
MA3: Model-Accuracy Aware Anytime Planning with Simulation
Verification for Navigating Complex Terrains

Manash Pratim Das,1 Damon M Conover,2 Sungmin Eum,2,3 Heesung Kwon,2 Maxim Likhachev1

1 Carnegie Mellon University
2 DEVCOM Army Research Laboratory (ARL)

3 Booz Allen Hamilton
mpratimd@andrew.cmu.edu, damon.m.conover.civ@army.mil, eum sungmin@bah.com, heesung.kwon.civ@army.mil,

maxim@cs.cmu.edu

Abstract

Off-road and unstructured environments often contain com-
plex patches of various types of terrain, rough elevation
changes, deformable objects, etc. An autonomous ground
vehicle traversing such environments experiences physical
interactions that are extremely hard to model at scale and
thus very hard to predict. Nevertheless, planning a safely
traversable path through such an environment requires the
ability to predict the outcomes of these interactions instead
of avoiding them. One approach to doing this is to learn the
interaction model offline based on collected data. Unfortu-
nately, though, this requires large amounts of data and can
often be brittle. Alternatively, models using physics-based
simulators can generate large data and provide a reliable pre-
diction. However, they are very slow to query online within
the planning loop. This work proposes an algorithmic frame-
work that utilizes the combination of a learned model and
a physics-based simulation model for fast planning. Specifi-
cally, it uses the learned model as much as possible to acceler-
ate planning while sparsely using the physics-based simulator
to verify the feasibility of the planned path. We provide a the-
oretical analysis of the algorithm and its empirical evaluation
showing a significant reduction in planning times.

1 Introduction
Search-based motion planning problems aim to search for a
feasible path in a graph from a vertex defined as ”start” to
a vertex defined as ”goal”. A path consists of consecutive
edges. While an edge connects a pair of vertices, a vertex
might have multiple edges connected with it. Moreover, each
edge will have a non-negative cost associated with it, and the
cumulative sum of the costs associated with the edges that
form a path in the graph refers to the cost of the path. The
cost of an edge can also be infinite, which indicates that the
edge is not valid, and a feasible path refers to a path that
does not contain any such invalid edges. In this work, we
focus on the class of planning problems, where it is time-
consuming to determine the cost of an edge. Consequently,
it is expensive w.r.t. time to determine if an edge is invalid.
As a motivating example, the path planning problem for an
autonomous ground robot that traverses over a complex off-
road environment is one such problem.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In an unstructured off-road environment, the robot can en-
counter a combination of environmental elements that gen-
erates a complex interaction. For example, the environment
may contain tall grass, bushes, low-hanging tree branches,
rocks, gravel, mud, ridges, rough terrain, etc. The robot
would encounter very complex physical interactions with
them, making the interaction practically infeasible to pre-
dict in closed-form. To plan a path for the vehicle through
this terrain, we can set up a state-lattice graph that spans the
region to be traversed. The vertices in this graph can repre-
sent the states of the robot over the terrain, and the edges can
represent a sequence of actions validated by an “expert” that
will make the robot traverse between the states.

We use the term “expert” to refer to an entity that can pre-
dict traversability and, in particular, whether an edge is valid
in the context of the graph we defined above. Historically an-
alytical models (Al-Milli, Althoefer, and Seneviratne 2007;
Gennery 1999), machine learning models (Chavez-Garcia
et al. 2017; Hirose et al. 2018), and simulation-based
(Chavez-Garcia et al. 2018; Al-Milli, Seneviratne, and Al-
thoefer 2010) models have been popular choices to serve
as “experts”. (Nampoothiri et al. 2021) provides a recent
survey of models used in traversability prediction. In gen-
eral, there is a trade-off between the time required to query
a model and its accuracy. Consider the following example:
A neural network model can look at the scene in front of the
vehicle using onboard sensors to predict traversability very
quickly. However, their prediction is based on interpolation,
which does not reason about the complex physics of interac-
tion. On the other hand, a high-fidelity simulator can reason
about physics and provide a more reliable prediction.

We propose an anytime planning algorithm MA31 that can
utilize a learning-based and a simulation-based “expert” to
evaluate edges. The learning-based evaluator is approximate
but quicker, while the simulation-based evaluator is accu-
rate. MA3 runs two parallel threads. The key idea is to use
the quicker edge-evaluator to guide the search in one thread
and use the accurate edge-evaluator “minimally” to verify
the solution or correct mistakes in another thread. Account-
ing for the mistakes helps MA3 ensure completeness and
bounded-suboptimality guarantees.

1Source code and demo: manashpratim.com/ma3-planner

Proceedings of the Fifteenth International Symposium on Combinatorial Search (SoCS 2022)

65

2 Problem Formulation
As an example, let us use the off-road navigation problem.
Consider a 4-wheel drive robot with Ackermann steering.
The off-road environment contains only one type of terrain
with no obstacles such as rocks, trees, etc. In particular, this
terrain is traversable everywhere except for where the ele-
vation is very rough, and the robot cannot traverse over it,
this may be either because it does not have enough power or
because it gets stuck due to physical limitations.

