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Abstract

Breadth-first heuristic search (BFHS) is a classic algorithm
for optimally solving heuristic search and planning problems.
BFHS is slower than A* but requires less memory. However,
BFHS only works on unit-cost domains. We propose a new
algorithm that extends BFHS to domains with different edge
costs, which we call uniform-cost heuristic search (UCHS).
Experimental results show that the iterative-deepening ver-
sion of UCHS, IDUCHS, is slower than A* but requires less
memory on a variety of planning domains.

Introduction and Overview
A* (Hart, Nilsson, and Raphael 1968) is a classic heuristic
search algorithm used to solve search and planning prob-
lems. Many state-of-the-art optimal planners use A* as their
search algorithm (Katz et al. 2018; Franco et al. 2017, 2018;
Martinez et al. 2018). A* stores all generated nodes in either
the Open or Closed list, and never expands a state more than
once with consistent heuristics. Its main drawback is its ex-
ponential space requirement, and A* can run out of memory
in minutes on common search and planning problems.

To solve problems that A* cannot solve due to memory
limitations, various algorithms have been proposed. These
can be divided into two categories: depth-first algorithms
and frontier search. For example, Iterative-Deepening-A*
(IDA*, Korf 1985) is a depth-first algorithm that only stores
the nodes on the current search path. Thus, its space require-
ment is only linear in the maximum search depth. IDA*
cannot detect when the same state is arrived at via differ-
ent paths, and hence will generate duplicate nodes on prob-
lems with multiple paths between the same pair of nodes. To
address this issue, IDA* variants such as IDA* with a trans-
position table (IDA*+TT, Sen and Bagchi 1989; Reinefeld
and Marsland 1994) and A*+IDA* (Bu and Korf 2019) store
nodes up to some memory bound, and check for duplicates
among those stored nodes. However, these algorithms still
generate many duplicate nodes when the problem is large
enough that only a small fraction of the nodes can be stored
in memory (Zhou and Hansen 2004; Bu and Korf 2019).

The second category is frontier search (Korf et al. 2005),
which is a family of algorithms that only stores the search
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frontier in memory and removes expanded nodes whenever
possible. Unlike IDA*, frontier search algorithms detect du-
plicate nodes and are guaranteed not to expand a state more
than once on undirected graphs. One example of frontier
search is breadth-first heuristic search (BFHS, Zhou and
Hansen 2004), which stores fewer nodes than A* on a va-
riety of planning domains (Bu and Korf 2021). However,
BFHS only works on problems with unit-cost edges.

This paper introduces a new algorithm called uniform-
cost heuristic search (UCHS), which extends BFHS to do-
mains with arbitrary non-negative edge costs. First, we re-
view BFHS and related algorithms. Second, we describe
UCHS, and prove that it never expands a state more than
once on undirected graphs. Third, we discuss combin-
ing UCHS with iterative-deepening (IDUCHS). Fourth, we
compare A* and IDUCHS on International Planning Com-
petition (IPC) domains with non-unit edge costs. Experi-
mental results show that IDUCHS is slower than A*, but
requires less memory than A*, sometimes by more than an
order-of-magnitude, on a variety of planning domains.

Previous Work
Divide-and-Conquer Frontier-A* (DCFA*, Korf and Zhang
2000) is a frontier search algorithm based on A*. The differ-
ence between A* and DCFA* is that DCFA* stores the en-
tire Open list and only a few layers of the Closed list, which
can be done by deleting a parent node after expanding all its
child nodes. Compared to A*, DCFA* saves a large amount
of memory when the Closed list is significantly larger than
the Open list. On the other hand, little memory is saved on
problems where the Open list is much larger than the Closed
list, which is often the case for exponential problems.

Breadth-First Frontier Search (BFFS, Korf 2004) is the
breadth-first version of frontier search, and applies to unit-
cost domains. BFFS deletes all closed nodes at depth d after
expanding all nodes at depth d+1. For each stored node
n, we define its delete g-value, dg(n), as the minimum g-
value such that once all nodes with g-value of dg(n) or less
have been expanded, then node n can be safely deleted from
memory. For BFFS, dg(n) is simply one level greater than
the depth of n.

dg(n) = g(n) + 1 (1)
For example, if a node n is at depth 6, or g(n)=6, then n is
deleted after BFFS expands all nodes at depth 7.
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Figure 1: An example of BFHS with a cost bound of 6. f -
values are at the left of nodes. Closed nodes are gray. Deleted
nodes are dotted. dg is the delete g-value.

Breadth-first heuristic search (BFHS, Zhou and Hansen
2004) is another frontier search algorithm that works on
unit-cost domains, and uses less memory than A*. It is
BFFS with heuristics to prune nodes. BFHS requires a user-
specified cost bound U , and prunes every generated node
whose f -value is greater than U .

We present an example of BFHS with U =6 on an undi-
rected graph in Figure 1, where all edge costs are 1, the num-
bers next to the nodes are their f -values, Closed nodes are
gray, and deleted nodes are dotted. The start node S gener-
ates nodes A, B, and C. f(B) = 7 > U = 6 so B is imme-
diately deleted, while A and C are stored at depth 1. Next,
BFHS expands the Open nodes at depth 1. A generates S,
D, and E. S is a duplicate node, while D and E are stored
at depth 2. C generates S, E, and F. S and E are duplicate
nodes, while F is stored at depth 2. Although dg(S)=1, S is
not deleted since it is the start node. Then BFHS expands the
Open nodes at depth 2. D generates A and H. A is a dupli-
cate node, while H is immediately deleted since f(H)>U . E
generates A, C, I, and J. A and C are duplicate nodes, while I
and J are stored at depth 3. F generates C and K. C is a dupli-
cate node, while K is immediately deleted since f(K)>U .
After all Open nodes at depth 2 are expanded, BFHS deletes
the nodes at depth 1, A and C, which have dg-values of 2,
since they cannot be generated again. BFHS then expands
the Open nodes at depth 3 and continues until it finds a goal
node, or proves that no solution exists within U .

