schaeffer 1998), which are a com-
mon memory-based heuristic,and then use an ANN as a
means of compression to reduce the storage required. Com-
pression has been widely studied for memory-based heuris-
tics (Felner et al. 2007; Ball and Holte 2008; Breyer and
Korf 2010; Goldenberg et al. 2011), and is particularly im-
portant when the heuristics require memory that is larger
than RAM (Döbbelin, Schütt, and Reinefeld 2013; Hu and
Sturtevant 2019).

In this context, the primary methods proposed for learn-
ing admissible heuristics include (1) treating the problem as
a classification problem instead of regression, (2) adjusting
quantiles used for classification, and (3) using ensembles of
neural networks. All of these are guaranteed to learn admis-
sible heuristics, and in practice are able to learn effectively.
Given a GPU-based heuristic, BatchA* is then able to use
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the SIMD nature of GPUs to parallelize heuristic computa-
tions and significantly improve performance. BatchA* with
our learned heuristics expands many fewer nodes than the
DIV compression technique we compare to, while matching
the time performance.

Background and Related Work

In heuristic search, the task is to find a path in a graph
{G = {V,E}, s, g, c, h} from a start state, s ∈ V , to a goal
state, g ∈ V , where c : (e ∈ E) −→ R+ is a cost function for
any edge or pair of states connected by and edge. A heuristic
function h(v) estimates the distance to the goal from state v.
If h∗(v) is the shortest distance to g, h is admissible if for all
v, h(v) ≤ h∗(v) and h is consistent if h(a) ≤ c(a, b)+h(b)
for every two states a and b. For large state spaces G is given
implicitly, meaning that G can only be generated by expand-
ing states and obtaining their neighbors. A* and IDA* are
guaranteed to find optimal solutions if the heuristic is ad-
missible, but A* is suboptimal with respect to expansions
when the heuristic is inconsistent due to node re-expansions
(Martelli 1977; Felner et al. 2011).

Pattern databases (PDBs) (Culberson and Schaeffer
1998) are table-based heuristics. PDBs are commonly used
in exponential domains, where a domain abstraction, which
will also be referred to as a pattern, is used to abstract the
vertices in the original graph V into a smaller abstract state
space φ(V ). In the abstract graph if there is an edge be-
tween v1 and v2 then there is also an edge between φ(v1)
and φ(v2). A breadth-first search is used to compute exact
distances in φ(V ), which are then stored in a table and used
as heuristics in the original state space. For instance, if the
original state space is a permutation of values (0 1 2 3 4
5), a domain abstraction abstracts away some values (such
as 3–5), resulting in an abstract state of (0 1 2 * * *). In
this example the number of vertices, V , is 6! = 720, while
the abstracted state space, φ(V ), has 6!/3! = 120 states.
The abstracted items are called ‘don’t cares’ and can take on
any value, ensuring the heuristic is admissible. PDBs typ-
ically reduce the size of the state space exponentially with
relatively small loss in heuristic accuracy over ground truth
(Felner, Sturtevant, and Schaeffer 2009). During search, a
state is abstracted, and then a ranking function (Myrvold
and Ruskey 2001) is used to convert the abstract state into
a unique integer, which indexes the state in a lookup table
storing the distance to the abstract goal.

Numerous PDB enhancements have been developed. Two
notable enhancements are additive PDBs (Felner, Korf, and
Hanan 2004), which have smaller values in each PDB, but
multiple PDBs can be added together while still guarantee-
ing an admissible heuristic. Another common approach with
PDBs is to only store the delta between the computed PDB
value and an inexpensive base heuristic. At runtime the orig-
inal value can be restored by adding the stored delta to the
base heuristic (Felner, Korf, and Hanan 2004; Sturtevant,
Felner, and Helmert 2017). This reduces the total number
of unique values in the PDB, which is important in our ap-
proach below.

PDB Compression
The most general means of compressing PDBs are based on
the fact that a PDB is just a table of numbers. In the table,
any method can be used to group entries. Then, grouped en-
tries can be replaced by a single entry with their minimum
value, compressing the table while ensuring admissibility.
Common grouping methods include DIV, which groups k
adjacent entries by dividing the index by k, or MOD, which
uses the modulo operator to merge entries offset by m

k in a
PDB with m total entries (Felner et al. 2007). The effective-
ness of these approaches depends on action dependencies in
the state space (Helmert, Sturtevant, and Felner 2017).