Setup: Let the state (x, y, θ) ∈ R2 × S1 of the robot
be defined by the 2D location of the robot on the surface
x, y ∈ R2 and the heading angle θ ∈ S1. Let (.)w and (.)b
be used to define the coordinates relative to a world frame
and the body frame of the vehicle, respectively. Let GV,E,W
represent a graph parameterized by the vertices V , edges E
and a map W : E → R+ which gives the cost of an edge. We
generate this graph offline with optimistic edges. During on-
line planning, only the edge-costs are updated to reflect non-
traversable edges. The vertices are generated by discretizing
the state-space uniformly. The edge connections between
edges are generated as follows. We first define a set of lo-
cal targets M ′, where each target m = (dxb, dyb, dθw, dt)
specifies a small-change in state-space. We then check if
the vehicle starting from any state say s = (xb, yb, θw)
can reach a new state determined by this relative change
s′ = (xb + dxb, yb + dyb, θw + dθw) within a time-limit
dt based on its dynamics constraints and under “optimistic
conditions”. In our case, this condition refers to a flat world
W∗ without any elevation variation, which is traversable ev-
erywhere. We store such relative and local targets m that are
traversable under optimistic conditions in a set M . This set
can be used to generate successors for an implicit graph from
any state during planning. Again, note that, in a real-world
W , the edge between a state and its successor may not be
traversable due to the elevation variations (Fig. 1).

Let Woptimistic and Wsim,W map the cost of traversing an
edge in W∗ and W respectively, such that Woptimistic(e) ≤
Wsim,W(e) holds true for every edge. Let Msim and Mml
denote the simulator and the ML model, respectively. The
cost of an edge e in Wsim,W that connects the states say
(s, s′) determined by the target m can only be revealed by
simulating the robot in the world W at s to see if it can
reach s′ within dt. This call to the simulator is denoted
by QUERYSIMMODEL(e) and returns∞ if s′ could not be
reached. In contrast, a query to Mml is denoted by the func-
tion QUERYMLMODEL : E → {true, false} × [0, 1] and is
expected to return a binary decision on the validity of the
queried edge, and a confidence score about its prediction.
Mml can use local features f(s,m) which depend on s and
m to make its prediction. For example, we use an ensem-
ble of convolutional neural network (CNN) classifiers which
takes a two-channel image as the input. The first channel
contains the elevation map of the region around the robot
centered and oriented w.r.t. sb, and the second channel is a
binary image which contains information about m (Please
refer to Fig. 5 in Section 5.2).

Finally, we are given 1) a world W , 2) a graph GV,E,W ,
3) a pair of user-specified start and goal states in the graph
(sstart, sgoal), and 4) two edge-evaluators Mml, Msim. The

m2

m3

m1

Figure 1: Three targets are shown here. The dotted connec-
tions indicates that the controller of the vehicle can take any
local path to reach the targets. Given the terrain elevation,
whether the controller in simulation can reach a target within
the time-limit specifies if the edge is valid.

problem statement is to finds a path π = {e1, e2, . . .} such
that the cost of the path cπ =

∑
ei∈π Wsim,W(ei) satisfies 1)

cπ ̸= ∞, and 2) cπ ≤ ωsubcπ∗ , where cπ∗ is the cost of the
optimal path, and ωsub ∈ [0,∞) is a user-defined parameter.

3 Related Work
For search-based planning problems where edge evaluations
dominate the run-time of the planner, LAZYSP (Mandalika
et al. 2019) class of algorithms are proven to evaluate the
minimum number of edges (edge-optimal) (Haghtalab et al.
2018) required to find the optimal path. The main idea be-
hind this class of algorithms is to generate path candidates
in order of their potential to be the optimal path and to
keep eliminating them if they are invalid until you find the
first valid path. Enforced by the order in which these can-
didates are considered, the first valid path is guaranteed to
be optimal. These algorithms are edge-optimal as they use
an optimistic edge-costs Woptimistic to search the graph for
the candidate paths. And query the time consuming evalu-
ator Wevaluator,W [e] only to eliminate candidates. LAZYSP
utilizes a shortest path planner like A* (Hart, Nilsson, and
Raphael 1968) internally. Variants of A* which aims at re-
ducing edge-evaluations are LAZYA* (Cohen, Phillips, and
Likhachev 2015) and rational-LAZYA* (Karpas et al. 2018).

Our work builds upon the LAZYSP framework such
that in addition to the expensive but error-free edge-
evaluator, the planner can also utilize an error-prone but rel-
atively faster edge-evaluator. While (Cohen, Phillips, and
Likhachev 2015; Haghtalab et al. 2018; Mandalika et al.
2019) are designed to search directly for the optimal path,
our Algorithm 1 is an Anytime algorithm. Note that PSMP
(Hou et al. 2020) is also based on LAZYSP and is an any-
time algorithm. However, it is not related to our problem.
PSMP utilizes additional global information about the map
to accelerate the elimination of path candidates. However,
MA3 does not require global information; rather, the addi-
tional edge-evaluator only uses local information around the
edge. Moreover, PSMP only affects the LAZYEDGESELEC-
TOR function (see Algorithm 1) which we borrowed from
LAZYSP, and hence MA3 can be extended like PSMP to
utilize global information.

66

4 Approach
The key idea in MA3 is to delay edge-evaluations by Msim
and carry out the regular LAZYSP-like search using Mml.
Ideally, the simulator is queried only to verify a path found
valid by Mml. However, some additional simulation queries
are made to evaluate 1) edges where the model Mml is not
confident about its prediction, and 2) edges that have been
marked as invalid by Mml with high confidence. Fig. 2 shows
an example run-through of MA3.