BFHS searches for solutions within a given cost bound.
If the bound is smaller than the optimal solution cost C∗, it
may never generate a goal node. If the bound is too large,
it may generate many nodes n for which f(n)>C∗. C∗ is
rarely known in advance. Zhou and Hansen (2004) proposed
BFIDA*, which runs a series of iterations of BFHS with in-
creasing cost bounds. The first cost bound is the heuristic
value of the start node, and the last bound is C∗.

When BFIDA* finds a goal node, the optimal cost is
known, but not the solution path, since most Closed nodes
have been deleted. To reconstruct the solution path, BFIDA*
saves a middle layer of nodes during the search and never
delete this layer. For example, BFIDA* can use the nodes
stored at depth U/2 as the middle layer and every node be-
low this depth will have a pointer to its ancestor in the mid-
dle layer. When BFIDA* generates a goal node, it knows
which node in the middle layer led to this goal node. Then
BFHS can be called to reconstruct the optimal path from the

start node to the middle node, and from the middle node to
the goal node (Zhou and Hansen 2004).

BFIDA* can generate more nodes than A* since it gener-
ates and expands almost all nodes n for which f(n) = C∗,
due to its breadth-first node ordering. A*+BFHS (Bu and
Korf 2021) overcomes this issue by first running A* up to
a user-specified storage threshold, then runs multiple itera-
tions of BFHS on the Open nodes of A*. Each call to BFHS
in A*+BFHS starts with the Open nodes at one or more
depths instead of a single node. In general, A*+BFHS is
faster than BFIDA* and uses less memory, but A*+BFHS
is also limited to unit-cost domains.

Dijkstra’s single-source shortest path algorithm (Dijkstra
1959) generalizes breadth-first search (BFS) to the case of
non-uniform edge costs. The version that terminates when a
goal node is chosen for expansion is usually called Uniform-
Cost Search (UCS), despite the fact that it deals with non-
uniform edge costs. This terminology comes from the fact
that the nodes on Open tend to have uniform g-values.

The graph search version of Iterative Budgeted Exponen-
tial Search (IBES, Helmert et al. 2019) utilizes UCS to mini-
mize the worst-case number of node expansions on domains
with various edge costs and inconsistent heuristics. How-
ever, IBES does not remove Closed nodes from memory so
it is not directly comparable to our new algorithm.

Uniform-Cost Heuristic Search
We first describe Uniform-Cost Frontier Search (UCFS), a
brute-force algorithm that extends BFFS to the case of non-
unit edge costs.

Uniform-Cost Frontier Search
The difference between UCFS and UCS is that UCFS
deletes a node after all its child nodes have been expanded,
similar to the difference between BFFS and BFS. This pre-
vents a parent node from being re-expanded. Suppose p is a
parent node, and Φ = {ni|i = 0, 1, 2...} are its children. In
UCFS, the delete g-value of node p, dg(p), is the maximum
of the g-values of its children.

dg(p) = max
ni∈Φ

g(ni) (2)

For example, if p has two children with g-values of 5 and 6,
then p can be deleted after expanding all nodes with g=6.

UCFS works as follows. It first expands the start node and
puts all child nodes on Open. The Open list is kept sorted by
the g-values of the nodes. After all nodes on Open whose
g-value is 0 are expanded, in the case of zero-cost edges, as-
sume the next smallest g-value on Open is 3. UCFS deletes
the expanded nodes whose dg-value is less than 3. Next, it
expands all nodes on Open whose g-value is 3. It continues
expanding and deleting nodes until it finds a goal node on
an optimal path. On unit-cost domains, BFFS can terminate
when a goal node is generated. On domains with non-unit
edge costs, however a node may be generated with a g-value
greater than its minimal g∗-value. Therefore, UCFS only ter-
minates when a goal node is chosen for expansion.

Figure 2 presents an example of UCFS on an undirected
graph, where numbers in parentheses are edge costs. First
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Figure 2: An example of UCFS. Numbers in parentheses are
edge costs. Closed nodes are gray. Deleted nodes are dotted.
dg is the delete g-value.

the start node S is expanded, generating nodes A, B, and C.
g(A) = g(C) = 1 and g(B) = 2. dg(S) = 2, the maximum
g-value of A, B, and C. Next, A generates nodes S, D, and
E. S is a duplicate node. D and E are stored in memory with
g(D)=1 and g(E)=3, thus dg(A)=3. D generates nodes A
and F. A is a duplicate node while g(F)=2, hence dg(D)=2.
Then C generates nodes S, E, and H. S and E are duplicate
nodes. Since g(E) = 3 and g(H) = 2, dg(C) = 3. At this
point, all Open nodes with g=1 have been expanded. Since
no node has a dg ≤ 1, UCFS expands nodes at g = 2. B
only generates one node which is S, thus dg(B) = 0, and B
can be deleted immediately. F generates D, I, and J. D is a
duplicate node while g(I) = g(J) = 3, thus dg(F) = 3. Then
H generates C and K. C is a duplicate node and g(K) = 2,
hence dg(H) = 2. K generates H and L. H is a duplicate
node, g(L) = 3, and dg(K) = 3. After expanding all Open
nodes with g = 2, nodes D and H are deleted, as they have
dg-values of 2. S cannot be deleted since it is the start node.