There are many other approaches which have been sug-
gested for PDB compression (Ball and Holte 2008; Breyer
and Korf 2010; Edelkamp, Kissmann, and Torralba 2012;
Sturtevant, Felner, and Helmert 2014). We do not describe
all of these because our work here is focused on studying
what can be done with recent deep-learning methods.

Relatively little work has been done on using ANNs (ar-
tificial neural networks) to learn admissible heuristics. An
approach called ADP (for ANNs, decision trees, and parti-
tioning) (Samadi et al. 2008) is the primary exception. ADP
combines a diverse set of approaches to maintain admissi-
bility. This includes a specialized loss function to penalize
overestimates more than underestimates, a decision tree to
subdivide states into smaller groups, and ANNs at the leaves
of the decision tree which only train on subsets of the state
space. Finally, any states that still return inadmissible heuris-
tics are placed in a hash table. In summary, this is a highly
engineered design which relies on a hash table to guarantee
admissibility. That work also predates current advances in
ANNs. By contrast, our work can always learn an admissi-
ble heuristic using a single ANN. In the conclusions we will
discuss how the ideas in ADP could be used to help scale
our work.

Neural Networks
ANNs are inspired by biological neurons. In the simplest
case a fully-connected neuron is a composition of a lin-
ear function followed by a non-linear function, e.g. tanh or
ReLU (Nair and Hinton 2010). Neurons are stacked into lay-
ers which allow them to learn different representations si-
multaneously. Typically, deep ANNs have multiple hidden
layers which increases representation power. ANNs typi-
cally use fully connected layers, which are general and do
not assume any specific structure of data. By contrast, con-
volutional layers use a specialized type of architecture that
tries to exploit the structure of 2D data such as images or
game boards. Such convolutional layer consists of multi-
ple 2D filters called kernels. Each kernel learns a transla-
tion invariant feature by applying the kernel simultaneously
to every k × k subset of the original image. In general,
Convolutional Neural Networks (CNNs) consist of multi-
ple convolutional layers followed by fully connected layers
(Krizhevsky, Sutskever, and Hinton 2012). CNNs are a spe-
cial class of ANNs.

The final layer of an ANN defines the learning task. In
regression the last layer is fully connected to a single output
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which is passed through an activation function to get a real-
valued output, which is interpreted as a heuristic value. In
classification the last fully connected layer has multiple out-
puts that are re-scaled into class probabilities by a softmax
function. Each class is interpreted as a heuristic value.

Take the two sliding-tile puzzle states in Figure 1 as an
example. A small ANN was used to learn a heuristic clas-
sifier for these states from a PDB heuristic, after which the
original heuristic was discarded. To compute the heuristic
for these states, they are evaluated on the classifier, softmax
is applied to the last layer, and the output probability dis-
tribution is found in Table 1. For the first state (φ(v1)) the
ANN predicts a heuristic value of 9 with probability 0.99,
while for the second state (φ(v2)) it predicts a heuristic of 2
with probability 0.99.

ANNs have strong representational power. Theoretically,
ANNs can approximate any Lebesgue integrable function
defined on a compact set (Lu et al. 2017). Furthermore,
Chollet (2019) draws parallels between ANNs and hashta-
bles. However, increasing the approximating power of an
ANN requires exponential growth of the number of neurons
(Cybenko 1989). In practice, the size of ANN is bounded
by GPU memory. A more practical approach to improve the
approximating power of an ANN is to combine predictions
of multiple ANNs, i.e. ensembling. In particular, boosting
(Freund and Schapire 1997) is a well-known approach that
creates ensembles by training each new model on the data
points that were misclassified by previous ANNs.

Learning Admissible Heuristics
The aim of this paper is to use ANNs to learn an admis-
sible heuristic hANN from an existing admissible heuris-
tic h. This paper does this on top of PDB heuristics, al-
though the approach can be applied to any admissible
memory-based heuristic (such as merge-and-shrink heuris-
tics (Helmert et al. 2014)). In our case, the input is a PDB
heuristic and its associated pattern (a domain abstraction).
The output is one or more ANNs that map states to admissi-
ble heuristic values. The goal is to produce ANNs with size
smaller than the size of input PDB and heuristic values that
are as large as possible. It is particularly challenging for the
learned ANN heuristic to be both (1) admissible and (2) re-
turn the largest heuristic values possible. This is treated as
a supervised learning problem; overfitting is not directly an
issue, since the only goal is to reproduce the input data, not
to generalize beyond the training input.