Notations: First we introduce some additional notations
used in Algorithm 1. Relevant line numbers are shown as
{. . .}. Multiple priority values (p1, p2, . . .) ordered in de-
scending order of their significance can be used to determine
the priority of an element in a priority queue. Lesser signifi-
cant priority is only used to break ties. Finally, the procedure
SP(sstart, sgoal,Wcurrent) calls A* or its variants (like LPA*
(Koenig, Likhachev, and Furcy 2004)) to return 1) a least-
cost path π based on the edge costs Wcurrent, and 2) the cost
of the path cπ . While Wcurrent[e] gives the cost of an edge e,
Wcurrent[e].model contains the information about the source
of the edge cost, which can take either of the following val-
ues {init, temp, ml, sim, ppe}.
• init: cost are based on Woptimistic {7}
• temp: if cost is set to∞ temporarily {35}
• ml: cost updated based on Mml evaluation
• sim: cost updated based on Msim evaluation
• ppe: potentially pessimistic edge (explained in 4.2)

4.1 Lazier Simulation Evaluations
First, let us relate the parts of our algorithm similar to
LazySP. Like LazySP, A* always uses a edge-cost-map
Wcurrent (which is initialized with Woptimistic) to compute the
least-cost path {9 and 41}. During the search, this data struc-
ture is updated by calling the OVERWRITE function to con-
tain the most-relevant cost for all the edges. Specifically, we
store two information about an edge, 1) its cost in Wcurrent[e],
and 2) the latest model that contributed the edge-cost in
Wcurrent[e].model. OVERWRITE also sets the boolean vari-
able is new W to “true” when the edge-cost being overwrit-
ten is different from its previous value. Doing this allows the
search to run A* only when the graph has changed from the
previous iteration. {15-36} does very similar work like the
main-loop of LazySP, i.e., 1) it considers one path candidate
after the other (π) sorted in increasing order of their potential
path cost (cπ) {16}, 2) selects edges E from that path based
on the LAZYEDGESELECTOR (Mandalika et al. 2019) for
evaluation, and 3) repeats this process until a path is found
where no new edges require evaluation. Let us denote such
a path as “evaluated path”.

Here is how MA3 is different. Firstly, it runs two threads,
one that performs the graph-search {1-48}, and the other
{49-60} that uses Msim to evaluate sets of edges that are
scheduled in a priority queue Psim. Secondly, for every edge
that has been selected by the LAZYEDGESELECTOR, in-
stead of using only one edge-evaluator, MA3 chooses be-
tween Mml and Msim. The more expensive Msim is used
if the confidence of the approximate Mml is below a user-
defined threshold ϵconf {21-36}. SCHEDULEFORSIM is a

non-blocking function; thus, MA3 would not wait for the
evaluation of an edge in Msim to be available. Instead, it will
temporarily disable that edge by setting its cost to ∞ {35}
and continue with the search to find another path candidate.
The idea is that, while the simulator is busy evaluating edges
from potentially optimal paths, it might be worth exploring
the graph and finding a potentially sub-optimal “evaluated
path” quickly. Additionally, MA3 does extra work to main-
tain bounded-suboptimality (marked with bold line numbers
in 1) and completeness (marked with underlined line num-
bers in 1) properties.

Once an “evaluated path” is found, LazySP will return it
as a solution. However, in MA3, this path may consist of
edges that were evaluated by only the Mml and thus, may be
invalid. Therefore, MA3 will verify those edges using Msim
before returning it as a solution. Again, instead of waiting for
verification, these edges will only be scheduled. However,
the edges being scheduled for path verification are set to a
higher priority (see SCHEDULEFORSIM) {61-67}.

GETSIMDATA processes the evaluations completed by
the simulator. Once an “evaluated-path” is verified to be
valid in simulation, the upper bound on path-cost ub is up-
dated {78-80} and the path is added to Pvalid. It is still not
ready to be returned as a solution yet. Within the search,
when CHECKGAP {89-97} is called, MA3 can now com-
pare the upper bound ub with the lower-bound lb on path
cost to see if the sub-optimality condition is satisfied. This
ensures the bounded-suboptimality property of our algo-
rithm, and having found such a path, the anytime solution
stored in Pvalid can finally be returned {45-48}.

Now we explain how we maintain the lower-bound lb on
path-cost. A* generates least-cost path candidates based on
Wcurrent which initially contains optimistic costs; thus, the
path candidates have the potential to set the lower bound.
We add these paths to LB {10 and 43}. A path in LB will
lose the potential to set the lower bound if it contains at
least one invalid edge. Thus, when discovered, such paths
are removed from LB {76}. Alternatively, if a path candi-
date consists of potentially pessimistic edges (explained in
4.2), it can incorrectly raise the lower bound. Thus, in {30}
we disallow these candidates to increase the lower bound.

4.2 Handle ML Model Inaccuracies
The error-prone model Mml can make two types of errors:
1) false-positive errors, which leads to optimistic edge costs,
and 2) false-negative errors, which leads to pessimistic edge
costs. Optimistic edge costs do not violate completeness
guarantees. We handle them lazily, i.e., we let those edges
be considered during the search until they are a part of an
“evaluated path”. In this case, MA3 will reveal their actual
edge cost when verifying the “evaluated path”.

