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Abstract

Effective planning while competing for limited resources is
crucial in many real-world applications such as on-demand
transport companies competing for passengers. Planning
techniques therefore have to take into account possible ac-
tions of an adversarial agent. Such a challenge that can be
tackled by leveraging game-theoretical methods such as Dou-
ble Oracle.
This paper aims at the scalability issues arising from combin-
ing planning techniques with Double Oracle. In particular,
we propose an abstraction-based heuristic for deciding how
resources will be collected (e.g. which car goes for which
passenger and in which order) and we propose a method
for decomposing planning tasks into smaller ones (e.g. gen-
erate plans for each car separately). Our empirical evalua-
tion shows that our proposed approach considerably improves
scalability compared to the state-of-the-art techniques.

Introduction
Presence of adversarial agents in an environment poses a
challenge for planning techniques as plans have to take
into account their possible actions (Applegate, Elsaesser,
and Sanborn 1990). Succinct symbolic representations of
state sets helped generating optimistic and strong cyclic ad-
versarial plans (Jensen, Veloso, and Bowling 2001; Kiss-
mann and Edelkamp 2009), however, at the cost of ex-
ploring most if not all alternatives like in minimax or
FOND planning (Cimatti et al. 2003). Monte-Carlo Tree
Search (MCTS) techniques have been used in zero-sum
games (Lelis 2020), general game playing (Björnsson and
Finnsson 2009), or the well known Starcraft real-time
strategy game (Justesen and Risi 2017). Deep Reinforce-
ment Learning (DRL) has shown impressive performance
in numerous adversarial domains such as (again) Star-
craft (Vinyals et al. 2019) or Go (Silver et al. 2018). MCTS
and DRL work “online”, i.e., they iteratively select and ap-
ply the most promising action until they reach the terminal
state.

In contrast to MCTS and DRL, planning techniques gen-
erate plans upfront and these plans are then executed as they
are, which might be necessary in cases in which plans can-
not be easily amended (e.g. due to lack of communication
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between units). For example, Plan Interdiction Games lever-
age planning to reason about attackers and defenders in com-
puter networks (Vorobeychik and Pritchard 2020). From the
domain-independent standpoint, planning has been used in
Stackelberg games for generating follower’s plans against
the adversarial leader (Speicher et al. 2018; Torralba et al.
2021), or for counter-planning, where an agent tries to in-
validate landmarks required by the adversary, so the adver-
sary cannot achieve its goal (Pozanco et al. 2018). Recently,
a subclass of normal-form games has been tackled from
the domain-independent planning perspective (Rytı́ř, Chrpa,
and Bošanský 2019; Chrpa, Rytı́ř, and Horčı́k 2020). In con-
trast to Stackelberg games, in normal-form games, players
do not necessarily follow the leader-follower scheme and
can be in “equal” positions while selecting their strategies
they will play. In contrast to counter-planning, normal-form
games aim at achieving agent’s goals rather than preventing
the adversary from achieving its goals, which is often (but
not necessarily) a “byproduct”.

Resource-Competition Problems, which are the target of
this paper, are a subclass of normal-form games where
agents compete for limited resources. For example, suppose
a scenario in which two on-demand transport (or Taxi) com-
panies compete for passengers. When one company picks up
a passenger, the other company no longer can serve that pas-
senger. Similarly, two agents might compete for resources
in a strategy game such that when an agent collects a re-
source, the opponent can no longer collect the resource for
itself. Successful collection of (some) resources is usually
crucial for achieving the goals of the agent (e.g. serve as
many passengers as possible). That means that plans of the
agent have to be optimised for maximising the chance of col-
lecting important resources against the adversarial (or com-
peting) agent.

Rather than a single plan, the agent should generate a
mixed strategy, i.e., a set of plans with probabilities for be-
ing selected and executed, as it is harder to exploit (LaValle
2006). To generate mixed strategies, we can leverage the
game-theoretic Double-Oracle algorithm (McMahan, Gor-
don, and Blum 2003). Rytı́ř, Chrpa, and Bošanský (2019)
incorporated domain-independent planning into Double Or-
acle, however, the results have shown a lack of scalability
(even for suboptimal settings). We have identified two main
reasons: (i) lack of guidance on means by which resources
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are collected, and (ii) the centralised form of planning.
Chrpa, Rytı́ř, and Horčı́k (2020) aimed at addressing (i) by
introducing a delete-relaxation heuristic for estimating when
resources can be collected and by what means, and leverag-
ing it as a guidance during (centralised) planning. In con-
trast to Chrpa, Rytı́ř, and Horčı́k, we propose an abstraction-
based heuristic, which is computationally cheaper, and fits
into a more general theoretical framework. In this paper,
we also address (ii) by specifying under which conditions
we can decompose the problem into smaller subproblems
that can be solved individually. Problem decomposition can
be straightforwardly done for problems in which the agent
controls a fleet of units with limited joint interaction. Then,
we can plan for each unit individually (e.g. for each car)
and these plans can be easily combined into a plan for the
original problem. Our empirical evaluation shows that our
proposed approach considerably improves scalability com-
pared to the state-of-the-art techniques. (Rytı́ř, Chrpa, and
Bošanský 2019; Chrpa, Rytı́ř, and Horčı́k 2020).

Preliminaries
This section introduces the terminology we use in this paper.

Automated Planning
In our setting, we consider classical planning with action du-
ration and discrete timelines. Note that our model is simpler
than PDDL 2.1 (Fox and Long 2003).