The complex design of ADP, described previously, re-
sults from the failure of a single ANN to learn an admis-
sible heuristic. ADP uses several approaches to break the
learning problem into smaller problems that can be learned
independently. Our approach is to use a single architecture
to learn admissible heuristics. We have done this on top of
regression, classifiers, and ensembles of ANNs. The regres-
sion approach is based on re-scaling the output from a ReLU
activation function to ensure admissibility. The regression
approach did not work in practice, so details are provided
elsewhere (Li 2022). The other two approaches of classi-
fiers, and ensembles are described next.

Using Classifier Quantiles
Heuristic learning is not typically seen as a classification
problem, but, for problems that are NP-complete, the state
space will grow exponentially while the solution length
grows polynomially, meaning that there are relatively few
heuristic values when compared to states. Furthermore,
when a heuristic is stored as a delta over an existing heuris-
tic, there is a further reduction in the number of heuris-
tic values needed for a problem. For instance, in problems
on the 4x4 sliding tile puzzle we will use a PDB heuristic
that initially has 35 distinct values. However, by subtracting
the Manhattan Distance heuristic (a memory-free heuristic
which is easy to compute) from the PDB heuristic, this is
reduced to only 9 values.

Given this, we approach the heuristic learning problem
as a classification problem, with the unique property that
our classes are ordered. This general problem of ordered
classes has been studied previously (Cheng, Wang, and Pol-
lastri 2008), but we use a different approach here to obtain
our results, as variants of that work were not effective.

As described previously, after learning a classifier, the
ANN can be evaluated on a state to produce an output vector
of predictions for each possible class. This vector is passed
through a soft-max function, which is then interpreted as a
probability distribution on each class. The final classifica-
tion returned is typically the class with the largest probabil-
ity. But, in the case where we want to return an admissible
heuristic, this might not be the best approach. In particular if
the probability mass was split evenly between two classes, it
might be necessary to return the class with minimum heuris-
tic value to maintain admissibility. Other more general ap-
proaches are possible.

We illustrate the question of how to interpret the classifier
probability distribution in Table 1, which shows the classifier
output for states φ(v1) and φ(v2) from Figure 1. The largest
output probability for φ(v1) is on class 9, which would typ-
ically be used as the class (heuristic) prediction. But, be-
cause the classes are ordered we can use other metrics. For
instance, we can return the first class that has cumulatively
(for all lower classes) at least 1e− 4 of the output probabil-
ity. For φ(v1) this would change the output class to 8, while
for φ(v2) the output would still be 2.

As such, we can tune the prediction to be more or less ag-
gressive by tuning the quantile of the probability mass used
for computing the predicted class for a given state. Using a
quantile of 1.0 will return the maximum class that received
any probability mass. This maximizes the heuristic predic-
tion, but is unlikely to produce an admissible heuristic. Us-
ing a smaller quantile will return a smaller heuristic, at the
cost of heuristic accuracy, as some states that originally had
correct heuristic values will then produce underestimates.
Using a quantile of 0 will return a heuristic of 0, which is
admissible.

More precisely, assume that a classifier hĈ has been
learned through training on the input heuristic h that has
maximum value hmax. Let PhĈ

(v, i) be the classifier prob-
ability of the ith class on state v. Then, let ChĈ

(v, q) re-
turn the class (heuristic) that cumulatively, from small to
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heurisitics 0 1 2 3 4 5 6 7 8 9

v1 0 0 0 0 5.56e-43 1.09e-32 3.98-24 2.07e-18 1.03e-04 0.99
v2 3.86e-33 1.63e-18 0.99 1.30e-03 5.50e-11 2.94e-21 3.24e-42 0 0 0

Table 1: Classifier output probabilities for states φ(v1) and φ(v2) of Figure 1

large classes, has at least probability q. That is ChĈ
(v, q) =

argmini(
∑i
j=0 PhĈ

(v, j)) ≥ q.
We can use ChĈ

(v, q) to build a new heuristic hQNT(v)
which is guaranteed to be admissible. This is done in two
steps. First, we compute the maximum quantile qv which
guarantees an admissible heuristic for state v. For each v ∈
φ(V ) let qv = argmaxq∈0...1 ChĈ

(v, q) ≤ h(v). Then, we
let q∗ be the quantile that guarantees an admissible heuris-
tic for all states; q∗ = minv∈φ(V ) qv . Putting this together,
hQNT(v) = ChĈ

(v, q∗). This is the largest heuristic that can
be returned, using this approach, that is guaranteed to be ad-
missible on every state.

