
A Memory-Bounded Best-First Beam Search and Its Application to Scheduling
Halide Programs

Chao Gao,1 Jingwei Chen,1 Tong Mo,1 Tanvir Sajed,1 Shangling Jui,2 Min Qin,2 Laiyuan Gong,2
Wei Lu1

1Huawei Canada Research Center
2Huawei Technologies, China

{chao.gao4, tong.mo, jingwei.chen, tanvir.sajed, jui.shangling}@huawei.com
{gonglaiyuan,qinmin5,robin.luwei}@hisilicon.com

Abstract
Beam search is a popular algorithm for solving real-world
problems — especially where search space is an enor-
mously large tree but real-time solutions are most pre-
ferred. We present a memory-bounded best-first beam search
(MB2FBS), which can be viewed as an improved and gener-
alized version of standard beam search in trees. The algorithm
takes three parameters — in contrast to the singular parame-
ter beam size in standard beam search. We discuss how to
recover standard beam search and how to realize other search
behaviour by setting these three parameters correspondingly.
In particular, we show that the principal version of MB2FBS
can be thought as an algorithm whose search expense is sim-
ilar or upper bounded by beam search of certain beam size;
however it often finds better solutions as it decides the num-
ber of nodes to be searched each depth dynamically with re-
spect cost landscape. We apply our algorithm for tensor pro-
gram auto-scheduling in Halide, an important industrial prob-
lem that uses tree search for optimizing tensor program exe-
cutions. We show that the principal variants of MB2FBS de-
liver better empirical results than the highly optimized beam
search counterpart. Most importantly, it finds superior sched-
ules while no more computation cost is used for search, which
is highly desirable for real-time program compilation and op-
timization.

Introduction
Beam search Medress et al. is a heuristic search paradigm
that has been extensively used in solving problems from
many areas of artificial intelligence, such as vision (Roy and
Todorovic 2014), job scheduling (Birgin, Ferreira, and Ron-
coni 2015), planning (Karbowska-Chilinska et al. 2019) and
natural language processing (Meister, Vieira, and Cotterell
2020) — in these domains, beam search is preferred presum-
ably because the computer memory is typically insufficient
for searching the whole state space of a problem instance,
meanwhile a quick and sub-optimal solution is more desir-
able than an optimal but slow one.

Essentially, beam search achieves fast solving by search-
ing only on a promising subset of nodes from the whole
state-space S, assuming there is an external input for heuris-
tic pruning. Indeed, there have been two popular ways of
characterizing beam search (Bisiani 1992): the general form

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

describes beam search as an abstract algorithm where search
only has to be conducted on a subset of states B (called
beam) induced by a set of heuristic pruning rule R — the
search strategy used to explore B can either be depth-first,
breadth-first or best-first; the another simplified and more
specific form of beam search regards the algorithm as a trun-
cated version of breadth-first search — given a beam size
parameter b > 0 and a priority function for comparing states,
the search needs only to consider top b nodes each layer. Ev-
idently, the second form can be seen as a specific realization
of the first version. However, in practice, the simplified form
is more popularly used such that it is often referred as the
standard version of beam search (Zhou and Hansen 2005).
Figure 1 illustrates general and standard breadth-first based
beam search.

S

B

∀s ∈ B,R(s) = false

(a) General beam search using a set of predefined heuristic pruning
ruleR. Thus, it searches only nodes in subset B ⊆ S.

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Beam size: 2

(b) Standard beam search with parameter b. At each search depth, it
checks only b nodes.

Figure 1: Illustration of general and standard beam search.

The principal drawback of beam search is that the algo-
rithm by design does not guarantee completeness. To ad-
dress this issue while maintaining its advantage of being
able to deliver solutions using short time and small computer
memory, subsequent algorithms have been developed to em-
bed beam search into another systematic searching such that
completeness can be achieved. To name a few, (Zhang

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

74

1998) proposed anytime complete beam search that itera-
tively calls beam search with relaxed pruning rules so that
convergence to optimal can be assured; (Zhou and Hansen
2005) proposed beam-stack search that conducts a sequence
of standard beam search using depth-first search; (Furcy and
Koenig 2005) devised limited discrepancy beam search that
performs limited discrepancy search (Harvey and Ginsberg
1995; Korf 1996) upon standard beam search.

On the other hand, standard beam search might be viewed
as an extension of greedy search. Like greedy search, beam
search selects successors to expand consecutively until a so-
lution is reached; unlike greedy search, at each time, a set
of successor states, rather than a single state, are selected to
proceed. This continual pushing forward ensures fast exe-
cution of beam search; however, we argue that this scheme
is also the source of deficiency of standard beam search be-
cause that it neglects the comparison of states across dif-
ferent depths. Instead of implicitly limiting the memory
usage through heuristic pruning rules, another line of re-
search have been pursued by giving an explicit memory-
bound to the search. The memory-bounded A* (MA*) al-
gorithms (Chakrabarti et al. 1989; Russell 1992; Kaindl and
Khorsand 1994; Zhou and Hansen 2002) work similar to
A* (Hart, Nilsson, and Raphael 1968) except that it lim-
its the maximum number of searching nodes in OPEN and
CLOSED list, and whenever the memory is full, a worst-
seeming node in OPEN is released and its parent would be
moved from CLOSED to OPEN if necessary. These algo-
rithms guarantee that the search would be able to find an op-
timal solution as long as the memory is sufficient to store the
least sized optimal solution path. In fact, MA* algorithms sit
in between IDA* (Korf 1985)/RBFS (Korf 1993) and A*,
in the sense that the former uses the least memory possible
at the expense of extensive re-expansion, while the later re-
quires a memory as large as the whole state-space but avoids
possible re-expansion at its extreme.