A key difference between BFFS and UCFS is the order of
deleting nodes. In BFFS, nodes at depth d are always deleted
before nodes at depth d+1. In UCFS, however, a node m
with a larger g-value may be deleted before a node n with a
smaller g-value, if any of n’s children have a higher g-value.
A child node may even be deleted before its parent node.
For example, in Figure 2, H is removed at dg=2, while H’s
parent node C will be removed later at dg=3.

Uniform-Cost Heuristic Search
We now extend UCFS by adding heuristics and a cost bound
U , allowing us to prune nodes whose f -values exceed U .
We call the resulting algorithm uniform-cost heuristic search
(UCHS). UCHS generalizes BFHS to handle non-unit edge
costs. UCHS is to UCFS as BFHS is to BFFS, while UCFS
is to UCS as BFFS is to BFS.

We present UCHS in Algorithm 1, where Openk and
Closedk are Open and Closed nodes whose g-value is k.
UCHS first expands the start node and adds to Open its child
nodes n for which f(n)≤U . If a node n is generated with
f(n) > U , it is immediately deleted. The Open list is kept
sorted by the g-values of the nodes. After all nodes on Open
whose g-value is d are expanded, assume the next smallest
g-value on Open is d′. UCHS deletes the expanded nodes for
which dg <d′. It then expands all nodes on Open whose g-
value is d′. It continues until it finds a goal node, and verifies

Algorithm 1: Uniform-Cost Heuristic Search

1: g(start)← 0
2: Open0 ← {start}
3: d← 0
4: while d ≤ U do
5: for p ∈ Opend do
6: if p is goal then
7: return d
8: dg(p)← 0
9: for n ∈ children(p) do

10: /* Check duplicates against all stored nodes. */
11: if n ∈ Openk or n ∈ Closedk then
12: /* New path to n is not cheaper than old path. */
13: if g(n) ≥ k then
14: dg(p)← max(k, dg(p))
15: continue
16: else
17: Openk ← Openk\n
18: dg(p)← max(g(n), dg(p))
19: if f(n) ≤ U then
20: Openg(n) ← Openg(n) ∪ n
21: /* All nodes whose g-value is d are expanded. */
22: Closedd ← Opend
23: Opend ← ∅
24: /* g-value of the next node to expand. */
25: d′ ← min{k|Openk ̸= ∅}
26: for n ∈ Closed do
27: if dg(n) < d′ then
28: /* Delete Closed node n from memory. */
29: Closed← Closed \n
30: d← d′

31: return∞

that no cheaper path to a goal exists.
To show how UCHS works, we run it on the same undi-

rected graph from Figure 2. We present the result in Figure
3, where the numbers next to the nodes are their f -values.
Assume UCHS is called with U=8.5. S generates nodes A,
B, and C. f(A) = f(C) < U , so they are stored. g(B) = 2
and f(B)=9>U , B is deleted, but we still consider B when
calculating dg(S), which is 2. Next, A generates S, D, and
E. S is a duplicate node, D and E are stored with g(D) = 1,
g(E) = 3, and dg(A) = 3. D generates A and F. A is a du-
plicate node, F is deleted since f(F) > U , and dg(D) = 2.
C generates S, E, and H. S and E are duplicate nodes, while
H is stored, and dg(C) = 3. At this point, all Open nodes
with g = 1 have been expanded. UCHS continues expand-
ing nodes as there are no nodes to be deleted. H generates C
and K. C is a duplicate node, but K is stored with g(K)=2,
and dg(H) = 2. K then generates H and L. H is a duplicate
node, g(L) = 3, and dg(K) = 3. After expanding all Open
nodes with g = 2, nodes D and H are deleted, as they have
dg-values of 2. S cannot be deleted since it is the start node.

Similar to UCFS, in UCHS, a node stored at a larger g-
value may be deleted before a node stored at a smaller g-
value, or a child node may be deleted before its parent.

The definition of dg in Equation 2 is simple and intu-
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Figure 3: An example of UCHS with a cost bound of 8.5.
Numbers in parentheses are edge costs and numbers next to
nodes are f -values. Closed nodes are gray. Deleted nodes
are dotted. dg is the delete g-value.

itive, but on undirected graphs, it results in UCHS stor-
ing nodes for longer than it needs to. For example, D is
only removed after expanding all nodes with g = 2 since
g(F) = 2, even though F is not stored. This suggests that
when calculating dg(p), we just ignore any of p’s child nodes
n for which f(n) > U . This choice looks tempting but
it can lead to a node being re-expanded. If we used this
strategy, then dg(D) = 1. In our example, D is expanded
before C. Suppose the problem in Figure 3 changes such
that C can also generate F with an edge cost of 0.5, thus
g(F) = 1.5, f(F) = 1.5+ 7 = 8.5 = U , and F will be
stored. UCHS would have deleted D prior to expand F, since
dg(D) = 1. F would then generate D again with g(D) = 2.5
and f(D)=2.5+6=8.5=U . As a result, D will be treated
as a new node and will be stored and expanded again.