In contrast, the pessimistic edges may lead the search not
to discover a valid path. An edge that is invalidated by Mml
with high confidence is potentially pessimistic. We keep
track of these edges in Oe {31}. Now, it is a matter of select-
ing edges from this list and scheduling them for simulation
to reveal their actual cost. We do this in CHECKGAP {92-
95}. We choose to schedule these edges for simulation after
the search has exhausted all possible path candidates to find

67

Algorithm 1: Pseudocode for MA3
1: procedure MA3(sstart, sgoal, ωsub, ϵconf)
2: Pvalid ← ∅ ▷ List of Sim Validated Paths
3: P ← ∅ ▷ Path candidates ordered by path cost
4: Psim ← ∅, Pdata ← ∅ ▷ Edge-sets waiting for Sim
5: Econf ← ∅ ▷ Edges with high confidence
6: Oe ← ∅ ▷ Potentially pessimistic edges
7: Wcurrent ▷ Latest edge costs. Initialized with Woptimistic
8: is new W ← false
9: (cπ, π)← SP(sstart, sgoal,Wcurrent)

10: LB ← {(π, cπ)} ▷ Paths that determine lower-bound
11: ub←∞ ▷ upper bound on path cost
12: Insert π in P with priority cπ
13: Start SIMULATIONWORKER Thread
14: while (|P| > 0 or |Psim| > 0) do
15: if |P| > 0 then
16: (cπ, π)← POP(P)
17: E ←LAZYEDGESELECTOR(π)
18: if E is ∅ then
19: SCHEDULEFORSIM(π, cπ)
20: else
21: for all e ∈ E do
22: ce ←Wcurrent[e]
23: (is valid, conf)← QUERYMLMODEL(e)
24: if is valid = false then
25: ce ←∞
26: if conf > ϵconf then
27: Wcurrent ← OVERWRITE(e, ce, ‘ml’)
28: Insert e in Econf
29: if ce =∞ then
30: Update the path-cost of π in LB

with min
(π̂,ĉπ)∈LB\{(π,cπ)}

ĉπ

31: Insert (e, cπ) in Oe
32: Break for loop
33: else
34: SCHEDULEFORSIM({e}, cπ)
35: Wcurrent ← OVERWRITE(e,∞, ‘temp’)
36: Break for loop
37: else
38: Wait until |Pdata| > 0

39: GETSIMDATA()
40: if is new W then
41: (cπ, π)← SP(sstart, sgoal,Wcurrent)
42: Insert π in P with priority cπ
43: Insert (π, cπ) into LB
44: is new W ← false
45: if CHECKGAP() then
46: Break while loop or improve solution
47: Terminate SIMULATIONWORKER Thread
48: return Least cost path from Pvalid

49: procedure SIMULATIONWORKER
50: while Thread not terminated do
51: (priorities (p1, p2), E)← POP(Psim)
52: continue if p1 = 1 and p2 > ub
53: C ← ∅
54: for all e ∈ E do
55: if Wcurrent[e].model = ‘sim’ then
56: ce ←Wcurrent[e]
57: else
58: ce ← QUERYSIMMODEL(e)

59: Insert ce in C while preserving order
60: Insert (p1, p2, E, C) in Pdata

Algorithm 1: Pseudocode for MA3 (continued)
61: function SCHEDULEFORSIM(E, c)
62: if the set of edges E represent a path then
63: π ← E ▷ A path is a set of edges
64: Insert π in Psim with priority (1, c)
65: else
66: {e} ← E
67: Insert {e} in Psim with priority (2, c)

68: function GETSIMDATA
69: Pdata ← Get the edge-sets that have been evaluated
70: for all (p1, p2, E, C) ∈ Pdata do
71: path verified← true
72: for all e ∈ E and the corresponding ce ∈ C do
73: Wcurrent ← OVERWRITE(e, ce, ‘sim’)
74: Insert e in Econf
75: if ce =∞ then
76: Remove from LB path π that generates e
77: path verified← false
78: if p1 = 1 and path verified = true then
79: Insert (E,

∑
ce∈C ce) in Pvalid

80: ub← min(ub,
∑

ce∈C ce)

81: Pdata ← ∅

82: function LAZYEDGESELECTOR(π)
83: return At least one edge from π that is not in Econf or ∅ if all

edges of π are in Econf .

84: function OVERWRITE(e, ce,model)
85: if Wcurrent[e] ̸= ce then
86: Wcurrent[e]← ce
87: is new W ← true
88: Wcurrent[e].model← model

89: function CHECKGAP
90: lb← min(π,cπ)∈LB cπ
91: if (ub/lb) > ωsub then
92: if no paths left to consider in P and Psim then
93: (e, cπ)← argminOe

ce
s.t. Wcurrent[e].model = ‘ml’

94: Wcurrent[e].model← ‘ppe’
95: SCHEDULEFORSIM({e}, cest)

96: return false
97: else return true

a valid path that satisfies the suboptimality gap. And we se-
lect them in increasing order of the path-cost corresponding
to the path that contains the edge. Once scheduled, we mark
the model of these edges to be ‘ppe’ such that MA3 does not
add them again to Oe.

4.3 Theoretical Analysis
Claim: If there exists an optimal path π∗ that is valid accord-
ing to Msim, then given an admissible heuristic function, Al-
gorithm 1 is guaranteed to return a path π̂ such that its cost
cπ̂ is no more than ωsub times the cost cπ∗ of π∗, and such
that π̂ is valid according to Msim.

Lemma 4.1. All paths returned by Algorithm 1 are valid
according to the given Msim.