Let V be a set of variables where each variable v ∈ V is
associated with its domain D(v). An assignment of a vari-
able v ∈ V is a pair (v, val), where its value val ∈ D(v).
Hereinafter, an assignment of a variable is also denoted as
a fact. A (partial) variable assignment p over V is a set of
assignments of individual variables from V , where vars(p)
is a set of all variables in p and p[v] represents a value of
v in p. For a (partial) variable assignment p over V and a
subset of variables V ′ ⊆ V , we define a variable assign-
ment q over V ′ being a projection of p into V ′, denoted as
[p|V ′], as q[v′] = p[v′] for each v′ ∈ V ′ (q[v′] is unde-
fined iff p[v′] is undefined). A state is a complete variable
assignment (over V ). To accommodate the notion of time,
we denote that an assignment f or a (partial) variable as-
signment p holds in time t as f(t) or p(t) respectively. An
action is a triple a = (dur(a), pre(a), eff (a)), where dur(a)
is a positive integer representing the duration of a’s appli-
cation, pre(a) is a partial variable assignment representing
the a’s precondition and eff (a) is a partial variable assign-
ment representing the a’s effects. The set of variables of a is
denoted vars(a) = vars(pre(a)) ∪ vars(eff (a)).

We say that actions ai and aj are independent iff
vars(ai) ∩ vars(aj) = ∅, otherwise we say that ai and aj
interfere with each other. We say that an action a is applica-
ble in a state s and time t if and only if s(t) |= pre(a). The
application interval of an action a in time t is (t, t+dur(a)).

A planning task is a quadruple P = (V,A, I,G), where
V is a set of variables, A a set of actions, I a complete
variable assignment representing the initial state and G a
partial variable assignment representing the goal. Let π =
{(a1, t1), . . . , (an, tn)} be a set of couples (action,time)

such that for every ai, aj (i 6= j) such that ai and aj in-
terfere the application interval of ai in ti is disjoint with the
application interval of aj in tj . The state trajectory of π with
respect to a state I is a sequence of states s(0) = I, s(1), . . .
such that for t > 0, s(t)[v] = eff (ai)[v] iff t = ti + dur(ai)
and v ∈ vars(eff )(ai)), or s(t)[v] = s(t− 1)[v] otherwise.
We say that π is a plan for P iff for its state trajectory w.r.t I
it is the case that ai is applicable in s(ti) for each 1 ≤ i ≤ n
and s(maxn

i=1(ti + dur(ai))) |= G.
Another variant of planning task definition considers,

rather than a single (hard) goal, a set of soft goals (each
goal is a set of variable assignments) such that failing to
achieve a goal is penalised. Therefore, for a planning task
P = (V,A, I,G), G = {G1, . . . , Gn}, where each Gi is
associated with a cost Mi (1 ≤ i ≤ n) such that for a plan π
it is the case that its cost is

∑
i∈{i | Gi not achieved}Mi.

Normal-Form Games
A normal-form game Γ is a tuple (N,Ω, u), where N is the
number of players, Ω = Ω1× · · · ×ΩN , where Ω1, . . . ,ΩN

are finite sets of pure strategies of players 1, . . . , N and u =
(u1, . . . , uN ) is an N -tuple of utility functions that assign a
real-valued utility of player i for each outcome of the game
defined by a strategy profile – an N -tuple of pure strategies
(one for each player); ui : Ω → R. We say that a normal-
form game is a zero-sum game if

∑N
i=1 ui(ω) = 0 for each

ω ∈ Ω. From now, we focus only on 2-player games, i.e.,
N = 2.

A mixed strategy for a player i is a probability distri-
bution σi over the set of player’s pure strategies Ωi. A
pair of mixed strategies σ = (σ1, σ2) is called a mixed-
strategy profile. We extend the definition of utility func-
tions so that for a given mixed-strategy profile σ the value
ui(σ) is the expected utility of player i. We say that a mixed
strategy of one player σi is the best response to the strat-
egy of the opponent σ−i (denoted as σi = br(σ−i)) when
ui(σi, σ−i) ≥ ui(σ

′
i, σ−i) for all mixed strategies σ′i over

Ωi. We say that a mixed-strategy profile σ = (σ1, σ2) is in
Nash equilibrium (NE) if for each mixed-strategy profile
σ′ = (σ′1, σ

′
2) it is the case that u1(σ1, σ2) ≥ u1(σ′1, σ2)

and u2(σ1, σ2) ≥ u2(σ1, σ
′
2). A mixed-strategy profile in

NE can be computed via Linear Programming.

Double Oracle
One way for tackling normal-form games is to incrementally
build the game using the Double-Oracle algorithm (McMa-
han, Gordon, and Blum 2003) as summarised in Algo-
rithm 1. The algorithm starts with a restricted game, where
each player’s NE mixed strategy is composed from a subset
of pure strategies, usually containing only a single pure strat-
egy (Lines 2–3). Then, iteratively each player computes the
(best) response expanding the restricted game by (the best)
pure strategy (Lines 5–6) and the NE mixed-strategy profile
for the expanded restricted game is determined (Line 7). The
algorithm terminates when neither of the players can add a
(best) response strategy that improves the expected outcome
from the restricted game (Line 8).