This shows that we have to consider all child nodes while
calculating the dg-values, but we can actually delete D ear-
lier. For D to be generated by F in UCHS, F must be stored
and expanded. Given U = 8.5, the largest g(F) that would
allow F to be stored is U−h(F) = 8.5−7= 1.5. Therefore,
if we remove D after expanding all nodes up to g=1.5, then
we are guaranteed that D will not be generated again by F,
as F cannot be in Open when g(F)>1.5.

Another case to consider is when to delete K. dg(K) = 3
due to g(L)=3. Since c(K,L), the cost of the edge between
K and L, is 1, when L generates K, we will have g(K) =
g(L)+1=3+1=4 and f(K)=g(K)+h(K)=4+5=9>U=
8.5, which means this new copy of K will be deleted. This
suggests that instead of deleting K after expanding all nodes
with g=3, we can delete K before expanding any node with
g = 3. To calculate dg(K), in addition to the value of g(L),
we also consider U − c(K,L)−h(K) = 8.5−1−5 = 2.5.
This means that if L is stored with g(L)≤ 2.5, then during
the expansion of L, K will be generated with f(K)=g(L)+
c(K,L)+h(K)≤2.5+1+5=8.5=U . In other words, if L is
expanded with g(L)>2.5, then the new copy of K generated
by L will have f(K) > U , and will be deleted. Therefore,
UCHS can use dg(K) = 2.5, and K will be deleted before
UCHS expands any nodes with g=3.

Taking the above examples into consideration, we pro-
pose a new definition of dg . Suppose U is the cost bound,
p is a parent node, Φ = {ni|i = 0, 1, 2...} are the children
of p, and ci is the cost of the edge between p and ni. Then

dg(p) can be defined as follows:

dg(p)=max
ni∈Φ

{
min{g(ni), U−h(ni), U−ci−h(p)}

}
(3)

Theorem 1. UCHS using Equation 3 is guaranteed not to
expand a state more than once on undirected graphs.

Proof. We consider f(ni) of a newly generated node ni.
Case 1: f(ni) ≤ U . ni is stored and g(ni) ≤ U−h(ni),

therefore we only need to compare g(ni) with U−ci−h(p).
(a): g(ni)≤U−ci−h(p). When UCHS expands ni, p is

still in memory, so the new copy of p will be deleted.
(b): g(ni) > U − ci − h(p). UCHS may delete p be-

fore expanding ni. However, p will only be deleted after
expanding all nodes at g = U − ci− h(p). Thus, even if
ni is expanded at g(ni) > U − ci − h(p), we still have
f(p)=g(ni)+ci+h(p)>U−ci−h(p)+ci+h(p)=U . There-
fore, this new copy of p will be immediately deleted. It is
possible that after the expansion of p, ni is generated again
with a smaller g-value, but the above analysis still holds.

Case 2: f(ni)>U . Since g(ni)>U−h(ni), we only need
to consider U−h(ni) and U−ci−h(p).

(a): U−h(ni)≤U−ci−h(p). p will not be deleted before
expanding all nodes up to g=U−h(ni), the largest value of
g(ni) such that ni is stored and expanded. Therefore, if ni is
ever expanded, for example via a different and cheaper path,
it must be expanded before p is removed.

(b): U−h(ni)>U−ci−h(p). The analysis is similar to
Case 1 (b) and is omitted here.

On directed graphs, the above analysis and the guaran-
tee that no state will be expanded more than once no longer
holds, and p may be expanded multiple times. The reason
is that a node we have not seen yet can regenerate node
p. However, this is the price we have to pay as frontier
search algorithms in general cannot prevent expanded nodes
from being re-generated and re-expanded on directed graphs
(Korf et al. 2005; Zhou and Hansen 2004).

Iterative-Deepening UCHS (IDUCHS)
UCHS requires a user-specified cost bound, but the opti-
mal solution cost C∗ is rarely known in advance. There-
fore, we add iterative-deepening to UCHS, which we call
IDUCHS. IDUCHS generalizes BFIDA* to domains with
non-unit edge costs. On unit-cost domains, BFIDA* usually
increases the cost bound by one with each successive itera-
tion. This strategy does not work well on domains with non-
unit edge costs, however, as there may be too many iterations
with very few new nodes expanded in each iteration.

On domains with non-unit edge costs, IDA* (Korf 1985)
has the same problem, as it uses the smallest f -value among
the nodes generated but not expanded on the previous it-
eration as the cost bound of the next iteration. IDA* CR
(Sarkar et al. 1991) addresses this issue by using a larger
cost bound increment between iterations. During each itera-
tion, it counts the number of nodes generated at each f -value
greater than the current cost bound. After each iteration, it
decides how many new nodes to expand in the next itera-
tion, say m. It then determines an f -value that will result in
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at least m new nodes being expanded in the next iteration,
and uses that as the cost bound for the next iteration.

The same idea can also be applied to UCHS on domains
with non-unit edge costs. We call the resulting algorithm
UCHS CR, but it did not work well, for several reasons.
First, UCHS CR uses duplicate detection while IDA* CR
does not. As a result, UCHS CR is not guaranteed to ex-
pand m new nodes in the next iteration. Second, on planning
domains, doubling the number of expanded nodes does not
guarantee that the number of generated nodes will also be
doubled. Third, sometimes the number of nodes generated
but not expanded is lower than the desired m-value, making
it difficult to choose the next cost bound.