68

Figure 2: MA3 uses two threads say T1 and T2. The search and all Mml evaluations takes place in T1, whereas all the Msim
evaluations take place in T2. The results generated in T2 are periodically synced with T1 in batches. Assuming that Mml makes
no mistakes, a typical run of MA3 would look like this. In (a) a shortest-path-candidate is found and its first edge is selected for
evaluation. Since Mml was confident about this edge, MA3 accepts its evaluation. In (b) the next edge is selected for evaluation,
however, the Mml is not confident and hence Msim is used. Let us assume that querying Msim takes 3x the time than that of
Mml. Thus, while Msim is evaluating that edge in T2 MA3 will attempt to continue the search in T1 through the next shortest-
path-candidate (marked in black). In (c) we see that Mml is confident and hence has evaluated three edges until Msim evaluates
its edge. Since Msim evaluated this edge to be valid, the search can now resume along the previous shortest-path-candidate.
In (d) Mml invalidated an edge and similarly the next shortest-path-candidate is considered. Again in (e) as we wait for Msim
evaluation, MA3 considers the next shortest-path-candidate and employs Mml to evaluate the last edge that connects with the
goal. At this point, we have an “evaluated-path” and thus in (f) the simulator is made to verify this path “with high priority” i.e.
over usual edge-evaluations. Since a valid path is found MA3 will return this solution if it meets the suboptimality criteria.

Proof. This theorem is enforced by construction as GET-
SIMDATA function only inserts paths π marked for verifi-
cation (distinguished by priority p1 = 1) when all the edges
in the path have non-infinite costs. Note that some of these
edge costs (for edges with model ‘sim’) are being taken from
storage {55,56} to prevent duplicate evaluations. Because
MA3 is a multi-threaded program, we ensure that the model
is updated strictly after the correct edge costs are overwrit-
ten in Wcurrent {84-88}. This also ensures that MA3 corrects
false-positive errors made by Mml.

Theorem 4.2 (Completeness). Algorithm 1 is complete if
the heuristic function is admissible.

Proof. Given an admissible heuristic function, A* and
LazySP are proven to be complete. Hence, given an admis-
sible heuristic function, MA3 will generate path candidates
that are optimal given the current edge costs Wcurrent. Only
false-negative errors in Wcurrent made by Mml will prevent
MA3 to find a feasible path. Suppose that there are no path-
candidates left {92}, then by construction, in {93-95}MA3
ensure that all the potentially pessimistic edges get an op-
portunity to get scheduled for Msim. Note that the condition
specified in {93} skips some potentially pessimistic edges
from Oe. However, these edges are those which 1) have al-
ready been evaluated by Msim or 2) have appeared as poten-
tially pessimistic edge before and thus are already scheduled
for Msim. Fig. 3 shows all possible ways in which the model
of an edge evolves. An edge with source ‘ml’ will only up-
grade to ‘sim’ either directly or via ‘ppe’ {94}. Thus, the
condition Wcurrent[e].model = ‘ml’ in {93} will never miss
to schedule a potentially pessimistic edge. If all potentially
pessimistic edges are eventually evaluated in Msim, all the
false-negative errors in Wcurrent will eventually be corrected
to find the optimal path. Hence MA3 is complete.

Figure 3: Flow Diagram For Model Sources

Theorem 4.3 (Bounded Suboptimality). The path π̂ re-
turned by Algorithm 1 is guaranteed to satisfy cπ̂ ≤ ωsubcπ∗ .

Proof. The best valid path found by Msim is used to update
the upper bound ub {78-80} on the path-cost as once a path
is found, we only want to find a better path. Thus, the upper
bound informs about the best valid path found so far. Next,
we discuss the lower bound on path cost. The first path π1

found by A* when Wcurrent = Woptimistic contains only opti-
mistic edge costs. The cost of a valid path can only be greater
than or equal to cπ1

. Hence, if lb ← cπ1
, then any path π

that satisfies cπ/lb ≤ ωsub is bounded-suboptimal. However,
if we discover that an edge in π1 is invalid, then the lower
bound as described above will only be a loose bound. Thus,
we raise the lower bound by considering the next optimal
least-cost path. Therefore, it now remains to prove that the
lower bound is not raised incorrectly. As described in Sec-
tion 4.2, if Mml only makes false-positive (optimistic) errors
in Wcurrent, the path costs returned by A* will also be opti-
mistic. However, if a path candidate returned by A* contains
an edge that is potentially pessimistic, the path cost may be
higher than the actual path cost, in which case, this path cost
should not be used to determine the lower bound. Hence, by
ignoring such paths {30}, MA3 ensures that the lower bound
is never raised incorrectly.

69

5 Experiments
We are interested in three primary metrics, namely:
1. Planning times: MA3 is primarily designed to reduce

calls to the time expensive edge-evaluator Msim as in gen-
eral the time spent in search and querying the approxi-
mate evaluator Mml is negligible when compared to the
time required to query the Msim. Therefore planning time
is proportional to the number of calls.

2. Rate of success in finding a valid solution: False-positive
errors made by Mml can invalidate edges that are required
for the solution. So, we are interested in knowing how
many times does the planner fail to find a solution.

3. Path cost: This metric allows us to empirically compare
the solution quality of the planner to the optimal solution.

5.1 Baselines
All our baselines are based on LazySP (Haghtalab et al.
2018) as it is proven to be edge-optimal with one edge-
evaluator, which means that there is no algorithm that can
evaluate a lesser number of edges compared to LazySP for
the same planning problem with the same information. So,
we only generate baselines that gradually employ smarter
techniques to employ two edge-evaluators with the prop-
erties as discussed above. We run MA3 with parameters
ωsub = 2, ϵconf = 0.6.
1. LSP w SIM Evaluation: This is the primary baseline

which is simply LazySP with the accurate edge evaluator
Msim. Since Msim is accurate, this baseline is also guar-
anteed to be complete. Also, note that LazySP is not an
anytime, so this will always return the optimal solution.