Motivated by developing better incomplete but fast algo-
rithms for scheduling Halide programs (Ragan-Kelley et al.
2013; Adams et al. 2019)1, in this paper, we address the de-
ficiency of beam search using best-first search. We present a
generalization of standard beam search from the perspective
of memory-bounded and k−best-first search (KBFS) (Fel-
ner, Kraus, and Korf 2003). We illustrate the usefulness of
the new search algorithm with a synthetic tree environment
whose cost landscape can be manipulated for specific inter-
ests of investigation. Finally, experiments in Halide demon-
strate that our new algorithm surpasses the state-of-the-art
beam-search auto-scheduler without incurring more compu-
tation budgets.

Preliminaries
To ease presentation and analysis, we assume the state-space
S to be searched can be regarded as a tree, such that the
following terminologies and assumptions are used:
• There is a singular root node called start.
• ∀s ∈ S, ch(s) ⊂ S represents the set of children below
s, while s 6= start, pa(s) ∈ S stands for the parent of s.
1https://halide-lang.org/

• A node s ∈ S is called terminal if ch(s) = ∅.
• Following A* algorithms, ∀s ∈ S, g(s) is the path cost
start → s, while h(s) estimates the cost from s to
goal. h(s) is called admissible if h(s) ≤ h∗(s), i.e.,
h(s) underestimates the optimal cost from s to goal.
f(s) , g(s) + h(s).
• All costs are non-negative.

Starting from the root node, best-first search algorithms
construct a search tree T iteratively through a sequence of
node expansions. Formally, ∀s ∈ T, s is called closed
if ch(s) ⊂ T otherwise open, and suppose they are re-
spectively stored in sets CLOSED and OPEN, then T =
CLOSED ∪ OPEN. At each iteration of best-first search, a
node with the lowest (thus best) f cost in OPEN is selected
for expansion, and when h is admissible everywhere, it is
known that the best-first search becomes A* (Pearl 1984). A
best-first search is called memory-bounded if there is a max-
imum storage limit for CLOSED ∪ OPEN such that when-
ever the limit is reached, node deletion has to be performed
on OPEN. In this paper, we do not store CLOSED, since our
major concern is not completeness (i.e., backtracking from
CLOSED as SMA* (Russell 1992) is not needed).

In standard beam search, the parameter b is called beam
size; for each search depth, states are sorted in ascending
order w.r.t f , such that top b states are selected for searching.

Unified Framework for Memory-Bounded
Best-First Beam Search

In this section, we present our new algorithm framework for
memory-bounded best-first beam search.

A Simple Memory-Bounded Best-first Search
We first discuss a simple algorithm that executes in the same
spirit as best-first search except that a bounded memory is
used. The algorithm is sketched in Algorithm 1. The pri-
ority queue can be implemented using min-max priority
queue (Atkinson et al. 1986), such that whenever the Q is
exceeding its bound, a worst state w.r.t ρ can be deleted. A
natural choice for ρ is the f cost, as in A*, and it is clear
that when Q is given a max size larger than the total number
of possible states, Algorithm 1 becomes A*, assuming that
the heuristic function h is admissible — in this case, with-
out losing optimality, Algorithm 1 can stop early by return-
ing its first encountered terminal. It is also clear that Algo-
rithm 1 expandsO(dmaxM) nodes, since at each tree depth,
it would never visit more than M nodes due to the memory
bound.

Batched Expansion Equals Beam Search
We see that Algorithm 1 updates the bounded memory af-
ter every node expansion. We now consider the case that the
insertion toQ is delayed until a batch of nodes have been ex-
panded — we refer this scheme as batched expansion. That
is, in Algorithm 2, we modify the s ← Q.pop() =⇒ Sk ←
Q.pop(k) where k is batch size, and C ← expand(s) =⇒
C ← expand(Sk).

75

Algorithm 1: Simple memory-bounded best-first search
for tree

1 Procedure SMBS(start, ρ, M):
/* ρ is priority function such

that ρ(x) >© ρ(y) implies x has
higher priority than y */

2 Q← priority queue<ρ>(max size =M)
3 r ← null
4 while not Q.empty() do
5 s← Q.pop()
6 if s.terminal() then
7 if r = null or ρ(s)m ρ(r) then r ← s
8 continue
9 C ← expand(s)

10 foreach c ∈ C do Q.push(c)

11 return r

Q Q

2

6 7

3

4 5

batc
h of 1

batch of 2

6 4

4 5

Figure 2: Memory-bounded best-first search batch 2 expan-
sion vs one-by-one expansion. Each number indicates a f -
cost, thus lower cost implies higher priority. For batch 1 ex-
pansion, first, node 2© is expanded, thenQ← { 6©, 3©}, then
3© gets expanded, Q← { 6©, 4©}. For batch 2 expansion, 2©

and 3© are expanded at the same time, then Q← { 4©, 5©}.

To see the effect of batched expansion, consider a case
illustrated in Figure 2, where if Q has a bounded size of 2,
one by one expansion would update Q← { 4©, 6©} whereas
batch of 2 expansion results Q ← { 4©, 5©}. Thus, we have
the following observation.

Lemma 1. If a batch of k nodes expansion is applied, then,
in the bounded memory Q, there must be k states being
pushed forward in the next iteration, i.e., these k states in
Q will be replaced by one-depth deeper states.