One might fear that q∗ would be too small to be useful
in practice, but even small values of q∗ can be effective.
Consider again the states in Figure 1. The PDB values of
states φ(v1) and φ(v2) are 9 and 1 respectively after sub-
tracting Manhattan Distance (MD). The output of PhĈ

for
each class is given in Table 1. If we selected q∗ = 0.5,
hQNT(φ(v1)) = 9 because

∑8
j=0 PhĈ

(v, j)) ≈ 0.01 < 0.5

and
∑9
j=0 PhĈ

(v, j)) = 1 ≥ 0.5. However, hC(φ(v2)) = 2
for q∗ = 0.5, which is inadmissible.

Using instead q∗ = 1.63e−18 results in hC(φ(v2)) = 1
which is admissible. hQNT(φ(v2)) for q∗ = 1.63e−18 is
then 7 instead of 9, causing a small loss, but the heuristic
is admissible. Although the quantile margins are small, the
computations are deterministic, so there is no danger of los-
ing admissibility.

There must exist some q∗ such that hQNT is admissible.
This is because q∗ = 0 results in a heuristic of 0 for every
state, which is admissible. Thus, it follows that some q∗ ≥ 0
will result in hQNT being admissible.

Ensemble of Neural Networks
Our second method that preserves admissibility is to use an
ensemble of ANNs, where the returned heuristic is the mini-
mum of the heuristic returned by each ANN in the ensemble.
Formally, we build a set Hk = {h0, h1, . . . , hk} of heuris-
tics which are combined for the ensemble heuristic:

8

12 9 15 11

13 10 14

12 13 14 15

8 9 10 11

φ(v1) φ(v2)

Figure 1: Abstracted states φ(v1) and φ(v2) for the 4x4 Slid-
ing Tile Puzzle

hENS(Hk)(s) = mini∈0...k hi(s)

While the set H could be composed of any set of heuris-
tics, we will build them by training successive ANNs on
states that are inadmissible in the current heuristic. In partic-
ular, givenHt after t training steps,Ht+1 is built by training
hi+1 on the states S = {s ∈ φ(V ) | hENS(Ht)(s) > h(s)}.
The overall procedure is started by training h0 on h.
Lemma 1. Adding hi+1 to a set of heuristics Hi (creating
set Hi+1) cannot increase the number of states with inad-
missible heuristics in hENS(Hi).

Proof. The heuristic of any state s computed by hENS(Hi))

is the minimum of the heuristics h ∈ Hi. Thus, adding an
additional heuristic can only decrease the heuristic value for
any state s, not increase it.

Given this, we can now show that this process can learn
an admissible heuristic.
Theorem 1. Assuming that (1) ANN heuristics are deter-
ministic and (2) that an ANN can also be trained to learn
at least one state in the training set, then there exists some
value k for which hENS(Hk) will be admissible.

Proof. Since each new ANN heuristic added to the ensem-
ble makes at least one new state admissible and no new states
inadmissible, the set H will only require a finite number of
heuristics before hENS(H) is admissible.

As with the quantile method, the ensemble method is
guaranteed to produce an admissible heuristic. In our exper-
iments two ANNs were sufficient in an ensemble to achieve
admissibility, even on a heuristic with |φ(V )| = 5 × 108

states.

Improved Training
The approaches described above are sufficient to preserve
admissibility in a learned heuristic. We next discusses ways
to further improve the quality of heuristics that are learned.

The ensemble approach focuses on overestimated entries
to achieve 100% admissible rate. Underestimated entries do
not affect admissibility, nonetheless, they do affect the qual-
ity of heuristics. Because the second ensemble heuristic is
only trained on a subset of the full data, the ANN will be
forced to generalize to states that are unseen during training.
If many of the states in the second ANN training set in the
ensemble have low heuristic values, it is likely that these will
be generalized to other states, lowering the overall heuristic.

One way to improve the quality of heuristics is to include
part or all of the states that have already been learned into the
dataset that a succeeding ANN will be trained on. Because
they already have had their heuristic learned admissibly in
the first ANN, the underestimated entries can be be given
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Algorithm 1: Batch A*

1: Input: s, g
2: OPEN ← s
3: WAIT ← ∅
4: limit← f(s)
5: while OPEN or WAIT is not empty do
6: if OPEN is empty or OPEN.top.f > limit then
7: Eval(WAIT)
8: end if
9: n← OPEN.pop()

10: limit← max(n.f, limit)
11: for each child c of n do
12: Add c to WAIT
13: if WAIT is full then
14: Eval(WAIT)
15: end if
16: end for
17: end while

the maximum heuristic value to ensure they are not further
underestimated. If the succeeding ANNs together with pre-
ceding ones are sufficient to preserve admissibility, adding
underestimated entries will improve the average heuristic
value predicted by ANNs. In all of our experiments with
ensembles we measure the number of underestimated en-
tries i and randomly add 10i admissible entries to the train-
ing set with the maximum heuristic value. This significantly
improves the performance of the ensemble learning. For in-
stance, when training on the 8-15 PDB for the sliding tile
puzzle this increases the average heuristic by 50%.