If best responses are computed in each iteration, the NE
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Algorithm 1: Double Oracle Algorithm (for 2 Players)
Require: A 2-player normal-form game

((Ω1,Ω2), (u1, u2))
Ensure: A mixed-strategy profile σ

1: Let X ′ ⊆ Ω1 and Y ′ ⊆ Ω2 (X and Y are arbitrary
nonempty subsets of Ω1 and Ω2)

2: σX′,Y ′
= NE((X ′, Y ′), (u1, u2))

3: repeat
4: X ← X ′, Y ← Y ′, σX,Y ← σX′,Y ′

5: x = arg maxx∈Ω1\X u1(x, σX,Y
2 )

6: y = arg maxy∈Ω2\Y u1(σX,Y
1 , y)

7: σX′,Y ′
= NE((X ∪ {x}, Y ∪ {y}), (u1, u2))

8: until u1(σX′,Y ′

1 , σX,Y
2 ) ≤ u1(σX,Y ) and

u2(σX,Y
1 , σX′,Y ′

2 ) ≤ u2(σX,Y )

9: return σX′,Y ′

of the restricted game matches the one in the original game,
since the best responses are computed over the unrestricted
set of all pure strategies (McMahan, Gordon, and Blum
2003). The algorithm returns an optimal strategy, but is not
monotone (in the upper and lower bounds on the game value
in each iteration), and might have to consider, in the worst
case, all pure strategies during its computation.

In the planning setting, pure strategies are not known in
advance. The (best) response computation accounts for gen-
erating an (optimal) plan against the current mixed strategy
of the other player (Rytı́ř, Chrpa, and Bošanský 2019). Note
that a plan is optimal if the expected cost of failing the goals
is minimal (we elaborate on this aspect later in the paper).

Case Studies
We present two domains as our case studies.

Resource Hunting Domain
We consider a two-player game introduced by Rytı́ř, Chrpa,
and Bošanský (2019), called Resource Hunting, where each
player controls its fleet of unmanned aerial vehicles (UAVs)
that tries to collect as many resources as possible. Each UAV
can move from one location to another. Each UAV can carry
at most two sensors. For each resource to be collected, one or
two (different) sensors are required. One or two UAVs can
collect an available resource if the UAV(s) are at the same
location as the resource and carry the required sensors.

Taxi Domain
We consider an on-demand transport scenario in which there
are two taxi companies competing for passengers who re-
quire to be transported from one location to another. When
one company picks up a passenger, she/he can no longer
be transported by the other company. The goal of each taxi
company is to maximise its rewards by transporting passen-
gers, at the expense of the competing taxi company. Each
taxi company operates a fleet of cars. Each car can carry at
most one passenger at time. The car can move between two

connected locations by the drive action, can load a passen-
ger into itself if both are at the same location, and can unload
the passenger if being in his/her destination location.

Resource-Competition Planning Task
In adversarial settings, agents might interfere with each
other while executing their plans. Such conflicts are usually
inevitable as “winning” the conflict might be essential for
achieving a certain (soft) goal. Picking up a passenger be-
fore the other agent does is a good example of “winning”
the conflict.

In general, we can define a planning task for 2-player
normal form games. Our definition is partially inspired by
the MA-STRIPS formalism (Brafman and Domshlak 2008)
used in Multi-agent planning. In contrast to MA-STRIPS,
we consider soft goals for each agent and simple durative
actions.

Definition 1. Let NP = (V,A1, A2, I, G1, G2) be a
2-Player Normal-form Game (2PNG) Planning Task,
where V is a set of variables,A1 andA2 such thatA1∩A2 =
∅ are sets of (durative) actions for the first and second agent
respectively, I is an initial state and G1 and G2 are sets of
soft goals for the first and second agent respectively.

To address the 2PNG planning task, each agent might gen-
erate its own plan by solving an underlying planning task,
where each agent uses only its actions to achieve its own
goals. Plans of both agents are executed simultaneously and
we will assume that plans of both agents start their execution
at the same time. Even though plans of individual agents are
fully applicable on their own, when both agents’ plans are
applied simultaneously, conflicts can arise (the agents com-
pete against each other).

In our execution model, in which plans of both agents
are applied simultaneously, actions which are inapplicable in
their scheduled timestamp and actions which interfere with
an already running action (of the other agent) in their sched-
uled timestamp are skipped and their effects thus do not take
place. If interfering actions are scheduled at the same time,
then one action is randomly selected by the “coin toss” (i.e.,
with an equal chance) to be applied while the other become
inapplicable. After plans of both agents are applied, the cost
of the plan for each agent is determined as the sum of costs
of soft goals the agent failed to achieve. The utility value for
each player is computed by subtracting the cost of the plan
from the sum of the costs of all player’s soft goals.

Facts, i.e., variable assignments, that are required by ac-
tions of one agent (or they are part of agent’s goals) can
be deleted by actions of the competing agent. We call such
facts conflicting. Specific conflicting facts that are initially
true but cannot be reachieved by either agent are called
critical facts (the notion is adopted from Chrpa, Rytı́ř, and
Horčı́k (2020)). Critical facts, in other words, can only be
consumed and hence account for limited resources (e.g.
waiting passengers).

Definition 2. LetNP = (V,A1, A2, I, G1, G2) be a 2PNG
planning task. We say that (v, val), where v ∈ V and val ∈
D(v), is a conflicting fact iffGi[v] = val or there exists a ∈
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Ai : pre(a)[v] = val and there exists a′ ∈ Aj : eff(a′)[v] =
val′ ∧ val 6= val′ with 1 ≤ i, j ≤ 2 and i 6= j.