2. LSP w ML Evaluation: One might choose to not use
Msim with LazySP but rather use an approximate edge-
evaluator Mml. While the edge-evaluation time for these
baselines will be very low, it does not guarantee com-
pleteness. We verify the path returned by this baseline in
Msim to compute the success rate.

3. LSP w ML + SIM Verification: This baseline is very sim-
ilar to Baseline 2 where Mml is only used during the
search, but before a path is returned, it is verified in Msim.
If the path is found to be invalid, the search will resume
until a valid path is verified. Note that it also does not
guarantee completeness as this baseline will fail to cor-
rect false-negative errors. It will return the first valid path
without any guarantees to return a bounded-suboptimal
path. This is analogous to running MA3 with ϵconf = 0,
ωsub =∞ and without inserting any edge to Oe in {31}.

4. LSP w ML + SIM Evaluation & Verification: This base-
line builds on Baseline 3, in that it makes a choice be-
tween Msim and Mml depending on whether the model
Mml is confident about its prediction (similar to {26} in
MA3). This is analogous to running MA3 with ϵconf =
same as MA3, ωsub =∞ and without inserting to Oe.

5. Single Thread MA3 (LSP w ML + SIM Evaluation, Ver-
ification & Correction): Baseline 2,3, and 4 lack com-
pleteness guarantees and hence would not have a way to
guarantee bounds on the solution quality. Thus, they re-
turn the first solution they find. Baseline 3 and 4 also use

two threads like MA3. Moreover, MA3 also returns the
first solution that meets the bounded suboptimality crite-
ria and utilizes two parallel threads. In contrast, Baseline
1 is designed to run on a single thread and return the opti-
mal solution. Therefore, we add this baseline to compare
how would MA3 perform if it were to not use the ben-
efits of two parallel threads and return the optimal solu-
tion. This is analogous to running MA3 by replacing line
{38} with “Wait until |Psim| = 0” and setting ωsub = 1.

5.2 Off-Road Navigation Domain
We use three maps with varying sizes, which directly
dictates the size of the graph. Our simulation environment
is developed on Unreal Engine 4, and the elevation map
is a direct replica of the Budds Creek Motocross Track,
Maryland, USA, obtained from publicly available laser-
scans Fig. 4. The three maps are taken from various parts of
this motocross park. While the three maps simply vary in
surface area size, the “medium” map is from an area where
many valid paths may exist from any start and goal pair.
The vertex count for the graph generated from each map
in increasing order are 76, 716, 86, 076 and 411, 048. The
maximum branching factor for each vertex was |M | = 11.
We simulate a 1.5x scaled-up model of the Clearpath
Husky robot using the Nvidia PhysX engine. The low-level
controller for the vehicle that accepts a target m ∈ M
(as shown in Fig. 1) is based on Carla’s (Dosovitskiy
et al. 2017) implementation of lateral and longitudinal PID
controllers.

Machine Learning Model: We use an ensemble of CNN
binary-classifiers to provide us with an estimate for the pre-
diction confidence. An example input to the model corre-
sponding to an edge in the graph is shown in Fig. 5. Note that
this model is not trained on any parts of the Budds Creek test
environment. It is trained offline by collecting data obtained
after rolling out simulations on a series of maps with varying
elevations. These elevation maps are not from the real world
but generated based on the Perlin noise model (Perlin 1985)
with a manually selected range of parameters that generate
reasonable variation in elevation roughness and amplitude.
We believe that this is a valid process to prepare the model
for a real-world map, and pre-training with this data does
not require any real-world elevation map. Once the model is
trained, it is not changed in the course of the experiments de-
scribed in the following sections. We employ a trick to make
the predictions more robust at no additional ML inference
time. Instead of querying the model for a target m ∈ M
and for a vehicle location given by the vertex, we addition-
ally query the ML model parallelly in the GPU for a set of
neighboring vehicle locations for the same target m and then
take a vote inversely weighted by the deviation. Finally, with
TensorRT optimization (Vanholder 2016), the inference time
on an Nvidia Titan V GPU is around 3ms.

Table 1, Table 2 and Table 3 present the performance
comparison for MA3 and the baselines for various metrics
over 100 planning episodes each for the three maps. It is
important to note that the metrics in Table 1 and Table 3
are computed only if all the planner found a path which

70

Maps LSP w SIM LSP w ML
+ SIM V

LSP w ML
+ SIM E&V

Single Thread
MA3 (Optimal) MA3

Avg : 95% CI 1 0.99 : [0.87, 1.11] 1.07 : [0.85, 1.29] 0.74 : [0.59, 0.90] 1.60 : [0.70, 2.51]
Small Min, Max 1, 1 0.62, 1.61 0.62, 2.24 0.13, 1.31 0.62, 8.24

Avg : 95% CI 1 2.93 : [1.40, 4.46] 2.57 : [1.31, 3.84] 1.38 : [1.10, 1.66] 2.54 : [1.28, 3.80]
Medium Min, Max 1, 1 0.96, 11.04 1.00, 9.34 0.93, 2.45 0.97, 8.53

Avg : 95% CI 1 4.54 : [3.15, 5.93] 3.69 : [2.66, 4.73] 1.04 : [0.95, 1.13] 3.48 : [2.56, 4.40]
Large Min, Max 1, 1 0.66, 18.60 0.75, 15.03 0.49, 1.77 0.79, 12.93

Table 1: Speed-up in planning times w.r.t. LSP w SIM (Factor x)