A second way to improve the heuristic is to combine the
quantile and ensemble methods, creating a new heuristic
hQ+E. After training H0 in an ensemble, we can choose
some q > q∗ to decrease the number of overestimated en-
tries, while still leaving some entries overestimated. This
reduces the training set required for the next ANN in the
ensemble and simplifying the learning problem. For this
method we sample a small set of values (q ∈ {0.1, 0.2, 0.3})
that are used for the first heuristic in the ensemble.

Batch A*
GPUs are SIMD processors that can perform operations in
parallel on separate data. Thus it is, in theory, no slower
to evaluate 1 ANN heuristic on a GPU than 10 heuris-
tics. BatchA* is a variant of A* designed to exploit this
efficiency. We provide a short description of BatchA* and
sketch of correctness here; more details and similar ex-
tensions applied to IDA* are described elsewhere (Nadav
2021). But, it is worth noting that BatchA* is a general al-
gorithm that can be used for other problems besides ANN-
based heuristics. For instance, the SIMD capabilities of a
CPU could be also exploited to simultaneously compute the
rank of several states simultaneously for PDB lookups using
Batch A*.

BatchA* is identical to A* except that it places states into
a queue when they are generated. When the queue is full or
the queue must be evaluated to ensure correctness, all the

states are evaluated and added to the OPEN list. The psuedo-
code for the most important details of BatchA* are found in
Algorithm 1. We assume that the environment/heuristic are
provided elsewhere, and the only input is the start (s) and
goal (g) states. BatchA* maintains a limit, which represents
the maximum f -cost that has been expanded. States wait-
ing to have their heuristics batch evaluated are on a WAIT
list. Before increasing the f -cost limit, BatchA* must en-
sure that there are no states on WAIT waiting to be evalu-
ated. The Eval method evaluates the heuristic of all states
in parallel before adding them to the appropriate data struc-
ture (open/closed). As long as there are many states with the
same f -cost, we can expect that the WAIT list will primarily
be evaluated when it is filled up (line 13). Additional opti-
mizations are possible, such as checking to see if a state has
already had its heuristic evaluated before putting it on the
WAIT list, or checking if a state is already on WAIT instead
of putting it on a second time.

We first address the behavior of BatchA* with a consistent
heuristic, where f -costs monotonically increase. In this case
we must only show that BatchA* does not expand states with
larger f -cost before expanding all states with smaller f -cost,
or terminate without finding a path that exists. There are only
two places where these can occur. The first case is when
the OPEN list is empty. In this case there may be states on
the WAIT list, so any waiting states must be evaluated (line
7). The second case is when the minimum f -cost on OPEN
increases above the previous minimum (line 7). At this point
there could be states on the WAIT list with lower f -cost that
need to be expanded first, so any waiting states must first be
evaluated.

With an inconsistent heuristic f -costs can decrease if
heuristics are not propagated (Felner et al. 2011). In this
case BatchA* must re-expand states when shorter paths are
found. When this happens, BatchA* does not need to lower
the limit being used (line 10), however a complete discus-
sion of BatchA* and inconsistency is beyond the scope of
this paper.

Batch A* Expansions
Although BatchA* performs well in our experiments, we an-
alyze why BatchA* may do significantly more expansions
than A* in some cases. In particular, the efficiency of Batch
A* depends on how many states can have their heuristics
evaluated in parallel.

One might think that if A* were to expand k states, that
Batch A* with a batch size of b would expand no more than
k + b states, meaning that Batch A* might just expand a
single batch of extra states to finish the search. However,
this analysis is incorrect. If the goal has f -cost of C∗, Batch
A* may be forced to expand all states with f = C∗ before
expanding the goal, where A* may only expand the states
on the optimal path.

This occurs when the goal is at the end of a long path of
states all with f = C∗. Because Batch A* can only expand
one of the states in this path at a time, it may, as a result,
end up expanding all other states with f = C∗ while trying
to get to the end of this chain. If the chain is the only set of
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states with f = C∗, then BatchA* will no longer be able to
batch lookups, and will evaluate a single state at a time.

Related Algorithms
Batch A* is similar to Batch Weighted A* (BWAS)
(Agostinelli et al. 2019), which also batches states for ex-
pansions. However, the BWAS implementation (1) does not
limit the f -cost of states expanded in each batch and (2) does
a goal check on each expanded state. Thus, it could find a so-
lution which does not meet the suboptimality bound.