We say that a conflicting fact (v, val) is a critical fact iff
I[v] = val and for each a ∈ A1 ∪A2 : eff(a)[v] 6= val.

Resource Competition planning tasks, as defined below,
are a subclass of 2PNG planning tasks in which all con-
flicting facts are critical facts. Conflicts between agents are
hence limited to critical facts, that is, which agent manages
to consume a particular critical fact earlier.
Definition 3. LetRP = (V,A1, A2, I, G1, G2) be a 2PNG
planning task. We say that RP is a Resource Competition
(RC) Planning Task iff each conflicting fact is a critical
fact.

Towards Solving RC Planning Tasks
RC planning tasks can be addressed by leveraging the
game-theoretical Double Oracle together with (domain-
independent) plan generation as initially proposed by Rytı́ř,
Chrpa, and Bošanský (2019). Essentially, selecting the (best)
pure strategy to respond the adversary current mixed strat-
egy (and vice versa), i.e., Lines 5 and 6 of Algorithm 1, is as-
sociated with a plan generation episode that aims at finding
a plan maximising the profit of the agent against the current
mixed strategy of the adversary. We refer to such plans as re-
sponse plans or best response plans if optimal. Note that in
this setting pure strategies are plans and they are not known
in advance (i.e., we do not know Ω1 and Ω2 up front).

How good the agent’s plan is depends, in a nutshell, how it
is successful in “conflicts” over critical facts with the adver-
sary. In the Taxi example, the agent’s goal is to deliver a pas-
senger into her destination. In order to do so, the agent has to
pick the passenger up at some point. However, the adversary
might have the same goal and wants to pick up the passenger
as well. The passenger who is waiting in her location of ori-
gin can therefore be understood as such a “conflict”. To win
the “conflict”, the agent has to pick up the passenger before
the adversary does.

In more general terms, the agent might need to apply cer-
tain critical actions requiring specific critical facts to be true
(e.g. picking up a waiting passenger into a car). The adver-
sary, on the other hand, can apply adversary actions that
delete these critical facts making them no longer achievable
(e.g. picking up the waiting passenger first). Hereinafter, we
present the terminology from the perspective of agent 1, i.e.,
agent 2 is considered as the adversary. Note that we adopted
the notions of critical and adversary actions from Chrpa,
Rytı́ř, and Horčı́k (2020).
Definition 4. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task and (v, val) be a critical fact. We say that
Ac(v, val) = {ac ∈ A1 | pre(ac)[v] = val} is a set of
critical actions over (v, val). We also define a set of ad-
versary actions over (v, val) as Aa(v, val) = {aa ∈ A2 |
eff(aa)[v] = val′, val 6= val′}.

Conceptually, the agent needs to apply its critical actions
before the adversary applies its adversary actions (as indi-
cated in the above example). Therefore, adversary actions
set deadlines for agent’s critical actions. Note that the def-
inition of a critical fact restricts on situations, where the

fact is present in the initial state and when deleted it can-
not be reachieved. Hence deadlines set by adversary actions
are “strict”, that is, missing the deadline means that critical
actions over the affected critical fact will no longer be appli-
cable.
Definition 5. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task and π′ = {(a′1, t′1), . . . , (a′m, t

′
m)} be a plan

of the adversary. Let F c be the set of critical facts andAc be
the set of all critical actions in RP (Ac =

⋃
f∈F c Ac(f)).

Then, for each ac ∈ Ac, we determine its deadline w.r.t π′
as dl(ac, π′) = min{t | (a′, t) ∈ π′, a′ ∈ Aa(f), ac ∈
Ac(f), f ∈ F c}.

As indicated above, deadlines set by adversary actions de-
termine whether corresponding critical actions can be suc-
cessfully applied. Assuming that the adversary follows a
mixed strategy (as in Double Oracle), that is, it selects a plan
from its set of plans according to a given probability, meet-
ing or missing the deadline is determined by the probability
that the adversary selects a plan with later or earlier occur-
rence of the corresponding adversary actions. Note that our
execution model gives a 50% chance of meeting the dead-
line if the critical and adversary actions are scheduled to be
applied at the same timestamp.
Definition 6. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task and Ac be the set of all critical actions. Let
σ = {(π′1, p′1), . . . , (π′n, p

′
n)} be a mixed strategy of the ad-

versary. For each ac ∈ Ac, we define a function succ rep-
resenting the probability of ac being successfully applied in
time t w.r.t σ as follows:

succ(ac, t, σ) =
∑
{p′ | t < dl(ac, π′), (π′, p′) ∈ σ}+

0.5 ·
∑
{p′ | t = dl(ac, π′), (π′, p′) ∈ σ}

The succ function can be leveraged for plan generation
such that probability of successful application of critical ac-
tions is propagated to actions depending on them (achieving
precondition atoms for them). Consequently, we can deter-
mine the probability of achieving particular (soft) goals and
thus the utility or the cost of the plan (hereinafter denoted as
cost(π, σ) for agent’s plan π and adversary’s mixed strategy
σ). An agent’s plan with the minimum cost (or the maxi-
mum utility) with respect to the adversary mixed strategy σ
is the agent’s best response plan against σ (Line 5 of Algo-
rithm 1) and is a part of agent’s best response to σ (Line 7
of Algorithm 1).

Note that for a subclass of RC planning tasks in which
at most one critical action is needed to achieve a particular
soft goal, the probability of failure of critical actions can be
directly reflected in their costs and hence cost-optimal plan-
ning can be leveraged for generating best response plans. For
details, see (Rytı́ř, Chrpa, and Bošanský 2019).