Korf, Reid, and Edelkamp (2001) showed that compared
to brute-force search, the effect of heuristic functions in
IDA* is to reduce the search depth instead of reducing the
branching factor. They accurately predicted the performance
of IDA* on sliding-tile puzzles and Rubik’s Cube. Inspired
by their work, we propose a new way to calculate the cost
bounds for IDUCHS on domains with non-unit edge costs.
Let fk be the cost bound of iteration k and Nk be the num-
ber of nodes generated in iteration k. We define a pseudo
branching factor b by the equation bfk−fk−1 = Nk/Nk−1.
Note that b is not the brute-force branching factor of the
problem domain, but tends to remain constant between it-
erations. Suppose we want r = Nk+1/Nk, where r is a
user-specified ratio of the generated nodes between itera-
tions. Then we have bfk+1−fk = r. Taking the logarithm of
both sides, we get (fk − fk−1) ln b = ln (Nk/Nk−1) and
(fk+1−fk) ln b=ln r. Combining both equations, we get

ln (Nk/Nk−1)

(fk − fk−1)
= ln b =

ln r

fk+1 − fk

(lnNk − lnNk−1)(fk+1 − fk) = (fk − fk−1) ln r

and finally

fk+1 =
(fk − fk−1) ln r

lnNk − lnNk−1
+ fk (4)

Thus, given the cost bounds and the numbers of generated
nodes of the previous two iterations, and the desired ratio
of generated nodes between iterations, we can calculate an
estimated cost bound for the next iteration. This equation
does not precisely model the generated nodes in IDUCHS,
but is an efficient way to calculate successive cost bounds.

The above equation cannot be used to calculate the second
iteration’s cost bound. In the first iteration, we calculate the
average g-value (avg(g)) and depth (avg(d)) of all gener-
ated nodes, and increase the cost bound of the first iteration
by avg(g)

avg(d) to get the second cost bound.
IDUCHS works on all domains with non-negative edge

costs, including unit-cost domains, and hence subsumes
BFIDA*. IDUCHS is admissible and complete on both di-
rected and undirected graphs when using admissible heuris-
tics. Given a cost bound U ≥ C∗, where C∗ is the optimal
solution cost, there always exists a node n on Open such that
n is on an optimal path, and hence reached via its minimal
g-value. Furthermore, on undirected graphs, a single itera-
tion of IDUCHS is guaranteed to never expand a state more
than once when using the dg-value defined in Equation 3.

Solution Reconstruction
Similar to BFIDA*, when IDUCHS stops, it only has the so-
lution cost, and additional searches are needed to reconstruct
the actual solution path. Instead of calling BFHS recursively,
we (2021) used two A* searches to compute the solution
path from the start node to the middle node, and from the
middle node to the goal node in BFIDA*. This is because
heuristic functions such as the iPDB heuristic (Culberson
and Schaeffer 1998; Haslum et al. 2007) are pre-computed
before the search starts, and only return estimates of the cost
to the original goal node. Thus, we do not have a heuristic
to estimate the cost to a middle node. We also use two A*
searches to reconstruct the solution path in IDUCHS.

To compute the solution path from the middle node to the
original goal node, we use A* with the original heuristic
function. Computing the solution path from the start node
to the middle node is more complex, as we do not have
a heuristic estimate to the middle node. For this task, in
BFIDA*, we (2021) used A* with the heuristic to the origi-
nal goal node, but we modified A* so that any node whose
g-value exceeds that of the middle node, or whose f -value
exceeds the original problem’s C∗-value, is pruned. For
IDUCHS, we similarly pruned nodes n for which f(n)>C∗

or g(n) > g(middle). To accommodate zero-cost edges, a
node n for which g(n)=g(middle) is not pruned.

In BFIDA*, we (2021) saved the nodes at depth U/4 as
the middle layer when U is the current iteration cost bound.
This is because the layer at depth U/2 is usually larger than
that of U/4. For IDUCHS, we save as the middle layer the
Open nodes that exist at the point when all nodes up to
g = U/4 have been expanded. Therefore the middle layer
contains nodes with various g-values.

Experimental Results and Analysis
We implemented IDUCHS in the planner Fast Downward
20.06 (Helmert 2006). We used the original code for node
expansions and heuristic functions. The original hash map
in Fast Downward does not support removing a stored node,
so we modified the hash map to allow this. Whenever a node
was removed from the hash map, we stored the next new
node into the resulting vacant slot. Therefore, we used a sin-
gle hash map to store all nodes. The nodes in the middle
layer used for solution reconstruction were not deleted.

We have solved about 300 problem instances from 19 In-
ternational Planning Competition (IPC) domains with non-
unit edge costs. These domains fall into three categories.
First, binary domains, where the edge costs are either 0 or
1. Second, positive domains, where the edge costs are pos-
itive integers. Third, integer domains, where the edge costs
are positive integer or 0. We are most interested in solving
hard problems, so we present the results of the 20 hardest
problem instances we solved from 11 domains. The remain-
ing 280 problem instances were easily solved, usually within
a few seconds. All experiments were run on a machine with
a 3.33 GHz Xeon X5680 CPU and 236 GB of RAM.