In general this can be prevented either by limiting the f -
cost of states in each batch (as in Batch A*), or by allowing
expansions with larger f -cost, but ensuring the search still
proves the (bounded) optimality of the solution. BWAS was
developed in the context of an inadmissible heuristic; in that
context this distinction is less important.

Experiments
Using ANNs to learn admissible heuristics is significant on
its own. But, as we will show, our approaches are not only
able to learn admissible heuristics, they are also able to learn
more accurate heuristics than the standard baseline compres-
sion techniques. After describing our experimental setup,
we provide our primary learning results. We then explore
the ability to efficiently use these heuristics during search,
pointing out key differences in heuristic search and machine
learning implementations and evaluation.

Note that we limit our experiments here to compressing
heuristics which fit in the memory of all modern devices,
because the emphasis in this paper is how to learn admissible
heuristics. In the conclusions we provide a detailed look at
the research required to scale this work to heuristics that are
significantly larger.

Experimental Setup
While many ANN approaches require significant training
time on many parallel GPUs or TPUs, our approach used
relatively modest resources. We used CNNs and train all
the CNN models sequentially with Pytorch on CUDA 10.1
using one 2080ti GPU. Our primary experiments are con-
ducted on the 4x4 Sliding Tile Puzzle (STP), 5x5 STP, and
16-tile TopSpin. Each of these domains can be represented
as a permutation of numbers. The STP is a grid of numbers
that must be sorted while the TopSpin puzzle is a continuous
loop of numbers that must be sorted by rotating 4 adjacent
tiles. PDBs were built using HOG21.

The baseline PDB heuristic for the 4x4 STP used additive
PDBs (Felner, Korf, and Hanan 2004) of tiles 1-7 and tiles 8-
15 taken as a delta over Manhattan distance (MD). In the 5x5
STP we use four 6-tile additive PDBs as a delta over MD. In
TopSpin we use a 0-7 tile non-additive PDB. The sizes and
average heuristic values (delta over Manhattan Distance for
the STP domain) are found in the hPDB columns in Table 2.

We use CNNs to learn admissible heuristics using domain
abstractions as follows. The 1-7 and 8-15 4x4 STP PDBs
are represented as 7- and 8-channel 4x4 binary images. The

1https://github.com/nathansttt/hog2/tree/PDB-refactor

6-tile patterns in the 5x5 STP are represented as 6-channel
5x5 binary images. A 3x3 convolution (which uses the same
weights to evaluate all 3x3 sub-images) is used for both of
these domains. The PDB pattern in TopSpin includes tiles
0-7 and is represented as a 8-channel 16 dimensional vector.
Because the topology of TopSpin is a continuous loop, the
input is two copies of the puzzle appended to each other,
which simulates a full loop. In this domain a 1x8 convolution
is applied to all combinations of 8 adjacent tiles.

The size of a learned heuristic can be tuned by changing
the size and number of layers in the CNN. For example, in
one 3.2 MB CNN used to learn the hQNT 8-15 PDB in 4x4
STP, there is one convolutional layer followed by two fully
connected layers and one output layer. The number of input
and output channels are 8 and 32, respectively. The num-
ber of input and output features in the first fully connected
layer are 512. The number of input and output features in
the second fully connected layer are 512 and 1024, respec-
tively. The number of input and output feature in the output
layer are 1024 and 10, respectively. Multiplying the num-
ber of weights in each fully connected layer gives approx-
imately 800k weights. When each uses a 4-byte float, 3.2
MB are required for the full network. When building ensem-
ble heuristics, our ensemble ANNs are half the size of our
quantile ANNs because we expect to store two of them in
memory. The parameters used for all architectures in Table
2 are found in Table 4.

We use a cross-entropy loss function, Adam as the opti-
mizer, softmax as the activation function in the last layer,
and ReLU as the activation function in other layers for all
CNNs. Abstract states with a heuristic value of i are labeled
as the i-the class in TopSpin. In STP, deltas over MD are all
even, so heuristic values of i were mapped to the i

2 -th class
and the i

2 -th class in STP since there are no odd heuristics.
We summarize our results using average heuristic values

of all states in the heuristic. While the average value can-
not be used as a general predictor for performance (see, for
example, (Clausecker and Schintke 2021)), the PDBs used
here are well-understood and we have validated that the av-
erage heuristic does predict performance. Repeated training
runs have reproduced these results with very small variance.