Maps LSP w SIM LSP w ML LSP w ML
+ SIM V

LSP w ML
+ SIM E&V

Single Thread
MA3 (Optimal) MA3

Small 0 26.31 10.52 5.26 0 0
Medium 0 31.25 0 0 0 0

Large 0 57.64 2.35 1.17 0 0

Table 2: Failure Rate of the Planners (%)

Maps LSP w SIM LSP w ML LSP w ML
+ SIM V

LSP w ML
+ SIM E&V MA3

Small Avg : 95% CI 1 1.01 : [1.00, 1.03] 1.01 : [1.00, 1.03] 1.00 : [1.00, 1.02] 1.00 : [1.00, 1.02]
Min, Max 1, 1 1.00, 1.07 1.00, 1.07 1.00, 1.07 1.00, 1.07

Medium Avg : 95% CI 1 1.01 : [1.00, 1.03] 1.00 : [1.00, 1.00] 1.00 : [1.00, 1.03] 1.01 : [1.00, 1.03]
Min, Max 1, 1 1.00, 1.08 1.00, 1.00 1.00, 1.08 1.00, 1.08

Large Avg : 95% CI 1 1.00 : [1.00, 1.00] 1.00 : [1.00, 1.00] 1.00 : [1.00, 1.00] 1.00 : [1.00, 1.01]
Min, Max 1, 1 1.00, 1.01 1.00, 1.01 1.00, 1.00 1.00, 1.03

Table 3: Suboptimality in path cost w.r.t LSP w SIM

Figure 4: Left: Google Earth View of Budds Creek Motor-
cross Park. Right: Replicated terrain elevation map in UE4.

is valid in Msim. For the planning episodes, a random goal
state was selected once, and then 100 random start locations
were selected. Note that the planners are given the same
start-goal pair per episode. We then ran a backwards Dijk-
stra’s search (Dijkstra et al. 1959) to solve the single-source
shortest-path problem with edge-costs from Woptimistic. This
allowed us to compute the cost-to-go values once, which can
then be used as a consistent and admissible heuristic in all
the 100 planning episodes. MA3 and all the baselines are
implemented in C++. The average query time for Msim is

around 450ms while that of Mml is around 3ms. We could
not manage to make the simulation faster without decreas-
ing the fidelity. We chose Nvidia PhysX Engine as it uti-
lizes GPU parallelization, and we disabled UE4 rendering
to speed up physics simulation.

5.3 Speed-up in Planning Times
For each planning episode, we compute the pairwise speed-
up achieved in planning time for a planner as compared to
that of LazySP w SIM. Table 1 shows the various statis-
tics over 100 planning episodes. We present 1) average with
95% confidence interval (within []), and 2) the minimum and
maximum values observed. We did not present the speed-
up for LSP w ML due to space-constraints as it is trivially
very fast since it does not query Msim and is around 10x. We
observe that the speed-up achieved correlates with the size
of the graph as expected. MA3 achieved an average speed-
up of 3.48x in the “Large” map. Although LSP w ML +
SIM V and LSP w ML + SIM E&V baselines achieves a
higher speed-up, as we will observe in Section 5.4, these
baselines did not solve all the planning problems. In a par-
ticular case, MA3 was around two times slower (speed-up of
0.62) which is because Mml made significant errors. False-
positive errors waste simulation efforts for path verification
and false-negative errors lead the search away from valid

71

2.5 0.0 2.5 5.0
X axis of the Vehicle Body Frame (m)

4

2

0

2

4
Y

ax
is

 in
 V

eh
ic

le
 B

od
y

Fr
am

e
(m

)
Vehicle Center

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5: An example 2-channel input to Mml. The first
channel encodes the height around the vehicle (in meter).
The second channel is a binary image with ‘black’ pixels
encoding the ideal path between the center of the vehicle to
a target m. In this case, the target is 2.5m along the x-axis
(vehicle forward). In this visualization, only the black pix-
els from the second channel are overlaid on top of the first
channel.

solutions requiring the evaluation of potentially-pessimistic
edges. Section 5.5 presents how the errors in Mml affect per-
formance of MA3.

5.4 Success Rate and Solution Cost
Table 2 presents the success rate for each planner. MA3
achieves a 100% success rate thanks to its completeness
properties. The “medium” map provides a lot of alternate
routes, which is why Baseline 3 and 4 did not fail in the
random planning episodes we tested them on.

Table 1 presents the speed-up for the planners which
might return sub-optimal solution. Recall that Baselines
2,3 and 4 return the first solution, Baseline 5 returns opti-
mal solution and MA3 returns bounded-suboptimal solution
ωsub = 2. Therefore, compared to LazySP w SIM, and ex-
cept for Baseline 5, the planners trade optimality for plan-
ning times. Thus, we present the ratio of the path cost found
by the planner as compared to that of the optimal path in Ta-
ble 3. We observe that a significant speed-up can be achieved
for certain planning problems without sacrificing too much
on the solution quality. We use the bootstrap method (DiCi-
ccio and Efron 1996) to compute the confidence intervals as
suboptimality cannot be lower than 1.

5.5 Ablation Studies
The ML model is error-prone, while the simulator is rela-
tively slower to query. Therefore, in these experiments, we
wanted to measure how the performance of the planners is
affected by the characteristics of the edge-evaluators.