We did not test IDUCHS on unit-cost domains, where
IDUCHS will perform similarly to BFIDA*. A*+BFHS is
the state-of-the-art algorithm for unit-cost domains when A*
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Last Peak Stored Nodes & RAM in GB Total Nodes Time (s)
Instance C∗ Bound A* IDUCHS A* UCHS (C∗) IDUCHS A* IDUCHS

elevators08 16* 87 88 53,943,052 (3.1) 3,379,185 (0.2) 151,476,407 177,867,354 410,304,955 131 337
transport11 09* 313 319 56,090,444 (3.1) 5,656,701 (0.4) 177,076,746 187,555,930 551,348,016 166 496
transport11 15* 1,079 1,086 81,297,837 (3.5) 8,577,209 (0.7) 237,858,963 244,074,950 587,047,357 238 593

data-network18 06 107 110 54,856,222 (3.2) 22,677,495 (1.4) 451,733,882 1,491,433,606 3,486,933,470 242 3,646
transport14 08* 1,173 1,338 62,784,307 (2.9) 13,200,288 (0.9) 396,833,140 397,501,043 1,325,938,181 248 1,375
sokoban08 28 43 46 42,280,857 (1.8) 19,696,951 (1.4) 104,786,508 287,762,405 938,253,805 275 2,566
spider18 18 27 27 32,956,806 (3.5) 14,725,684 (1.8) 35,247,917 197,343,317 245,024,146 313 1,859
ged14 8-9 6 5 138,961,033 (6.4) 51,194,955 (3.6) 155,044,171 333,194,875 176,316,713 332 231

transport11 08* 322 322 128,705,840 (6.0) 8,051,402 (0.4) 387,834,091 412,873,224 884,718,548 346 801
spider18 13 39 39 22,425,296 (3.0) 11,237,994 (1.7) 24,212,999 90,945,206 136,020,346 386 1,998

woodworking08 27 350 357 147,870,490 (7.4) 11,904,397 (0.7) 339,097,806 861,630,216 2,069,219,635 459 3,832
barman11 02-005 121 132 120,520,775 (6.1) 68,296,332 (5.5) 521,644,317 2,608,774,309 7,918,031,472 544 15,723
transport14 09* 966 996 127,472,989 (5.9) 37,110,556 (2.6) 741,922,587 747,591,228 2,308,571,006 549 2,327
agricola18 02 878 935 118,891,472 (6.7) 47,721,893 (2.9) 494,412,749 512,747,517 1,288,107,521 617 3,087
agricola18 03 788 793 152,528,391 (7.5) 112,549,403 (7.5) 706,797,822 823,748,774 2,287,807,416 790 5,617
agricola18 01 786 811 165,044,134 (7.9) 80,711,867 (5.5) 748,674,870 862,715,079 1,870,507,373 801 4,170

elevators08 29* 101 102 510,125,709 (2 4) 39,385,742 (2.6) 1,585,443,774 1,978,650,724 4,915,391,696 1,404 4,477
agricola18 05 979 980 262,635,603 (1 3) 79,632,741 (5.7) 1,184,932,854 1,398,771,125 3,238,751,246 1,533 8,788

elevators08 19* 112 115 765,075,247 (3 0) 114,952,004 (6.7) 2,159,252,861 2,571,563,855 8,409,534,183 2,140 7,957
floortile11 05-009 76 76 55,090,801 (2.9) 5,458,652 (0.3) 117,955,924 186,575,430 370,354,510 5,332 47,932

Table 1: Peak stored nodes, total generated nodes, and running time of A* and IDUCHS on domains with non-unit edge costs.
Instances sorted by A* running time. Numbers in parentheses are memory usage in GB. An underline means more than 8 GB
of memory was needed. Undirected graphs are marked with *.

fails due to memory limitations (Bu and Korf 2021). We
did not test IDA* and A*+IDA*, which were shown to be
orders-of-magnitude slower than BFIDA* and A*+BFHS
due to many more duplicate nodes being generated (Zhou
and Hansen 2004; Bu and Korf 2021).

sokoban08 and spider18 are binary domains. data-
network18, elevators08, and ged14 are integer domains.
The rest are positive domains. elevators08, transport11,
and transport14 are undirected graphs, while the other
8 domains are directed graphs. We tested three different
heuristic functions and picked the best one for each do-
main: the iPDB heuristic with the default configuration in
Fast Downward (Haslum et al. 2007; Sievers, Ortlieb, and
Helmert 2012), the merge-and-shrink heuristic (M&S) with
the recommended configuration in Fast Downward (Siev-
ers, Wehrle, and Helmert 2014, 2016; Sievers 2018), and
the landmark-cut heuristic (LM-cut, Helmert and Domshlak
2009). We used LM-cut for floortile11, M&S for agricola18,
barman11, and woodworking08, and iPDB for the rest.

We present the results of A* and IDUCHS in Table 1. We
used Equation 3 to calculate the dg-values and r=2 in Equa-
tion 4 to calculate the cost bounds of IDUCHS. The first col-
umn is the problem instance. The second column is the opti-
mal solution cost C∗ and the third column is the cost bound
of IDUCHS’s last iteration. The fourth and fifth columns are
the peak numbers of stored nodes in A* and IDUCHS. The
numbers in parentheses are the peak memory usage in GB
reported by Fast Downward. The sixth column is the total
nodes generated by A*. The seventh column is the number
of nodes generated in a single iteration of UCHS with the
cost bound equal to C∗, excluding the nodes generated in so-

lution reconstruction. The eighth column is the total number
of nodes generated by IDUCHS, including the nodes gener-
ated in solution reconstruction. The last two columns are the
running time of A* and IDUCHS, including solution recon-
struction in IDUCHS but excluding the time spent on build-
ing the heuristic function. Problem instances from the three
undirected graph domains are marked with *. An underline
means that more than 8 GB of memory was needed.