Theorem 1. For simple memory-bounded best-first search,
if we limit the priority queue size to β, and use a batch ex-
pansion of β states each time, then, the algorithm is equiva-
lent to standard beam search.

MB2FBS: Mixing Push Forward and Onward
While Algorithm 1 makes sure that whenever a batch of k
nodes is expanded, there is a push forward by k in Q, the
deficiency of this scheme is that it neglects the other states
at lower depth that was not considered — they may become
promising again upon the removal of just expanded states.

Consider a case illustrated in Figure 3. Suppose at certain
time the Q contains two nodes of costs 2 and 3, and they

have a sibling not in Q with a cost of 4. If we expand a
batch of two nodes, then update the Q by the newly created
child nodes, then Q ← { 5©, 6©}; however, if we also re-
examine the sibling of 2© and 3©, thenQ← { 4©, 5©}— this
is arguably a better strategy since nodes with smaller cost
estimates are retained. To distinguish, we name this strategy
of reconsideration as pushing onward.

It is clear that pushing forward guarantees fast execution
to terminal states, while pushing onward makes sure that the
most promising states are pursued. In order to subsume the
advantages of both strategies, we devise a new search algo-
rithm where the extent of each strategy can be swiftly config-
ured by appropriate parameterization. Specifically, we intro-
duce two parameters, β1 and β2, respectively represent the
number of states being pushed forward and onward at each
iteration. The full procedure is depicted in Algorithm 2.

Same as Algorithm 1, Algorithm 2 operates on a bounded
memory parameterized by M , which we assume should be
larger than or equal to β1 + β2. In fact, any M > β1 + β2
is equivalent to M = β1 + β2 — for each iteration in Al-
gorithm 2, sorting the nodes in Q by their priority, then the
first top β1 nodes from Q are selected for expansion and
newly generated child nodes are inserted to U , then next top
β2 nodes from Q are directly moved from Q to U . In other
words, evenQ contains more than β1+β2 nodes, these nodes
not in top β1 + β2 will simply be ignored. Thus, in practice,
setting M = β1 + β2 suffices. Assuming M = β1 + β2,
we can now bound the number of node expansion of Algo-
rithm 2 in Proposition 1.

Proposition 1. For Algorithm 2 with parameters β1 >
0, β2 > 0, β =∞, and M = β2+β1, then the total number
of node expansion is bounded byO((β1dβ2

β1
e)dmax(dmax+1)

2)

Proof. The algorithm begins with all states in Q with depth
0, and ends with all states at maximum depth. In other words,
let x be the minimum state depth inQ, then it starts with x =
0, and ends with x = dmax. We know that for each iteration
of search, β1 states are expanded, thus that x either remains
unchanged or x ← x + 1. Therefore, the slowest possible
growth for x is that the same β2 states being retained for the
longest time.

Since M = β1 + β2 and β1 ≥ β2, then it takes at most
dmax iterations for the same β2 states being retained in Q.
Formally, denoting the time complexity as T (dmax), we can
express the worst case recursively as follows:

T (dmax) ≤ β1dmax + T (dmax − 1) (1)
= β1dmax + β1(dmax − 1)T (dmax − 2) (2)
= β1(dmax + (dmax − 1) + . . .+ 1) (3)
= β1dmax(dmax + 1)/2 (4)

(5)

For he other case that β1 < β2 (M = β1 + β2), only a

76

Q Q

2

7 5

3

6 8

4 β1
= 2, β2

= 0

β1 = 2, β2 = 1

5 6

4 5

Figure 3: Only push forward versus mixed push forward and
onward. For β1 = 2, β2 = 0, 2© and 3© are expanded the
same time, then Q ← { 5©, 6©} while node 4© is discarded
forever. For β1 = 2, β2 = 1, 2© and 3© are expanded, and
4© is re-examined while updating Q, thus Q← { 4©, 5©}

.

factor is needed for the recursion:

T (dmax) ≤ β1dmaxd
β2
β1
e+ T (dmax − 1) (6)

= β1d
β2
β1
edmax(dmax + 1)/2 (7)

= O((β1d
β2
β1
e)dmax(dmax + 1)

2
). (8)

Thus, the claim holds.

We can draw the following observation from Proposi-
tion 1: for a given search depth, multiple batches of β1 states
might be eventually expanded — in contrast to standard
beam search, where a constant of b states will be expanded.
To address this discrepancy and let Algorithm 2 matches
the efficiency of beam search, we then introduce counting
scheme to control the number of states being expanded at
each depth — we can force the algorithm not to expand more
than β (β < ∞) nodes. We name Algorithm 2 with β < ∞
as the controlled version of MB2FBS. We note that, for the
controlled version, M has to be at least βdmax, otherwise
the algorithm might be unable to return a solution. That is,
if Q and U are with too small capacity, new nodes created
by batch expanding β1 nodes might all get discarded, and
if this is repeated multiple rounds till β1 + . . . + β1 > β,
then the algorithm would stop moving forward forever. This
phenomenon is also seen in best-first beam search (Meis-
ter, Vieira, and Cotterell 2020). In Algorithm 2, we mark
how β controls the number of expansion using a vector of
POPS . For the uncontrolled version, these code with POPS
becomes ineffective because β =∞.

Remark. For both uncontrolled and controlled versions of
MB2FBS, in practical use, we can skip to set the parameter
M (i.e., let Q and U unbounded by assuming M ← ∞),
because the memory-usage of Q and U are implicitly im-
plied by the setting of β1, β2 and β. If one wants to set M ,
it must be at least either β1 + β2 (uncontrolled) or βdmax
(controlled).

