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Abstract

Planning problems are usually modeled using lifted repre-
sentations, they specify predicates and action schemas us-
ing variables over a finite universe of objects. However, cur-
rent planning systems like Fast Downward need a grounded
(propositional) input model. The process of grounding might
result in an exponential blowup of the model size. This limits
the application of grounded planning systems in practical ap-
plications. Recent work introduced an efficient planning sys-
tem for lifted heuristic search, but the work on lifted heuris-
tics is still limited. In this extended abstract, we introduce
a novel lifted heuristic based on landmarks, which we extract
from the lifted problem representation. Preliminary results on
a benchmark set specialized to lifted planning show that there
are domains where our approach finds enough landmarks to
guide the search more effective than the heuristics available.

Introduction
The standard in planning is heuristic search (Hoffmann
and Nebel 2001; Helmert and Domshlak 2009; Richter and
Westphal 2010; Seipp 2019). But it relies on transform-
ing the lifted input descriptions, which describe actions and
predicates in a parameterized form using variables ranging
over a finite universe of objects, into a grounded task rep-
resentation. A drawback of this approach is that the size of
the grounded task representation may – in the worst case –
grow exponentially with regard to action and predicate arity.
But in many real world problems both can be quite large and
the problems therefore quickly become infeasible to solve
using grounded representations (see e. g. (Hoffmann et al.
2006; Koller and Hoffmann 2010; Koller and Petrick 2011;
Haslum 2011; Matloob and Soutchanski 2016)). Lifted plan-
ning does not rely on a grounded task representation and in-
stead works directly on the lifted planning models. While
this is not a new concept (Penberthy and Weld 1992; Russell
and Norvig 1995; Younes and Simmons 2003), lifted plan-
ning was only lately combined with heuristic search plan-
ning.

An effective lifted forward search planning mechanism,
the Power Lifted Planner (PWL) has recently been devel-
oped by Corrêa et al. (2020). It avoids the use of a com-
pletely grounded representation and instead only grounds
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actions on demand during search by using techniques as
used in database queries. Since the computation of heuristics
is usually based on a grounded representation, the question
remains how they can be transferred into the lifted setting.
As a first heuristic, PWL uses goal counting. Lifted heuris-
tics from the literature are based on delete relaxation, using
symmetries to reduce the blow-up (Ridder and Fox 2014),
exploiting a link to database technology (Corrêa et al. 2021),
or splitting predicates into smaller predicates with a fixed ar-
ity (Lauer et al. 2021).

We present a novel approach based on landmarks. Land-
marks are facts that need to be fulfilled at some point in
the plan (Hoffmann, Porteous, and Sebastia 2004). They are
computed before search and can be used to estimate the
distance to the goal. Landmarks form the basis for a wide
range of heuristics and have been exploited in many differ-
ent ways (Karpas and Domshlak 2009; Helmert and Domsh-
lak 2009; Richter and Westphal 2010). They are a good fit
for lifted planning, since the computational overhead of gen-
erating the landmarks only occurs once before the search.
We adapted a known method of computing landmarks (Hoff-
mann, Porteous, and Sebastia 2004) to the lifted setting by
grounding actions and predicates only partially. The result-
ing heuristic dominates goal-counting, while being cheaper
to compute than delete relaxation, thereby forming a solid
middle ground between the two. Our preliminary experi-
ments show that this middle ground can be useful.

Lifted Landmarks
In this work we only consider fact landmarks (Hoffmann,
Porteous, and Sebastia 2004). In a ground setting, a fact p is
a landmark for a given planning problem Π if and only if for
every solution π for Π, π traverses a state s with p ∈ s.

Deciding whether a fact is a landmark is a computation-
ally hard task. In ground classical planning, it is PSPACE-
complete. Therefore techniques used in practice use suffi-
cient criteria to (under-)approximate the set of landmarks in
polynomial time (usually under delete-relaxation).

Heuristics often use ordering relations between landmarks
to improve heuristic values. These are defined as follows.
Let p and q be two landmarks.

• p is ordered directly before q, written p →D q, if a state
where p is made true is preceded by a state where q holds.
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• p is ordered reasonable before q, written p→R q, if mak-
ing q true before p makes it necessary to delete and re-
achieve p later on.

Based on these definitions from grounded planning, we
define lifted landmarks as follows.

Definition 1 (Lifted Landmarks) A partially grounded
predicate P(u1 , . . . , uk ) is a lifted landmark for a given
planning problem Π if and only if there is a ground instance
that is a landmark for Π.

This forms a compact and easy to extract definition of a
special case of disjunctive landmarks (Hoffmann, Porteous,
and Sebastia 2004; Helmert and Domshlak 2009), which
might also be useful in grounded planning.

Consider e. g. a simple transport domain where a package
pa must be in some truck to be carried to its destination.
Though we might not know which truck is used, we know
that the predicate in(pa, vt) is a landmark, where vt is a
variable of type truck.