We found that using U/4 for the g-cost of the middle layer
was not very practical, as the A* search from the middle
node to the original goal node could be relatively expensive.
Instead, we dynamically set the depth of the middle layer.
In each iteration of IDUCHS, we checked if the size of the
middle layer was less than 1% of the peak stored nodes for
that iteration. If so, we then increased the g-value threshold
for the middle layer by U/10 in the next iteration, with U/2
as the upper bound. The number of nodes generated during
solution reconstruction was usually around 1% of the total
nodes generated in IDUCHS, and never more than 10%.

A* vs. IDUCHS
IDUCHS required less memory than A* on 19 out of these
20 problem instances, sometimes significantly less, while
A* was faster than IDUCHS. IDUCHS reduced the peak
number of stored nodes by up to an order of magnitude over
A* on the elevators08, floortile11, transport11, and wood-
working08 domains, by a factor of about 4 on transport14,
and by a factor of around 2 on the other 6 domains. On the
other hand, IDUCHS always generated more nodes than A*,
and sometimes significantly more. As a result, IDUCHS was
slower than A* on 19 out of these 20 problem instances.
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Figure 4: A* vs. IDUCHS in memory and time.

We present the memory and time comparisons in Figure 4,
where the x-axis is A*’s peak stored nodes over IDUCHS’s,
and the y-axis is IDUCHS’s running time over A*’s. Each
red circle represents one problem instance in Table 1. The
points below the y=x line represent problems for which the
memory reduction ratio of IDUCHS over A* is higher than
the increased running time ratio, while the points above the
line represent the problems with the opposite property.

Comparing the memory usage in GB, the memory reduc-
tion ratio is usually less than the peak stored nodes reduc-
tion ratio for two reasons. First, the memory usage in GB
includes memory used by the planner itself and the heuristic
functions. On some problem instances, the heuristic func-
tion took up to 1 GB of memory. Second, our implementa-
tion was not optimized for memory, compared to the original
A* implementation in Fast Downward. In our code, we used
several C++ STL vectors, whose memory usage grows
multiplicatively by a factor of 2. Optimizing memory usage
of our code is a future work. Furthermore, a state’s heuris-
tic value is computed only once in A* no matter how many
times the state is generated. In IDUCHS, the heuristic value
of a state can be calculated more than once if that state is
generated but then deleted. Therefore, the running time ratio
of IDUCHS over A* is different from the total nodes ratio.

We compared IDUCHS using Equations 2 and 3 for com-
puting the dg-values. Using Equation 2 stored around 60%
more nodes on elevators08, 30% more nodes on floortile11
05-009, 40% to 90% more nodes on transport11, and 50%
more nodes on woodworking08 27. In contrast, using Equa-
tion 2 generated 60% fewer nodes than Equation 3 on data-
network18 06 while storing 8% more nodes.

When the cost bound equals or exceeds the optimal so-
lution cost C∗, the order in which nodes are generated can
significantly impact the time of this final iteration, depend-
ing on how soon an optimal solution is found. This is called
node ordering. BFIDA* in general has very poor node or-
dering, since its breadth-first search order usually generates
almost all nodes in the final iteration. As a result, on unit-
cost domains, the number of nodes generated by a single
call to BFHS with a cost bound C∗ is usually significantly
larger than that of A*. However, the situation is different on
domains with non-unit edge costs. In Table 1, we see UCHS
(C∗) generated a similar number of nodes to A* on many
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Figure 5: Comparisons of IDUCHS’s last iteration.

problem instances, including all instances from the three
undirected graph domains. In fact, the only domains where
UCHS (C∗) generated significantly more nodes than A* due
to node ordering are ged14, spider18, and woodworking08.
This is because nodes generated on domains with non-unit
edge costs usually have many more different f -values than
that of unit-cost domains. For example, there are hundreds
of different f -values on the two transport domains, which
is very rare in unit-cost domains. As a result, on domains
with non-unit edge costs, when the cost bound of IDUCHS
is increased by one, usually only a few new nodes will be ex-
panded. Thus, the almost-worst node ordering of IDUCHS
is not a serious drawback on these problems.

On undirected graphs, frontier search can avoid leaking
back into the interior of the search space, and re-expanding
nodes that have already been expanded. This cannot be done
in general with directed graphs, since there is nothing to pre-
vent the generation of a node in the interior of the search.
As a result, on the directed-graph domains barman11, data-
network18, and sokoban08, UCHS (C∗) generated many
more nodes than A*. To reduce the number of node re-
expansions on directed graphs, we modified IDUCHS to
increase the dg-value of each node by U/5, where U was
the cost bound. For example, if a node n originally had
dg(n) = 50 according to Equation 3 and U = 100, then we
increased dg(n) to 50+100/5=70. Compared to IDUCHS
with Equation 3, IDUCHS with this new dg formula stored
around 15% more nodes on barman11 02-005 and data-
network18 06, but reduced the total generated nodes by 78%
and 61% respectively. On sokoban08 28, IDUCHS with this
new dg formula also pruned most duplicate nodes, but did
not save memory compared to A* due to the last iteration
being larger than A*.

Cost Bounds in IDUCHS
Table 1 shows the cost bound of the last iteration of
IDUCHS. These bounds were calculated by Equation 4. The
last cost bound was usually greater than C∗, with an excep-
tion on ged14 8-9, where the last cost bound was C∗−1.
This is because IDUCHS generated a goal node during that
iteration, thus avoiding an iteration with cost bound C∗.