It is possible to configure the parameters, i.e., β1, β2, β,
swiftly for realizing different search behaviors. In Table 1 we
summarize how to set these parameters for 8 typical variants.

Algorithm 2: Memory-bounded best-first beam search
for tree

1 Procedure MB2FBS(start, ρ, β1, β2, M , β =∞):
/* ρ is priority function such

that ρ(x) >© ρ(y) implies x has
higher priority than y */

2 Q← priority queue<ρ>(max size =M)
3 POPS ← vector(dmax)
4 r ← null
5 while not Q.empty() do
6 U ← priority queue<ρ>(max size =M)
7 for i ∈ {1, 2, . . . , β1 + β2} ∧ not Q.empty()

do
8 s← Q.pop()
9 if s.terminal() then

10 if r = null or ρ(s)m ρ(r) then
r ← s

11 continue
12 if i > β1 then
13 U.push(s)
14 continue
15 if POPS [s.depth] ≥ β then continue
16 C ← expand(s)
17 POPS [s.depth]← POPS [s.depth] + 1
18 foreach c ∈ C do U.push(c)

19 Q← U

20 return r
21

• If M is assumed to be as large as the whole tree, and
β2 = 0, β1 = β = ∞, then Algorithm 2 becomes an
instance of breadth-first search where the visit of states
in the same layer is prioritized by priority function ρ. If
β1 = 1, β2 =∞, then the algorithm becomes an equiva-
lent of best-first search — more generally, KBFS (Fel-
ner, Kraus, and Korf 2003), if β1 > 1. The best-first
search becomes an implementation of A* when the prior-
ity function is defined using an admissible heuristic, e.g.,
f = g + h where h is admissible.

• If β1 = 1, β2 = 0, Algorithm 2 becomes greedy search.
If β1 = 1, β2 =∞, then the algorithm becomes best-first
search except that M is bounded, akin to Algorithm 1.

• Suppose β is given, and we set β2 = 0, β1 = β, then Al-
gorithm 2 works the same as standard beam search with
beam size b = β. If β1 = 1, β2 = β − 1, then, the
algorithm becomes an equivalent of the best-first beam-
search depicted by (Meister, Vieira, and Cotterell 2020).
These two algorithms are guaranteed to find the same so-
lution if ρ is defined upon admissible heuristic.

• The last row of Table 1 contains the two variants of our
new algorithm MB2FBS. The controlled version ensures
that it expands no more than βdmax nodes, which is the
number of nodes get expanded by beam search with b =
β.

77

Breadth-first Search Best-first Search
β1 ←∞, β2 ← 0, β ←∞ β1 ← 1, β2 ←∞, β ←∞

M = bmax
dmax M = bmax

dmax

Greedy Search Mem. bounded Best-first Search
β1 ← 1, β2 ← 0, β ← 1 β1 ← 1, β2 ←∞, β ←∞

M = 1 M > 1

Standard Beam Search Best-first Beam Search
β1 ← β, β2 ← 0 β1 ← 1, β2 ← β − 1

M = β M = dmaxβ

MB2FBS-β-controlled MB2FBS
β1 > 0, β2 > 0 β ←∞, β1 > 0, β2 > 0
M = dmaxβ M = β1 + β2

Table 1: Possible configuration of MB2FBS for other well-
known heuristic search algorithms.

For each variant, the correspondingM value in Table 1 in-
dicates the memory requirement of U and Q to ensure each
algorithm run correctly. When β2 is large and β1 is small
(e.g., β1 = 1, β2 = ∞), the frequent node movement from
Q to U then U to Q in Algorithm 2 might become an effi-
ciency bottleneck. However, this issue can be addressed by
modifying the implementation, for example, by popping out
the β1 states from Q to a separate container, then expanding
each of them while directly inserting the newly generated
child nodes to Q. To keep the pseudocode simple, we ignore
specific implementation enhancement for these cases in Al-
gorithm 2.

Experiments
We now proceed to deploy MB2FBS for auto-scheduling in
Halide (Ragan-Kelley et al. 2013). We begin by introducing
the problem, how the scheduling can be modelled as a tree,
and what search strategies are used by the state-of-the-art
auto-scheduler for this domain.

Tensor Program Scheduling in Halide
Halide is a domain specific language for high-level specify-
ing computer vision pipelines (e.g., Gaussian blur) as well
as a tool that can automatically find high-performance low-
level hardware-dependent implementations of the pipeline
during compilation. It represents the pipelines as directed
acyclic graphs (DAG), where each graph node is called a
stage. A pipeline usually consists of multiple stages of com-
putation; at each stage, two successive decisions need to be
made respectively for intra-stage ordering and cross-stage
granularity (Li et al. 2018; Adams et al. 2019). Given a
pipeline, a complete low-level implementation is produced
upon the decisions at all stages in the corresponding DAG
have been fully made, and the process of such decision-
making is referred to as Halide scheduling.

Figure 4 illustrate the auto-scheduling process for a toy
pipeline — it contains three functional stages, so there are
6 decision depths. In practice, a real-world pipeline usually
contains tens of functional stages, and each decision node
may contain hundreds of actions (e.g., 10020), such that ex-
haustive search is infeasible (Ragan-Kelley 2014; Li et al.

Figure 4: A toy Halide program and its scheduling space.

2018). The state-of-the-art X86 CPU auto-scheduler finds
schedules using a variants of beam search along with a cost
model (Adams et al. 2019).