Critical Action Selection
The quality of response plans depends on what critical ac-
tions and in which order they are applied in these plans. For
example, in the Taxi domain, the agent has to decide which
car of its fleet will serve what passenger and in which or-
der. Such a decision, in consequence, affects the time when
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each of the passengers will be picked up and whether the
deadlines (for picking up the passengers) will be met or not.

Selecting and partially ordering critical actions prior re-
sponse plan generation can speed up the planning process as
the planner only needs to “fill the gaps” between the critical
actions and goals (Chrpa, Rytı́ř, and Horčı́k 2020). Here, we
formally conceptualise the idea by introducing the Critical
Action Selection (CAS) structure. We have to take into con-
sideration that interfering critical actions have to be ordered
(as they cannot be applied simultaneously) and that a sound
CAS structure allows a plan in which only the selected crit-
ical actions occur and they occur in the specified order.

Definition 7. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task andAc be the set of all critical actions. We say
that a couple (Ac,≺) is a Critical Action Selection (CAS)
for RP if Ac ⊆ Ac, ≺ is a partial order relation over Ac

such that for each ai, aj ∈ Ac (ai 6≡ aj) that interfere, it is
the case that either ai ≺ aj or aj ≺ ai. We also say that
a plan π1 for a planning task P = (V,A1, I, G1) follows
CAS (Ac,≺) if and only if π1 contains all critical actions
fromAc but none fromAc \Ac and for each a, a′ ∈ Ac such
that a ≺ a′ it is the case that a′ is applied later than a. If
such π1 exists, we say that (Ac,≺) is sound.

It can be observed that critical actions that are mutually
exclusive, that is, at most one of the actions can be present
in a plan, cannot be both in a sound CAS. For instance, criti-
cal actions that consume the same critical fact (e.g. different
cars picking up the same passenger) are mutually exclusive.

Estimating the Cost of CAS by Abstraction
Since a CAS forms a skeleton of a response plan, it is im-
portant to find a “good” CAS in order to be able to gen-
erate a good quality response plan. To estimate the cost of
a response plan, we need to estimate the cost of the CAS
the plan follows. To do so, we need to estimate applica-
tion times of the critical actions in the CAS. In contrast
to Chrpa, Rytı́ř, and Horčı́k (2020), who exploit a delete-
relaxation heuristic for estimating application times of ac-
tions, we present a method based on abstraction. The main
advantage of the abstraction-based approach is that we need
to take into consideration only “distances” between criti-
cal actions (i.e., how long after the former action finishes it
might take before the latter action becomes applicable). On
top of that, the “distances” have to be computed only once
and reused whenever needed.

To abstract the state space, we leverage the notion of
Domain Transition Graph (Jonsson and Bäckström 1998),
which is an atomic projection to a single variable, that we
adapt for our temporal settings.

Definition 8. Let P = (V,A, I,G) be a planning task. For
a variable v ∈ V , we define a Temporal Domain Transi-
tion Graph (T-DTG) as a weighted labelled directed graph
Gv = (D(v), Tv), whereD(v) is a set of vertices, Tv is a set
of weighted labelled edges. For all x, y ∈ D(v) and a ∈ A,
(x, a, y)w ∈ Tv iff eff(a)[v] = y and either pre(a)[v] = x
or v 6∈ vars(pre(a)) with w = 0 iff v 6∈ vars(pre(a)), or
w = dur(a) otherwise.

For each variable v ∈ V , we define dv : D(v)×D(v)→
N+

0 such that dv(x, y) represents the value of the shortest
path from x to y in the T-DTG Gv , measured by the sum of
weights of the edges in the path.

Furthermore (considering P = (V,A, I,G)), we define
ha, dist and time functions. Let ha : A×V →

⋃
v∈V D(v)

be a function which returns the value of the variable v ∈
vars(a) that will hold after a finishes its application:

ha(a, v) =eff (a)[v] iff v ∈ vars(eff (a))

ha(a, v) =pre(a)[v] iff v ∈ (vars(pre(a)) \ vars(eff (a)))

Inspired by the concept of hm heuristic (Haslum 2009),
we define a function dist : A∪{⊥}×A→ N+

0 representing
an estimated distance between actions, that is, after how long
since one action finishes the other action can start (note that
for independent actions the distance is 0), or an estimated
distance between an initial state and an action, that is, after
how long the action can start:

dist(⊥, a) = max{dv(I[v], pre(a)[v]) |
v ∈ vars(pre(a))}

dist(ai, aj) = max({0} ∪ {dv(ha(ai, v), pre(aj)[v]) |
v ∈ vars(ai) ∩ vars(pre(aj)})

Together with the notion of distance between two ac-
tions, we can estimate when each critical action in a given
CAS can be applied. For this purpose, we define a function
time(Ac,≺) : Ac → N+

0 over CAS (Ac,≺) as follows:

time(Ac,≺)(a) = dist(⊥, a) iff @a′ ∈ Ac : a′ ≺ a
time(Ac,≺)(a) = max{time(Ac,≺)(a′) + dur(a′) +

dist(a′, a) | a′ ∈ Ac, a′ ≺ a}

The claim of the following proposition follows from an
observation that dv provides a lower bound on the time
needed to change one value of v to another and since dist
considers the most “expensive” value change among the rel-
evant variables, time thus provides a lower bound of time of
critical action applicability.
Proposition 9. Let RP = (V,A1, A2, I, G1, G2) be a RC
planning task and (Ac,≺) be a CAS for RP . For each plan
π1 for a planning task P = (V,A1, I, G1) that follows
(Ac,≺), it is the case that for each a ∈ Ac it holds that
time(Ac,≺)(a) ≤ t where (a, t) ∈ π1.