Performance vs ML model accuracy In order to control
the model accuracy, we employed the following trick. We
used the same ML model trained as described in Section 5.2
which provides a binary prediction and its confidence score,

50 60 70 80 90 100
Accuracy of the ML model

1
2
3
4
5
6
7

Sp
ee

d
up

upper bound
conf= 0.0
conf= 0.75

Figure 6: Speed-up with varying model accuracy and confi-
dence thresholds

1x 15x 150x
Avg. query time of SIM compared to that of ML

0

1

2

3

4

Sp
ee

d
up

Figure 7: Speed-up with simulation query time

but instead of using the prediction, we flip the ground-truth
prediction with a probability to emulate a learned model
with a certain rate of accuracy in the test environment. Fig. 6
shows the speed-up achieved by MA3 in the “Medium”
map with various ωconf. Setting ωconf = 0 makes MA3 rely
more on Mml for initial edge evaluation, thus we observe
that MA3 has higher speed-ups when the Mml is more ac-
curate. However, as the accuracy reduces, the speed-up also
reduces. Interestingly the speed-up with an ML model with
50% accuracy is lower when ωconf = 0 as compared to when
ωconf = 0.75. From a user’s perspective, ωconf should be set
based on the accuracy of Mml.

Performance vs Simulation Query Time As expected
we observe in Fig. 7 that MA3 shows significant speed-up
when Msim is relatively slower than Mml. For this experi-
ment, we cached the results from the simulator so that they
can be made available with any custom delay to emulate any
simulation query time. The intuition behind this is that if
SIMULATIONWORKER has high throughput, it may perform
additional simulations before the main thread reaches GET-
SIMDATA and realizes that all the evaluations required to
return a valid path are available.

72

6 Conclusion and Future Work
In this work, we looked at the off-road navigation-planning
problem. We attempt to determine traversability using a sim-
ulator, assuming that it is accurate, and use a learned model
trained with simulation data to approximate traversability
quickly during online planning. To that end, we provide
a novel planning algorithm, MA3, which can exploit the
complementary properties of these models to find bounded-
suboptimal paths in significantly less time. In the future, we
want to evaluate our system on a real robot.

Acknowledgments
This work was supported by the ARL-sponsored A2I2 pro-
gram, contract W911NF-18-2-0218.

References
Al-Milli, S.; Althoefer, K.; and Seneviratne, L. D. 2007. Dy-
namic analysis and traversability prediction of tracked vehi-
cles on soft terrain. In 2007 IEEE International Conference
on Networking, Sensing and Control, 279–284. IEEE.
Al-Milli, S.; Seneviratne, L. D.; and Althoefer, K. 2010.
Track–terrain modelling and traversability prediction for
tracked vehicles on soft terrain. Journal of Terramechanics,
47(3): 151–160.
Chavez-Garcia, R. O.; Guzzi, J.; Gambardella, L. M.; and
Giusti, A. 2017. Image classification for ground traversabil-
ity estimation in robotics. In International Conference on
Advanced Concepts for Intelligent Vision Systems, 325–336.
Springer.
Chavez-Garcia, R. O.; Guzzi, J.; Gambardella, L. M.; and
Giusti, A. 2018. Learning ground traversability from simu-
lations. IEEE Robotics and Automation letters, 3(3): 1695–
1702.
Cohen, B.; Phillips, M.; and Likhachev, M. 2015. Planning
single-arm manipulations with n-arm robots. In Interna-
tional Symposium on Combinatorial Search, volume 6.
DiCiccio, T. J.; and Efron, B. 1996. Bootstrap confidence
intervals. Statistical science, 11(3): 189–228.
Dijkstra, E. W.; et al. 1959. A note on two problems in
connexion with graphs. Numerische mathematik, 1(1): 269–
271.
Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. CARLA: An open urban driving simula-
tor. In Conference on robot learning, 1–16. PMLR.
Gennery, D. B. 1999. Traversability analysis and path plan-
ning for a planetary rover. Autonomous Robots, 6(2): 131–
146.
Haghtalab, N.; Mackenzie, S.; Procaccia, A.; Salzman, O.;
and Srinivasa, S. 2018. The provable virtue of laziness in
motion planning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 28,
106–113.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.

Hirose, N.; Sadeghian, A.; Vázquez, M.; Goebel, P.; and
Savarese, S. 2018. Gonet: A semi-supervised deep learning
approach for traversability estimation. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3044–3051. IEEE.
Hou, B.; Choudhury, S.; Lee, G.; Mandalika, A.; and Srini-
vasa, S. S. 2020. Posterior sampling for anytime motion
planning on graphs with expensive-to-evaluate edges. In
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), 4266–4272. IEEE.
Karpas, E.; Betzalel, O.; Shimony, S. E.; Tolpin, D.; and Fel-
ner, A. 2018. Rational deployment of multiple heuristics in
optimal state-space search. Artificial Intelligence, 256: 181–
210.
Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning Astar. Artificial Intelligence, 155(1-2): 93–146.
Mandalika, A.; Choudhury, S.; Salzman, O.; and Srinivasa,
S. 2019. Generalized lazy search for robot motion planning:
Interleaving search and edge evaluation via event-based tog-
gles. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 29, 745–753.
Nampoothiri, M.; Vinayakumar, B.; Sunny, Y.; and Antony,
R. 2021. Recent developments in terrain identification, clas-
sification, parameter estimation for the navigation of au-
tonomous robots. SN Applied Sciences, 3(4): 1–14.
Perlin, K. 1985. An image synthesizer. ACM Siggraph Com-
puter Graphics, 19(3): 287–296.
Vanholder, H. 2016. Efficient inference with tensorrt. In
GPU Technology Conference, volume 1, 2.

73