The major innovations of auto-scheduler (Adams et al.
2019) can be summarized as follows. First, it uses a pre-
trained cost model to guide the search. The cost model hy-
bridizes symbolic analysis and a neural network (LeCun,
Bengio, and Hinton 2015) — for each node s in search tree,
suppose N(s) decisions have been made in s, then it cal-
culates a vector of schedule features of size N(s), then es-
timates a cost. It is generally true that those costs at depth
d + 1 are greater than depth d. However, this monotonic
increasing property is not truly guaranteed because of the
use of neural network, implying that for heuristic search, the
available heuristic is not admissible. These properties further
imply that algorithms that utilize admissible pruning, e.g.,
IDA* (Korf 1985), are infeasible for the domain. Indeed,
to enable large space search, an incomplete beam search
is used in (Adams et al. 2019) 2. More specifically, it de-
velops a multi-pass coarse-to-fine beam search. That is, the
auto-scheduler runs beam search multiple times, where each
run uses a different hash function for pruning actions; thus,
each pass defines a different coarse region for searching, and
beam search pass i+1 uses a hash set from pass i to further
refine the region being searched. We note that, although lo-
cal search algorithms, e.g., simulated annealing (Chen et al.
2018b) and genetic algorithms (Gao et al. 2021; Zheng et al.
2020), have also been used by other tensor compiler opti-
mization frameworks (Chen et al. 2018a). These algorithms
are not suited for the Halide compiler because currently
it does not have direct and structured representation of a
schedule object. The search space is a decision-tree, where
one can only construct a schedule by sequentially making
decisions. Therefore, schedules only occur at the last depth
of the decision-tree. In other words, the schedules are just
terminal states — no explicit structures are exposed for the

2Fast speed is demanded because auto-scheduling happens dur-
ing program compilation.

78

search algorithms to define concepts such as neighboring
schedules and schedule transformations.

MB2FBS for Halide
To have a fair comparison, we implement MB2FBS directly
on the codebase of (Adams et al. 2019)3. We use the same
pre-trained cost model for X86 CPU throughout our experi-
mentation. In addition, since the cost model in Halide tends
to give less comparable cost estimates for states in differ-
ent depths, we define a new priority function that combines
depth and cost.

For a given pipeline, the maximum search depth dmax is
known prior to search, and suppose the smallest known so-
lution cost is X . For state s, let s.cost be the cost model es-
timate for s. To balance the influence of s.depth and s.cost,
we compute the priority of s as follows:

ρ(s) ,
X − s.cost

Dmax − s.depth
,

To embed MB2FBS into the multi-pass search framework
as (Adams et al. 2019), we set D and X as follows:

• We set Dmax ← i · dmax + 1, where i is pass index
starting from 1.
• In first runX ←∞ 4, in other runs,X set to the smallest

known solution cost.

Figure 5 demonstrates how (Dmax, X) modifies the prior-
ities of states, resulting in a more favourable cross-depth
comparison of states in Halide. By varying (Dmax, X),
MB2FBS is able to search different regions from pass to
pass. Note that this priority function has no effect on beam
search, because it only compares states in the same depth.

As recommended in Halide, the maximum pass number
is set to 5 for both MB2FBS and (Adams et al. 2019). For
beam search, the recommended beam size is 32, but we also
include results from beam size 64. For MB2FBS, we test two
variants: the β-controlled variant with β1 = 28, β2 = 4, β =
32, and uncontrolled variant β1 = 30, β2 = 2. We set mem-
ory bound to∞ for all scenarios since we have seen this is
safe choice for both controlled and uncontrolled MB2FBS.

Table 2 contains the results of multi-pass beam search and
MB2FBS on 15 standard test pipelines in Halide. Among the
15 test cases, the uncontrolled version of MB2FBS is able
to find 9 better costs than the best of beam-32 and beam-64,
while having 3 cases with slightly larger costs. The results of
the controlled version of MB2FBS are similar. Both versions
achieved an overall geometric mean smaller than the beam
search counterparts. We note that the costs in Table 2 are
best terminal costs from cost model, but those costs are typ-
ically consistent with real schedule qualities — when trans-
lating the terminal states into Halide schedules, after bench-
marking, we find that two MB2FBS variants achieved aver-
aged time-costs respectively 21587µs and 21561µs, while
the beam-search-32 achieved 27821µs, i.e., a 22% speedup
is observed. Note that this improvement is non-trivial in the

3https://github.com/halide/Halide
4In implementation, we use 109 to represent∞

depth

cost

A

B
C
D

E

F
G

H

I

(Dmax, X)

Priority decreases clockwise

Figure 5: Illustration of the priority function that combines
depth and cost estimate. Only according to cost, these nodes
are prioritized by AmB m C m E mD mGm F mH m I
— with the new priority function, it becomes GmE mAm
C mB mD m F mH m I .

Pipeline Adams2019-b MB2FBS-(β1, β2, β)
32 64 (30, 2,∞) (28, 4, 32)

bilateral grid 5.00327 5.00327 4.85979 5.08237
local laplacian 54.0256 55.7315 45.3922 44.3335

nl means 47.795 47.795 46.3747 37.8478
lens blur 10.4686 10.205 10.1556 8.20918

camera pipe 4.31618 4.02908 4.39345 4.399
stencil chain 77.213 77.2167 75.7563 73.2237

harris 1.73584 1.73584 1.83047 1.73923
hist 4.54293 6.70719 4.0048 4.06191

max filter 61.9724 58.9023 61.9724 61.9724
unsharp 4.43961 4.40831 4.382 4.382

interpolate 17.6231 17.5683 17.2449 17.3213
conv layer 23.36 23.36 23.36 23.36

iir blur 9.24476 9.54103 9.24476 9.24476
bgu 16.5894 16.5894 16.5362 16.6023

mat mul 11.5766 11.5766 11.5766 11.5766
GeoMean 13.29263 13.5584 12.963 12.57535

Table 2: Minimum solution cost found by MB2FBS and
Beam Search on 15 standard test cases. Boldface indicates
the corresponding result is superior to those from the two
beam search runs.

sense once a pipeline is compiled, it might be used by mil-
lions of users everyday, cumulatively saving considerable
time and energy.