With the time estimates for critical actions from a given
CAS (Ac,≺) we can estimate their chance for being suc-
cessfully applied with respect to a given adversary’s mixed
strategy σ as in Definition 6. For estimating the probability
of achievement for each of the soft goals, we leverage the
notion of a disjunctive action landmark (Hoffmann, Porte-
ous, and Sebastia 2004), a set of actions such that every plan
must contain at least one of the actions. We denote a disjunc-
tive action landmark as minimal if none of its proper subsets
is a disjunctive action landmark on its own. Also, we con-
sider only disjunctive action landmarks in which all actions
are critical actions. Let Lc

i denote a set of minimal disjunc-
tive action landmarks for a goal Gi that contain only critical
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Algorithm 2: Optimising CAS by simulated annealing
Require: CASX , Adversary strategy σ, Initial temperature

t, Constant K and Temperature decrease ε.
Ensure: Optimised CAS X .

1: while t > 0 do
2: X ′ ← SAMPLENEXTCAS(X)
3: ∆← cost(X ′, σ)− cost(X,σ)
4: if ∆ < 0 then
5: X ← X ′

6: else
7: X ← X ′ with probability exp (−∆/(t ∗K))
8: end if
9: t← (t− ε)

10: end while
11: return X

actions. Then, the probability of achieving Gi, is estimated
as follows:

ach(Gi, (A
c,≺), σ) =∏

Lc
i∈Lc

i

max({0} ∪ {succ(a, time(Ac,≺)(a), σ) | a ∈ Lc
i})

The success rate for each landmark is a maximum of the
probabilities of its critical actions being successfully applied
in (Ac,≺), or 0 if none of its critical actions is in (Ac,≺).
If sets of actions in Lc

i are not pairwise disjoint (i.e., some
disjunctive action landmarks overlap), we can modify the
expression by replacing “

∏
” by “min”.

It can be observed that the ach function overestimates the
probability of achieving the given goal as it optimistically
assumes that failure of some critical action does not affect
applicability of subsequent critical actions (so they might
become inapplicable despite meeting their deadlines).

LetRP = (V,A1, A2, I, G1, G2) be a RC planning task,
where G1 = {G1, . . . , Gn} is a set of soft goals, each Gi is
associated with a cost of failure Mi, and (Ac,≺) be a CAS
for RP . Then, the cost of (Ac,≺) with respect to a given
adversary’s mixed strategy σ is calculated as follows:

cost((Ac,≺), σ) =
n∑

i=1

Mi(1− ach(Gi, (A
c,≺), σ))

From Proposition 9, we can derive that the succ function
overestimates the probability of success of critical actions
as the estimation of their application time is optimistic. To-
gether with the observation that ach overestimates the prob-
ability of achieving the given goal, we derive the claim of
the following proposition.
Proposition 10. LetRP = (V,A1, A2, I, G1, G2) be a RC
planning task, (Ac,≺) be a CAS for RP and σ be adver-
sary’s mixed strategy. For each plan π1 for a planning task
P = (V,A1, I, G1) that follows (Ac,≺), it is the case that
cost((Ac,≺), σ) ≤ cost(π1, σ).

Generating CAS
Given the RC planning task and adversary’s mixed strat-
egy, we initially determine the set of all critical actions (see

Def. 4). Then, we identify mutex groups of critical actions,
that is, critical actions in a mutex group are pairwise mu-
tually exclusive. Mutual exclusivity of two actions is identi-
fied by checking whether one action “permanently” deletes a
precondition for the other one and the other way round (note
that this is an underapproximation as the problem in gen-
eral is intractable). For discovering disjunctive action land-
marks, we used the back-chaining method (Hoffmann, Por-
teous, and Sebastia 2004) (which is again an underapproxi-
mation).

Initially, we randomly select a critical action being part
of some disjunctive action landmark from each mutex group
and randomly order those actions that have to be ordered
(see Def. 7). Then, to find a good quality CAS (with as small
cost as possible) we use a local search algorithm, depicted in
Algorithm 2), leveraging simulated annealing (Kirkpatrick,
Gelatt, and Vecchi 1983) in a similar fashion as Chrpa, Rytı́ř,
and Horčı́k (2020). The SampleNextCAS function modifies
CAS X by either swapping two randomly chosen critical
actions ordered in X or replacing a randomly chosen criti-
cal action by another critical action that belongs to the same
mutex group (each modification occurs with uniform prob-
ability). Note that modifications causing the value of time
for some action to be infinity are discarded.

Response Planning by Task Decomposition
As mentioned before, a CAS provides guidance for planners
in form of what critical actions and in which order they have
to be applied. Centralised planning even with the support of
a CAS might still not scale very well.