Note that the closest approach to ours is ADP (Samadi
et al. 2008), which we cannot directly compare against.
Without a benchmark implementation, there are too many
details that are not described in the paper to be able to do
a complete re-implementation of the approach. We did also
experiment with regression-based learning approaches. The
classification approaches described here have far superior
performance in practice (Li 2022).

Learning Results
Results for our new approaches are found in Table 2. A par-
allel table giving precise details on the architecture used for
each of these experiments is in Table 4. All learned heuristics
are admissible. The table shows the memory used by differ-
ent heuristics (left) and the average heuristic value (right) for
each approach. We used a uniform training and compression
factor of 100 for all experiments except one where we also
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Heuristic Size (MB) Average Heuristic Value
Domain PDB Pattern hPDB hDIV hQNT hENS hQ+E hPDB hDIV hQNT hENS hQ+E

5x5 STP

1, 5-6, 10-12

127.51 1.27 1.27 1.27 1.27

2.0773 1.7219 1.9154 1.5600 1.0772
2-4, 7-9 0.9639 0.3050 0.7353 0.4075 0.3767
13-14, 18-19, 23-24 0.9639 0.2673 0.7856 0.4379 0.3751
15-17, 20-22 0.9639 0.3361 0.7972 0.4237 0.3275

4x4 STP 1-7 57.66 0.58 0.57 0.54 0.62 3.9122 2.0825 1.7868 2.8442 2.4562
8-15 518.92 5.19 5.12 5.12 6.33 3.9728 1.6521 2.3362 1.8535 2.5094

TopSpin 0-7 518.92 5.18 5.18 5.18 5.18 9.1350 6.9862 6.8593 6.0478 5.8854
TopSpin 0-7 518.92 0.29 0.20 0.26 0.23 9.1350 5.6442 4.6089 5.7716 5.5841

Table 2: Summary results comparing all techniques.

show a compression factor of 10002.
We compare the original PDB heuristic (hPDB) with DIV

compression (hDIV), quantile heuristics (hQNT), ensemble
heuristics (hENS) with two ANNs, and the combination of
both quantile and ensemble methods (hQ+E). Because we
perform supervised learning on the PDB heuristics, hPDB

is the maximum learnable heuristic. The best compression
results are in bold.

We will look at this data row by row, beginning with the
5x5 STP domain. While 5x5 STP state space is larger over-
all, the most common PDB heuristics used in this domain are
127MB in size, smaller than the largest 4x4 PDB heuristic.
This heuristic was easily learnable by both hQNT and hENS

for all heuristic patterns. hQ+E did not work well because
the first heuristic in the ensemble was already too strong;
there was no need to lower the quantile to reduce the num-
ber of states used for the second ensemble ANN.

In the 4x4 STP domain the 1-7 PDB is 58 MB (meaning
we train on 58 million states). hQNT was not able to outper-
form hDIV on its own, giving an average heuristic of 1.7868
vs 2.0825 for hDIV. However, hENS was able to return an
average heuristic of 2.8422, significantly better than hDIV.
On the 519MB 8-15 PDB hQ+E had the best performance
with an average heuristic of 2.5094, significantly better than
1.6521 for hDIV.

The TopSpin PDB is the same size as the 4x4 STP 8-
15 PDB with 518 million entries. Here hDIV has relatively
strong performance given a compression factor of 100, and
is able to outperform hQNT and hENS. We also report the
results for a compression factor of 1000 because we discov-
ered that, as we used larger compression factors, the perfor-
mance of the ANNs grew relative to hDIV and hENS was
able to outperform hDIV.

To summarize, we see that ANNs can be used successfully
for compression PDB heuristics. In the case of hQNT, we are
using a single ANN to learn the admissible heuristic. This is
a significant achievement, because previous approaches that
ensured admissibility used much more complex approaches
to achieve this. Overall, the techniques we introduce are able
to produce larger heuristic values than hDIV with the same
size of memory in every domain. As these are a first result

2During parameter tuning we were often able to achieve even
better performance for a particular instance with non-uniform pa-
rameters.

Average over benchmark Korf instances
Heuristic b Time(s) Expanded Generated

C++ PyTorch
hENS 1 183.2 102,310 313,639
hENS 10 30.0 102,429 314,016
hENS 100 13.7 103,157 316,310
hENS 1000 12.7 109,886 337,405

C++ PyTorch with CUDA
hENS 1 175.6 102,310 313,639
hENS 10 21.1 102,429 314,016
hENS 100 4.5 103,157 316,310
hENS 1000 2.9 109,886 337,405

CPU
hDIV - 3 856,749 2,591,844
hPDB - 0.03 12,325 38,856

Table 3: BatchA* with different batch sizes.

in this direction, it would not be surprising if more advanced
learning approaches (Vaswani et al. 2020) were able to im-
prove the overall training process, and post-learning opti-
mization of the ANN could provide further compression.