We further list the node expansions of all algorithms in
Table 3. The uncontrolled version used slightly more node
expansion than beam search with beam size 32, while for the
controlled version, the node expansion is strictly smaller or
equal. These results in Table 3 certify that, for the MB2FBS
algorithms, the reason that they achieved better performance
is mainly due to their incorporation of best-first seeking
strategies, not more computation clocks.

Effectiveness of Modified Priority Function
To verify the effectiveness of the new priority function, we
run additional experiments with the new priority function

79

Pipeline Adams2019-b MB2FBS
32 64 (30, 2,∞) (28, 4, 32)

bilateral grid 514.0 998.0 570.4 502.2
local laplacian 6594.0 13176.0 6722.2 5903.6
nl means 834.0 1660.0 1066.8 786.4
lens blur 4802.0 9572.0 5113.2 4317.2
camera pipe 2370.0 4723.0 2627.0 2244.0
stencil chain 2242.0 4451.0 2959.0 2178.4
harris 770.0 1510.0 923.2 752.6
hist 578.0 1136.0 729.0 570.8
max filter 578.0 1148.0 635.0 573.2
unsharp 578.0 1148.0 639.2 570.4
interpolate 3266.0 6524.0 3365.2 2932.4
conv layer 258.0 514.0 286.6 282.8
mat mul 194.0 358.0 223.8 217.4
iir blur 258.0 508.0 357.2 274.0
bgu 1282.0 2556.0 1292.8 1174.4
Average 1674.5 3332.1 1834.0 1552.0
Avg.Time(s) 106 164 106 85

Table 3: Each node expansion number is averaged over the
5 passes being used for each algorithm. Results obtained on
same Intel CPU server.

being unused, i.e., it only prioritizes states by cost estimates.
Table 4 shows the results. Referring to the results in Tables 2,
we see that for the uncontrolled version, the overall averaged
node expansion increased from 1834.0 to 1992.87, while the
geometric mean cost reduced from 12.963 to 12.61. For the
controlled version, the averaged node expansion remained
almost unchanged, while the geometric mean increased from
12.575 to 12.70. From these results, it is clear that the new
priority function helped the controlled version of MB2FBS,
while for the uncontrolled version, its practice merit was un-
noticed. This is unsurprising because that the major change
brought by the new priority function is that it drives the
search to visit deeper states preferably — this is a desirable
property for the controlled version as it can be viewed as
a truncated and early-stopped modification of uncontrolled
MB2FBS.

Analysis of the Effect of Mixing Pushing Forward
and Onward
While the results from previous sections indicate MB2FBS
is superior to beam search for solving real-world Halide
problems, because of the large problem sizes, it is not easy to
conduct extensive ablation studies to fully show what cases
MB2FBS is more preferable and what cases not. To clearly
show how mixing pushing forward and onward affect search
performance, we develop a synthetic tree environment. This
is for mimicking Halide problems but the instances can
be randomly generated with parameterization. The trans-
parency nature of this environment allows us to conduct ex-
periments for quantifying key strengths of MB2FBS. We can
sample instances of different characteristics and scale by ap-
propriate parameterization — for these problems, optimal
solutions can also be retrieved and used as a golden refer-
ence.

Specifically, we randomly sample synthetic tree as a t-ary

Pipeline MB2FBS-(β1, β2, β) sol. and expansion
(30, 2,∞) #exp (28, 4, 32) #exp

bila. grid 4.86 674.8 5.08 502.2
local lap. 45.29 2047.2 42.90 5903.6
nl means 37.11 7128.2 40.54 786.4
lens blur 9.01 1711.2 9.36 4317.2
cam. pipe 4.33 5113.8 4.32 2244
ste. chain 71.60 2952.2 71.88 2178.4

harris 1.78 2739.4 1.74 752.6
hist 4.05 883.8 4.07 570.8

max filter 61.97 691.2 61.97 573.2
unsharp 4.38 620 4.38 570.4

inter. 17.33 1218.8 17.59 2932.4
conv. 23.36 3053 23.36 282.8

iir blur 9.245 235.8 9.24 274
bgu 16.73 549.2 16.75 1174.4

mat mul 11.58 274.4 11.58 217.4
GeoMean 12.61 1267.23 12.70 940.89
Average 21.51 1992.87 21.65 1551.99

Table 4: Minimum solution cost found and node expansion
by MB2FBS on 15 standard test cases without using the new
priority function.

tree environment for empirically studying different search
strategies. Each tree instance is randomly generated such
that each internal node has exactly bmax children, and
each node s has a randomly sampled cost drawn from
Uniform[0, depth(s)), where depth(s) is the depth of s.
The tree has maximum depth of dmax. To increase solu-
tion difficulty, the cost for each leaf node l be sampled from
Uniform[depth(l) + δ, depth(l) + δ2), where δ is a param-
eter. The path cost for any leaf node l is defined as the cu-
mulative cost of all nodes along the path from start to l.