We might however take advantage of structure of a sub-
class of RC planning tasks. If it is the case that the agent
in RC planning tasks controls multiple units (e.g. a fleet of
cars, or UAVs) that have only limited interaction, it might
be possible under the circumstances we will specify later to
plan for each unit individually as the CAS provides an es-
sential information what unit does what critical action (and
in which order). To give an example, we might observe that
in the Taxi domain we might plan for each car individually if
we know which passengers a particular car will serve (and in
which order). Individual cars do not interfere or interact with
each other as a sound CAS prevents situations in which more
than one car try to pick up the same passenger. Hence we
can observe that the union of plans for individual cars forms
a response plan. In the Resource Hunting domain, the only
difference is that UAVs might need to cooperate while col-
lecting resources. Here, individual UAVs interact with each
other only while performing critical actions. Hence, plans
for individual UAVs might share some critical actions whose
application times need to be synchronised, which is always
possible since there is not a cyclic dependency among criti-
cal actions (otherwise CAS would not be sound).

Formally speaking, let RP = (V,A1, A2, I, G1, G2) be
a RC planning task, (Ac,≺) be a CAS for RP and Ac be
the set of all critical actions. Without loss of generality we
assume that

⋃
a∈A1 vars(pre(a)) ⊆

⋃
a∈A1 vars(eff (a))1.

1Note that variables that cannot be modified by effects of any
action can be compiled away such that actions requiring a value

52



We can divide agent’s actions into subsets if the following
conditions holds:

(A1 \ Ac) ∪Ac = A1 ∪ · · · ∪ Ak, where

∀i 6= j : (Ai ∩Aj ⊆ Ac) and ∀a′ ∈ Ai, ∀a′′ ∈ Aj \Ai :

vars(eff (a′)) ∩ vars(pre(a′′)) = ∅
It can be seen that critical actions not selected in the CAS

are not part of any action set. The sets might overlap but only
in the selected critical actions (e.g. two or more units collect
a resource) as they have to be present in corresponding in-
dividual plans (to follow the CAS). Also, actions from one
set cannot modify a variable for an action in another set (un-
less it is a joint critical action). This condition ensures that
actions in individual plans will not interfere apart of joint
critical actions.

For a subclass of RC planning tasks in which the agent
controls a fleet of units we can divide agent’s actions into
sets corresponding to particular units and verify whether the
above conditions hold. The information about which action
controls which unit can be obtained from the task description
(in PDDL).

Individual-unit planning tasks following the above de-
composition of the set of actions can be constructed as fol-
lows. Let Pi = (Vi, A

′
i, Ii, Gi) be such an individual-unit

planning task over the set of actions Ai. The set of variables
Vi is determined as Vi =

⋃
a∈Ai

vars(eff (a)), i.e., Vi con-
tains only variables that actions from Ai modify. Actions
from Ai are modified such that their preconditions are pro-
jected to Vi, i.e., A′i = {a′ = (dur(a), [pre(a)|Vi], eff (a)) |
a ∈ Ai}. The initial state is projected to Vi, i.e., Ii =
[I|Vi]. The soft goals from G1 for which some of the
minimal disjunctive action landmarks (MDAL) contain ac-
tions from Ai are considered, i.e., Gi = {G′ | G′ ∈
G,L being a MDAL for G′, L ∩Ai 6= ∅}.

The ordering constraints between critical actions speci-
fied in the CAS can be enforced during the (individual unit)
plan generation by introducing special variables represent-
ing whether a corresponding critical action has been applied.
These special variables are initially false and each critical
action sets its special variable to be true. Also, each criti-
cal action requires the special variables of each of its direct
predecessors to be true. Note that for sake of clarity the or-
dering constraint enforcement is not considered in the above
representation of the individual-unit planning task.

After all individual-unit plans are generated, joint critical
actions might be scheduled on different times in different
plans. For each critical action that has to be “deconflicted”
we determine its new application time as the maximum of
the application times across all plans the action is present.
Consequently, the actions dependent on the rescheduled ac-
tion have to be rescheduled too (shifted by the same amount
of time). The critical actions are deconflicted according to≺
of the CAS.

It can be observed that the union of all individual plans
(after “deconflicting”) forms a plan that follows the CAS
if it is sound and hence the plan is a response plan. Since

of the variable other than initial can be removed as they will never
become applicable.

the method for generating CAS uses some underapproxima-
tions, in some cases, it might result in generating unsound
CAS (see Section “Generating CAS”). In such a case, we
might need to resort to the complete approach for generating
response plans (see Section “Towards Solving RC Planning
Tasks”).

We would like to note that for more complicated in-
teractions between units we might use multi-agent plan-
ning (Torreño et al. 2018) although it has been shown that
in case of “tight” interactions between the units centralised
planning is a better option (Brafman and Domshlak 2008).

Experimental Evaluation
The aim of our experimental evaluation is to demonstrate
that our approach combining the abstraction-based heuristic
for generating CAS and decentralised planning (DO ADP)
scales better than the state of the art while maintaining
reasonable quality of generated mixed strategies. In par-
ticular we compare DO ADP against the plain combina-
tion of planning and Double Oracle (DO) (Rytı́ř, Chrpa,
and Bošanský 2019), the delete-relaxation heuristic for
generating CAS as a guidance for centralised planning
(DO RCP) (Chrpa, Rytı́ř, and Horčı́k 2020) and to directly
compare the abstraction-based and relaxation-based heuris-
tics, we combine the delete-relaxation heuristic for generat-
ing CAS of Chrpa, Rytı́ř, and Horčı́k with our decentralised
planning approach (DO RDP).

For the evaluation, we used the two domains, we have de-
scribed earlier. Namely, we considered the Resource Hunt-
ing (RH) domain (Rytı́ř, Chrpa, and Bošanský 2019) and the
Taxi domain.