Heuristics in Search
While it is important to be able to learn admissible heuris-
tics, these heuristics must be usable in practice. To provide
a fair comparison against non-learning algorithms, all of our
implementations are in C++. The learning code uses Py-
Torch’s C++ bindings for the ANN heuristic lookups.

In these experiments we compare hPDB, hDIV, and hENS

heuristics in the 4x4 sliding tile puzzle. The first hENS

heuristic is learned from the delta of PDB 1-7 and Manhat-
tan distance, and the other is learned from the delta of PDB
8-15 and Manhattan distance. The two hENS heuristics are
then added together with Manhattan Distance to produce a
final admissible heuristic. We experiment on the 100 stan-
dard test instances (Korf 1985), reporting the average time,
nodes expanded, and nodes generated on these problems.

The results are in Table 3. The first line is essentially a
standard A* implementation. While only 100k nodes are ex-
panded, on average, for a given problem, the PyTorch library
is a bottleneck to performance and is only able to perform
500 heuristic evaluations per second. (The entire heuristic
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Domain PDB Pattern Model Convolutional Layer Linear Layer
1st 2nd 3rd 4th 5th

In Out In Out In Out In Out In Out In Out

4x4 STP

1-7 QNT 7 32 128 312 312 312 312 8 -
8-15 8 32 128 256 256 512 512 1024 1024 568 568 10
1-7 ENS & Q+E 7 32 128 164 164 256 256 8 -
8-15 8 32 128 512 512 854 854 10 -

5x5 STP All QNT 6 32 288 396 396 496 496 6
All ENS & Q+E 6 32 288 288 288 248 248 6

TS 0-7 QNT 8 32 488 488 488 512 512 836 836 512 512 13
ENS & Q+E 8 32 488 488 488 512 512 408 408 13 -

Table 4: Model Architectures

requires evaluating the 4 ANNs in the ensemble.)
BatchA* with batch size b = 1 is just A*. The next

three lines in the table show the impact of batching heuristic
lookups. With b = 1000 BatchA* is 14x faster than with
b = 1, and the number of nodes expanded or generated
does not increase significantly. When compared to hDIV of a
comparably sized PDB, BatchA* does 8x fewer node expan-
sions. But, it is still 4 times slower than A* with hDIV. As a
result, we used the CUDA extensions for PyTorch to further
improve performance. With b = 1 this does not significantly
speedup the implementation. However, with b = 1000 the
CUDA implementation is 63 times faster than the base Py-
Torch implementation with b = 1. At this point the hDIV and
BatchA* results are the same speed, although the BatchA*
implementation expands 8x fewer nodes. On a unified mem-
ory process, such as Apple’s recent M1 or M2 chips, the
cost of sending data across the bus to the GPU is entirely
eliminated. Thus, we would expect to achieve further per-
formance improvements with further hardware investments.

We note that we can see the impact of the batch size on the
number of node expansions in BatchA*. When the batch size
is larger, BatchA* expands 7% more states than A* would,
for the reasons described previously. However, this overhead
in expansions is more than offset by the speed gains resulting
from the batch processing.

We have performed the same evaluations on the other 4x4
STP heuristics, achieving the fastest results with hENS. We
are continuing to optimize and explore the hQNT and hQ+E

implementations before publishing full results of this com-
parison.

Future Work and Broader Applications
This paper shows how to combine classifiers, quantile
methods, and ensemble methods to learn strong admissible
heuristics for optimal heuristic search.

One important challenge in future work will be to scale
our implementation to learn heuristics which are far larger
than main memory, such as the 2.6TiB Rubik’s Cube PDB
(Hu and Sturtevant 2019) or the 1.4TiB 5x5 8-tile PDBs
(Döbbelin, Schütt, and Reinefeld 2013), which are more
than 3000x larger than the heuristics learned in this paper.
This scaling requires significant research which is beyond
the scope of this paper. Questions to be addressed in this
scaling include: (1) should we still learn a single ANN or

several independent ANNs, (2) the impact of this choice on
the speed of training, (3) the impact of this choice on the run-
time performance of BatchA*, (4) whether we should train
on all heuristic entries, or on a subset of the data hoping
for generalization, and, if we attempt to learn independent
ANNs, (5) how should the data be divided for the learning
process.
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