Landmark Extraction
We realized a lifted extraction of necessary subgoals (Hoff-
mann, Porteous, and Sebastia 2004). Landmarks are thereby
extracted via a backchaining procedure, starting from the
goal condition:

• Every fact contained in the goal condition is a landmark.

• Given a landmark p, let Ap be the set of all actions with
p in the add effect. We then determine the intersection of
the preconditions of all actions in Ap. Since p has to be
added by one of the actions, an atom q contained in the
intersection of their preconditions is also a landmark.

This process is continued until no new landmarks are found.
We use the same mechanism to generate lifted landmarks.

We start with the goal condition from the problem defini-
tion, which induces a set of lifted landmarks P(u1 , . . . , uk ).
Since the goal condition is usually defined fully grounded,
these initial landmarks are fully instantiated predicates.

Given a lifted landmark P(u1 , . . . , uk ) and the set of
lifted actions with P in the add effects, we partially ground
the actions to match the objects in the landmark.

Next we consider the resulting partially grounded actions
and intersect the predicates contained in their preconditions.
Let Q(v11, . . . , vm1), . . . , Q(v1n, . . . , vmn) be these pre-
conditions. We introduce a landmark Q(w1, . . . , wn) with

wi :=

{
o wij = o for all j
xi otherwise

where the xi are arbitrary variables. We continue the process
as in the grounded algorithm.

Besides the actual landmarks, the extraction process also
generates →D ordering relations between them (in the
grounded as well as in the lifted case). The combination of
these ordering relations and standard notions of interference
can be used to extract →R ordering relations (Hoffmann,
Porteous, and Sebastia 2004). We have implemented the
method described by Koehler and Hoffmann (2000), which
is cheaper to compute in the lifted setting.

Landmark Heuristics
Based on our lifted landmarks, we implemented a heuristic
similar to the one used by the LAMA system (Richter and
Westphal 2010) in grounded planning and integrated it into
the PWL planning system (Corrêa et al. 2020).

The basic idea is to count unfulfilled landmarks. However,
the heuristic values can be improved by taking the ordering
relations into account. Due to the lifted setting, we have to
replace the simple contains test, which usually checks if a
landmark is contained in the given state, by a test that checks
whether there is an instantiation of the landmark contained
in the current state.

Discussion
We ran a preliminary evaluation on the benchmark sets used
in recent papers on lifted planning (Corrêa et al. 2020; Lauer
et al. 2021). We compared our system against blind breadth-
first search as well as greedy best first search in combination
with goal counting and the lifted delete relaxation heuristic
hLadd introduced by Corrêa et al. (2021). All heuristics are
implemented in PWL. We also ran the grounded system Fast
Downward (FD) (Helmert 2006) with the goal counting and
hFF (Hoffmann and Nebel 2001) heuristics.

As expected, FD performs well when grounding is fea-
sible, but this is only the case on a few instances. When
we compare our configurations, it can be seen that our sys-
tem benefits from using the ordering relations on top of the
landmarks. Compared to the lifted implementation of goal
counting, our heuristic comes with some overhead, but it
yields significant gains in domains where the approach is
able to extract enough landmarks (currently this is the case
in the blocks and the rovers domains). hLadd performs best
in combination with preferred operators. This configuration
performs well across most domains. It shows its worst per-
formance in the blocks domain, which is known to be diffi-
cult for delete relaxation heuristics, and in the ged domain.

Apart from the necessary subgoals method, we experi-
mented with the landmark extraction introduced by Keyder,
Richter, and Helmert (2010). It represents a delete-relaxed
planning problem as an AND/OR graph and extracts land-
marks from this graph. It is complete for a certain type of
landmarks. We implemented the approach using on demand
grounding and ran the process in a depth-first manner to
avoid keeping the entire model in memory. However, so far,
the approach is still not competitive on the used benchmarks.

To conclude, it can be seen from our early results that
landmarks are a promising source of information for lifted
heuristic search. However, more work has to be done in land-
mark extraction and – as shown by the performance of the
respective hLadd configuration – the derivation of preferred
operators to fully exploit their potential.
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porace, F.; and Trüg, S. 2006. Engineering Benchmarks for
Planning: the Domains Used in the Deterministic Part of
IPC-4. Journal of Artificial Intelligence Research 26: 453–
541.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research 22: 215–278.

Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Plan-
ning with Landmarks. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’09),
1728–1733. Morgan Kaufmann.

Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for And/Or Graphs. In Proceedings
of the 19th European Conference on Artificial Intelligence
(ECAI’10), 335–340. IOS Press.

Koehler, J.; and Hoffmann, J. 2000. On Reasonable and
Forced Goal Orderings and their Use in an Agenda-driven
Planning Algorithm. Journal of Artificial Intelligence Re-
search 12: 338–386.

Koller, A.; and Hoffmann, J. 2010. Waking Up a Sleep-
ing Rabbit: On Natural-Language Sentence Generation with
FF. In Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 238–241.
AAAI Press.

Koller, A.; and Petrick, R. 2011. Experiences with Planning
for Natural Language Generation. Computational Intelli-
gence 27(1): 23–40.
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