We specified the domains and problem instances in PDDL
2.1 (Fox and Long 2003) and used Temporal Fast Down-
ward (Eyerich, Mattmüller, and Röger 2009) to produce
grounded state-variable representation and to compute T-
DTGs. We used CPT4 (Vidal 2011), which is an opti-
mal temporal planner, for generating “single-unit” plans.
For centralised planning we encoded (best) response plan-
ning problem as Chrpa, Rytı́ř, and Horčı́k (2020) did and
used the same cost-optimal planner – the potential heuris-
tic (Pommerening et al. 2015) optimised by the diver-
sification method proposed by Seipp, Pommerening, and
Helmert (2015). The parameters for Algorithm 2 were set as
t = 150, K = 2.1 and ε = 0.005. The values of the param-
eters were determined experimentally on a small number of
problems. We have observed that a too small initial tempera-
ture (t) leads to worse quality results while a too large initial
temperature leads to higher runtime without improving the
quality. A similar observation can be made for a step (ε).
Setting it too large negatively affects solution quality while
setting it too small leads to larger runtime with a negligible
effect on quality. The experiments were run on a laptop with
8-core Intel Core i9 2.3GHz CPU with 16GB RAM2.

The running times for the considered methods are dis-
played in Figure 1, where we present the results for prob-
lems in which the number of resources is twice as much

2Source code and experimental data can be found at: https://
gitlab.com/FRASProject/socs22-distributed-adversarial-planning
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Figure 1: Running times of the considered methods for Resource Hunting problems (left) and Taxi problems (right). The number
of resources is twice as much as the number of units.

as the number of units. Missing data points point out prob-
lems in which a particular method failed to find a solution
either because we ran out of memory or the timeout was
reached (1800s for a planning episode). It can be seen that
centralised planning approaches (DO an DO RCP) do not
scale well as they could solve only very small problems.
DO RDP which combines delete-relaxation-based heuristic
for generating CAS (Chrpa, Rytı́ř, and Horčı́k 2020) with
our decentralised planning approach scaled better (up to 6
units in RH and 5 units in Taxi). The use of our abstraction-
based heuristic for generating CAS further improved the
scalability. Such a result highlights the fact that the delete-
relaxation-based heuristic has to analyse the whole prob-
lem to compute time estimates while the abstraction-based
heuristic needs to analyse only relevant part of the problem
and needs to compute the dist function for each pair of ac-
tions at most once.

In a nutshell, DO ADP consists of three components: pre-
processing (grounding, computing T-DTGs, landmarks etc.),
generating CAS and planning. In problems with up to 9
units, more than 80% of runtime is taken by the CAS com-
ponent. For larger problems, the runtime share of the plan-
ning and preprocessing components grows up to 70%. We
have observed that the main bottleneck preventing DO ADP
to scale more is the grounding part of the preprocessing. For
instance, it did not finish in several hours for RH problems
with more than 20 units. We also conducted additional ex-
periments that showed that DO ADP can scale up to 20 units
and 20 resources in RH and 14 units and 14 resources in
Taxi.

To determine quality of mixed strategies generated by
DO ADP we have used two measures – exploitability (the
difference of the best response plan against the strategy
and the equilibrium value) and “almost symmetrical” sce-
narios (where the expected utility value is close to 0.5 of
the game value). Exploitability could be calculated only
on very small problems (up to 3 or 2 units for RH or
Taxi, respectively). The average exploitability of the strate-
gies found by DO ADP was 0.13 and DO RCP was 0.15

(smaller is better). In almost symmetrical problems, the nor-
malised utility value of mixed strategies found by DO ADP
is 0.52± 0.05. Note that the standard deviation was slightly
higher in TAXI (0.06) than in RH (0.03). Hence, the results
show that DO ADP generates mixed strategies of reasonable
quality (close to equilibrium).

Conclusion
Resource-competition planning tasks represent a subclass of
adversarial planning tasks in which agents compete for lim-
ited resources. From the game-theoretical standpoint, RC
planning tasks fall under the umbrella of normal-form games
that can be solved by the Double-Oracle algorithm. The
(best) response in the context of RC planning tasks accounts
for generating a plan optimised against a mixed strategy
of the adversary. Besides formalising the concept in more
general way than presented in literature (Rytı́ř, Chrpa, and
Bošanský 2019; Chrpa, Rytı́ř, and Horčı́k 2020), we pro-
posed an abstraction-based heuristic for estimating when re-
sources can be collected and by what means which serves
as a guidance for plan generation. Also, we specified un-
der what conditions the task can be decomposed, which can
be straightforwardly done for RC planning tasks in which
the agent controls a fleet of units that can interact with
each other only in a limited fashion (in joint critical ac-
tions). Hence, a plan can be generated for each individual
unit and then the individual-unit plans are combined. The
results show that both our contributions play important role
in improving scalability of the approach while maintaining
a reasonable quality of generated mixed strategies.

Although our concepts are presented for the sake of clar-
ity for 2 agents (players), we believe that they can be
straightforwardly extended to n agents (players) that com-
pete against each other. The extension would involve adapt-
ing the Double Oracle algorithm, so the best responses are
generated for each agent, as well as our concepts of adver-
sary actions (where all the other agents’ actions have to be
considered) and the definition of the succ function (see Def-
inition 6), which would have to consider mixed strategies of
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all the other agents.
In future, we plan to investigate how the presented con-

cepts can be effectively used in online planning (e.g. along-
side MCTS), in which the agent would iteratively plan for
the “nearest” critical actions.
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