Typically, smaller δ value results random instances easier
to solve for greedy-biased strategies. Figure 6 illustrates how
δ affects search performances — when δ = 0, pure greedy
algorithm can easily find near optimal or optimal solution
cost. Thus, the performances of all algorithms become less
distinguishable, and the incorporation of pushing onward
does not exhibit visible benefit. However, as δ increases, the
advantage of MB2FBS becomes noticeable — for δ = 100,
MB2FBS obtains clearly better accuracy than the other al-
gorithms including beam search with beam size of 32. To
ensure the computation used by MB2FBS is comparable to
beam search, we set β1 ← 30, β2 ← 2. We use maximum
tree-depth dmax = 8 and branching factor bmax = 4 be-
cause we find this setting produces neither too large nor too
trivial instances for experimentation and analysis.

Fixing δ = 100, we then experimentally compare
MB2FBS and beam search from various configurations. Fig-
ure 7 show the comparison of MB2FBS and beam search
perform with varied beam size b = {8, 16, 32, 64, 128, 256}.
In terms of accuracy, both MB2FBS variants (b-controlled
and uncontrolled) perform better than beam search overall.
For all algorithms, the node expansion grows linearly w.r.t
b. For the uncontrolled MB2FBS β1 = b − 2, β2 = 2,
the node expansion of MB2FBS is slighter larger than beam
search. For the controlled version, MB2FBS never expands

80

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Synthetic tree δ

A
ve
ra
g
e
A
cc
u
ra
cy
(o
p
t.
/
so
l.
)

bmax = 4, dmax = 8

Greedy Search

Beam Search, Beam Size=2

Beam Search, Beam Size=32

MB2FBS, β1 = 30, β2 = 2

Figure 6: Solution accuracy decreases as δ increases. For
each experiment δ, 10 random trees are sampled and then
ran by each algorithm.

MB2FBS Uncontrolled 256-controlled
(β2, β1) Accuracy #exp Accuracy #exp

0, 256 0.939 1109.4 0.939 1109.0
2, 254 0.939 1114.6 0.939 1105.8
8, 248 0.945 1137.0 0.939 1098.0
16, 250 0.945 1173.0 0.939 1087.7
32, 224 0.952 1328.6 0.945 1073.8
64, 192 0.930 1462.6 0.714 1039.5
128, 128 0.942 1639.8 0.708 1024.4

Table 5: Fixing β1 + β2 = 256, results of MB2FBS with
varying β2. As a reference, the accuracy and node expan-
sion for beam search with beam size of 256 are 0.939 and
1109.0 (equivalent to MB2FBS with β2 = 0, β1 = 256). All
results are averaged over 10 independently random sampled
synthetic trees.

more nodes than beam search on all cases. The better re-
sults of MB2FBS are due to the addition of beam search
with a small amount of pushing onward behaviour. When
beam size becomes large, i.e., b = 256, all algorithms
achieve the same accuracy of 0.939, presumably because
β2 = 2 is insufficient to bring an effect to MB2FBS. To
verify this, we run additional experiments by varying β2 =
{2, 8, 16, 32, 64, 128}. Table 5 shows the results — e.g., if
we increase β2 = 32, both controlled and uncontrolled
MB2FBS are able to achieve an averaged accuracy better
than beam search (0.952 and 0.945, respectively), mean-
while the node expansion of controlled MB2FBS (1073.8)
is less than beam search.

Conclusions
We have described a memory-bounded best-first search
beam algorithm framework where different search be-
haviours can be generated by correspondingly setting its

50 100 150 200 250

0.4

0.6

0.8

Beam Size b

A
v
er
a
g
e
A
cc
u
ra
cy
(o
p
t.
/
so
l.
)

δ = 100, bmax = 4, dmax = 8

Beam Search

MB2FBS, β1 = b− 2, β2 = 2, β = ∞
MB2FBS, β1 = b− 2, β2 = 2, β = b

50 100 150 200 250

200

400

600

800

1,000

Beam Size b

A
v
er
a
g
e
#
E
x
p
a
n
si
o
n

δ = 100, bmax = 4, dmax = 8

Beam Search

MB2FBS, β1 = b− 2, β2 = 2, β = ∞
MB2FBS, β1 = b− 2, β2 = 2, β = b

Figure 7: For beam search, the x-axis b represents beam size.
For MB2FBS, b means β1 + β2, and a constant value of 2
is given for β2. 10 random trees are generated and tried for
each experiment.

hyper-parameters. We have provided an analysis on its prop-
erties and demonstrated the usefulness using artificially cre-
ated tree problems. Most importantly, the advantage of the
new algorithm is manifested in its successful deployment
to auto-scheduling Halide programs; MB2FBS yielded bet-
ter solutions without incurring extra computation budgets.
While it is indisputable that no search strategies would be
universally superior to others in all cases, a practically de-
sirable solution might most likely be the one that is able to
strike a balance between the extremes. From this perspec-
tive, the extra parameters introduced in MB2FBS should not
be viewed a deficiency, rather, MB2FBS provides a new op-
portunity for practitioner to swiftly configure these parame-
ters for problem instances of different characteristics.

Machine learning compilers have drawn a considerable
attention recently (Li et al. 2020). The auto-scheduling al-
gorithms typically combine search and cost model learning,
e.g. (Chen et al. 2018b). Our results in Halide certifies that
advanced heuristic search can be an valuable part for com-
piler optimization — we expect that more AI planning algo-
rithms will be applied for these lines of development.