To analyze our cost-bound equation, we present the last it-
eration analysis in Figure 5, where the x-axis is the number
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of nodes generated in IDUCHS’s last iteration divided by
that of UCHS (C∗), the y-axis is the number of nodes gen-
erated in IDUCHS’s last iteration divided by that of all iter-
ations, and each green triangle corresponds to one problem
instance in Table 1. With r=2 for Equation 4, we expected
to see all data points having y≈50% and x≤2.

From Figure 5, we see that the number of nodes gener-
ated in the last iteration of IDUCHS was within a factor of
two of the nodes generated in UCHS (C∗) on all 20 problem
instances. The number of nodes generated in the last iter-
ation of IDUCHS was around 50% of the nodes generated
in all IDUCHS iterations on most problem instances. This
percentage is higher for some problem instances. For exam-
ple, ged14 8-9 had y = 91% and spider18 13 and 18 had
y = 70% and y = 81% respectively. This is because those
instances have a small number of unique f -values, and the
cost bound difference between iterations was just one, as in
unit-cost domains. As a result, a generated nodes ratio of two
between iterations was not possible, as one is the minimum
cost bound increment. On the other hand, transport14 08
had a percentage of 32%. This is because compared to the
penultimate iteration, not many new nodes were generated
in the last iteration, despite the large cost bound. In short,
Figure 5 and the above analysis show that Equation 4 was
very accurate in calculating the cost bounds of IDUCHS on
domains where each iteration is not much larger than its pre-
vious iteration, when using a cost bound increment of one.

A*+UCHS
Inspired by A*+BFHS (Bu and Korf 2021), we implemented
A*+UCHS, a hybrid algorithm combining A* and UCHS.
A*+UCHS first runs A* up to a user-specified memory
threshold, then runs a series of UCHS iterations on the Open
nodes of A*. A*+UCHS uses Equation 4 to calculate the
cost bounds in the UCHS phase. Similar to (Bu and Korf
2021), we first generated the heuristics, then allocated 1/10
of the remaining 8 GB of memory for the A* phase.

Figure 6 shows the comparison between IDUCHS and
A*+UCHS. The x-axis is IDUCHS’s peak stored nodes di-
vided by A*+UCHS’s, the y-axis is IDUCHS’s time di-
vided by A*+UCHS’s, and each yellow square represents
one problem instance in Table 1. In Figure 6, the data points
to the right of the x = 1 line represent problem instances
where A*+UCHS used less memory than IDUCHS, while
the data points above the y = 1 line represent problem in-
stances where A*+UCHS was faster than IDUCHS.

Little speedup was achieved when switching from
IDUCHS to A*+UCHS on domains with non-unit edge
costs. A*+UCHS was faster than IDUCHS by a factor of
at least two on only three of the 20 problem instances in
Table 1. The speedups of A*+BFHS over BFIDA* mainly
come from A*+BFHS terminating early in the last iteration,
as A*+BFHS can immediately stop when a goal node is gen-
erated. However, on domains with non-unit edge costs, cost
bounds usually increase by more than one in A*+UCHS’s
UCHS phase. Thus, when A*+UCHS finds a goal node, it
usually cannot stop but has to continue searching to ver-
ify that the solution is optimal. Therefore, early termina-
tion is usually not possible in A*+UCHS, with the excep-
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Figure 6: IDUCHS vs. A*+UCHS in memory and time.

tion of problem instances where the cost bounds between
iterations increase by one. It is worth noting that on the
easy non-unit cost problem instances which can be solved in
A*+UCHS’s A* phase, A*+UCHS is faster than IDUCHS
but IDUCHS also quickly solves the easy problem instances.
On unit-cost domains, however, A*+UCHS behaves simi-
larly to A*+BFHS, and hence is faster than IDUCHS.

Future Work
First, test IDUCHS on more problem instances. Second, re-
fine Equation 4 to achieve more accurate results in calcu-
lating the cost bounds. For example, we may take the pre-
vious three or more iterations into consideration. The third
is to explore adjusting the dg-values automatically to reduce
the duplicate nodes of IDUCHS on directed graphs. For ex-
ample, at the beginning of IDUCHS, we can make a few
calls to UCHS, each with the same cost bound but a different
dg-value adjustment to find out if the problem is a directed
graph and whether the dg-value adjustment works. Finally,
we can optimize the code to reduce the memory usage.

Conclusions
We propose uniform-cost heuristic search (UCHS) and its
iterative-deepening version IDUCHS, for optimally solving
heuristic search and planning problems. Unlike breadth-first
heuristic search, which only works on unit-cost domains,
UCHS works on domains with arbitrary non-negative edge
costs. UCHS is a uniform-cost frontier search that uses a
heuristic evaluation function to prune nodes. UCHS is guar-
anteed not to expand a state more than once on undirected
graphs. On directed graphs, UCHS can re-expand nodes,
but we show how to adjust UCHS to avoid many such re-
expansions. We also propose a new way to calculate the cost
bounds of IDUCHS iterations. We have solved around 300
problem instances from 19 planning domains with non-unit
edge costs, and presented the results of the hardest 20 prob-
lem instances. Experimental results show that IDUCHS is
slower than A*, but requires less memory than A*, some-
times significantly, on a variety of planning domains. In
practice, when faced with a new problem, A* can be run
first. If A* cannot solve the problem within the available
memory, then IDUCHS can be run.
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