81

References
Adams, A.; Ma, K.; Anderson, L.; Baghdadi, R.; Li, T.-M.;
Gharbi, M.; Steiner, B.; Johnson, S.; Fatahalian, K.; Du-
rand, F.; et al. 2019. Learning to optimize halide with tree
search and random programs. ACM Transactions on Graph-
ics (TOG), 38(4): 1–12.
Atkinson, M. D.; Sack, J.-R.; Santoro, N.; and Strothotte,
T. 1986. Min-max heaps and generalized priority queues.
Communications of the ACM, 29(10): 996–1000.
Birgin, E. G.; Ferreira, J. E.; and Ronconi, D. P. 2015. List
scheduling and beam search methods for the flexible job
shop scheduling problem with sequencing flexibility. Eu-
ropean Journal of Operational Research, 247(2): 421–440.
Bisiani, R. 1992. Beam search. Encyclopedia of Artficial
Intelligence, 1467–1468.
Chakrabarti, P. P.; Ghose, S.; Acharya, A.; and de Sarkar,
S. C. 1989. Heuristic search in restricted memory (research
note). Artificial Intelligence, 41(2): 197–222.
Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Shen,
H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; et al. 2018a.
TVM: An Automated End-to-End Optimizing Compiler for
Deep Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 578–594.
Chen, T.; Zheng, L.; Yan, E.; Jiang, Z.; Moreau, T.; Ceze,
L.; Guestrin, C.; and Krishnamurthy, A. 2018b. Learning
to Optimize Tensor Programs. In Bengio, S.; Wallach, H.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.
Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: K-best-
first search. Annals of Mathematics and Artificial Intelli-
gence, 39(1): 19–39.
Furcy, D.; and Koenig, S. 2005. Limited discrepancy beam
search. In IJCAI.
Gao, C.; Mo, T.; Zowtuk, T.; Sajed, T.; Gong, L.; Chen, H.;
Jui, S.; and Lu, W. 2021. Bansor: Improving Tensor Program
Auto-Scheduling with Bandit Based Reinforcement Learn-
ing. In 2021 IEEE 33rd International Conference on Tools
with Artificial Intelligence (ICTAI), 273–278. IEEE.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Harvey, W. D.; and Ginsberg, M. L. 1995. Limited discrep-
ancy search. In IJCAI (1), 607–615.
Kaindl, H.; and Khorsand, A. 1994. Memory-bounded bidi-
rectional search. In AAAI, 1359–1364.
Karbowska-Chilinska, J.; Koszelew, J.; Ostrowski, K.;
Kuczynski, P.; Kulbiej, E.; and Wolejsza, P. 2019. Beam
search Algorithm for ship anti-collision trajectory planning.
Sensors, 19(24): 5338.
Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial intelligence, 27(1):
97–109.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence, 62(1): 41–78.

Korf, R. E. 1996. Improved limited discrepancy search. In
AAAI/IAAI, Vol. 1, 286–291.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature, 521(7553): 436–444.
Li, M.; Liu, Y.; Liu, X.; Sun, Q.; You, X.; Yang, H.; Luan,
Z.; Gan, L.; Yang, G.; and Qian, D. 2020. The deep learning
compiler: A comprehensive survey. IEEE Transactions on
Parallel and Distributed Systems, 32(3): 708–727.
Li, T.-M.; Gharbi, M.; Adams, A.; Durand, F.; and Ragan-
Kelley, J. 2018. Differentiable programming for image pro-
cessing and deep learning in Halide. ACM Transactions on
Graphics (TOG), 37(4): 1–13.
Medress, M. F.; Cooper, F. S.; Forgie, J. W.; Green, C.; Klatt,
D. H.; O’Malley, M. H.; Neuburg, E. P.; Newell, A.; Reddy,
D.; Ritea, B.; et al. 1977. Speech understanding systems:
Report of a steering committee. Artificial Intelligence, 9(3):
307–316.
Meister, C.; Vieira, T.; and Cotterell, R. 2020. Best-first
beam search. Transactions of the Association for Compu-
tational Linguistics, 8: 795–809.
Pearl, J. 1984. Heuristics: intelligent search strategies for
computer problem solving. Addison-Wesley Pub. Co., Inc.,
Reading, MA.
Ragan-Kelley, J.; Barnes, C.; Adams, A.; Paris, S.; Durand,
F.; and Amarasinghe, S. 2013. Halide: a language and com-
piler for optimizing parallelism, locality, and recomputation
in image processing pipelines. Acm Sigplan Notices, 48(6):
519–530.
Ragan-Kelley, J. M. 2014. Decoupling algorithms from the
organization of computation for high performance image
processing. Ph.D. thesis, Massachusetts Institute of Tech-
nology.
Roy, A.; and Todorovic, S. 2014. Scene Labeling Using
Beam Search Under Mutex Constraints. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Russell, S. 1992. Efficient memory-bounded search meth-
ods. In ECAI ’92 Proceedings of the 10th European confer-
ence on Artificial intelligence, 1–5.
Zhang, W. 1998. Complete anytime beam search. In
AAAI/IAAI, 425–430.
Zheng, L.; Jia, C.; Sun, M.; Wu, Z.; Yu, C. H.; Haj-Ali, A.;
Wang, Y.; Yang, J.; Zhuo, D.; Sen, K.; et al. 2020. Ansor:
Generating {High-Performance} Tensor Programs for Deep
Learning. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), 863–879.
Zhou, R.; and Hansen, E. A. 2002. Memory-Bounded A*
Graph Search. In FLAIRS conference, 203–209.
Zhou, R.; and Hansen, E. A. 2005. Beam-Stack Search: Inte-
grating Backtracking with Beam Search. In ICAPS, 90–98.

82

