Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

Speeding Up Heuristic Function Synthesis via Extending the Formula Grammar

Sergio Poo Hernandez, Vadim Bulitko

Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada
{pooherna, bulitko} @ualberta.ca

Abstract

Heuristic search algorithms have long been used in video-
game Al for unit navigation and planning. The quality of the
solution they produce depends substantially on the quality of
the heuristic function they use. Recent work automatically
synthesized human-readable heuristic functions for a given
pathfinding map. This enables tailoring a heuristic to the map
but is expensive since each map requires an independent syn-
thesis run. In this paper we propose and evaluate re-using el-
ements of heuristics synthesized for one map in synthesizing
heuristics for another map. We do so by adding parts of a syn-
thesized heuristic back to the grammar that defines the space
of heuristic functions for the synthesis.

Introduction & Problem Formulation

Performance of heuristic search algorithms depends sub-
stantially on accuracy of the heuristic functions they are used
with. In particular, real-time heuristic search agents tend to
repeatedly revisit states when their heuristic function is mis-
leading. This behaviour, known as scrubbing (Sturtevant and
Bulitko 2016), hinders applicability of real-time heuristic
search (RTHS) in video games — a domain which otherwise
would be a great fit to real-time search. Indeed, RTHS algo-
rithms such as LRTA* (Korf 1990) with standard heuristics
tend to produce solution paths much longer than necessary.
In this paper we extend a recent line of research which
represented heuristics as algebraic formulae and then gener-
ated (or synthesized) them automatically for a given video-
game map (Bulitko 2020). We show how the synthesis pro-
cess can be sped up by automatically forming building
blocks in the formula space. We do so by extending the
grammar defining the space of the heuristic formulae with
elements derived from synthesis runs. Empirical evaluation
shows that the extended grammar is beneficial on a novel set
of video-game maps, not seen during the extension process.

Related Work

Memory-based heuristics have been developed for video
game pathfinding (Bjornsson and Halldérsson 2006; Sturte-
vant et al. 2009). Such approaches pre-compute a high-
performance heuristic for a specific map. The resulting data

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

233

structure has a substantial memory footprint and is generally
not portable (i.e., cannot be used on another map).

More recent work by Bulitko (2020) automatically syn-
thesized heuristics in the form of human-readable arithmetic
formulae. While the memory footprint is negligible, the re-
sulting formulae were found to be map specific thus lack-
ing portability to other maps. Running formula synthesis
for each map is expensive, in part because each synthesis
starts from scratch, potentially re-discovering the same use-
ful building blocks for the formulae.

Our Approach

In this paper we extend the automatic formulae synthesis
by Bulitko (2020) as follows. We retain their representation
of heuristic functions for RTHS as algebraic formulae. Each
formula is compact, has a negligible memory footprint and
human-readable. It defines the initial heuristic function for
an LRTA*-like algorithm in pathfinding on grid maps. For
each map the synthesis process searches the space of for-
mulae induced by a context-free grammar and returns a for-
mula which captures information about the map and guides
real-time heuristic search effectively. Thus the performance
measure being optimized is the average suboptimality of so-
Iutions produced by a fixed RTHS algorithm guided by a
synthesized heuristic.

The space of formulae defined by the grammar is large
thereby making such per-map synthesis process computa-
tionally expensive. In this paper we attempt to re-use re-
sults of synthesis across different maps. We do so by de-
composing formulae synthesized on one map into subformu-
lae and adding them to the grammar. The extended grammar
then defines a new space of formulae which now incorpo-
rates elements of previously synthesized solutions without
having to re-discover them from scratch.

The idea is similar in spirit to classical work on solu-
tion abstraction and re-use (Laird, Rosenbloom, and Newell
1986; Sutton, Precup, and Singh 1999; Botea et al. 2005)
but is used for formula-based heuristic synthesis in real-time
heuristic search for the first time.

We synthesize the best formula for an initial set of maps

using the following baseline grammar :

F — T|U|B

T — m|o|ynly|dz|Ay|C

C = 1]2]...16

U — VF||F||-F|F?

B - F+F|F—F|F><F|%|max{F,F}|min{F,F}

Here xo,ys are goal coordinates on the grid map, =1,y
are coordinates of the state whose heuristic value is being
computed and Ax = |21 — 29| and Ay = |y1 — ya|-

After synthesizing a formula for each map using a prob-
lem set, we consider all possible subformulae that comprise
the formula tree of each map. Each of the subformulae is
then evaluated on another set of pathfinding problems. If
the resulting path suboptimality is within a user-specified
range of the initial formula’s suboptimality the subformula
is added to the grammar as a new terminal symbol under 7.
We do not consider terminal nodes (7" in the grammar) as
subformulae.

As an illustration, suppose the following heuristic
function for map is synthesized using the baseline gram-

mar: — (—\/min {Ay + Az, \\/gﬁ|}) This formula is
then added to the grammar along with its subformulae:

—\/min {Ay + Az, |\/372|}, \/min{Ay + Az, |\/y72\},
min { Ay + Az, |/y2|}. Ay + Az, |\ /y2], /72

Synthesizing a heuristic function with the extended gram-
mar on a different map can then yield a new formula

v/3 - (Ay + Az) which includes the new element Ay + Ax

in the grammar.

Empirical Evaluation

The common video-game map repository (Sturtevant 2012)
contains maps of different size and vastly different search
complexity. To control search complexity we procedurally
generated 20, 50 x 50-grid-cell maps using genetic algo-
rithms. Each map was evolved to be complex enough that
LRTA* with Manhattan distance had an average solution
suboptimality of at least 25 (i.e., produced solutions 25 times
longer than optimal on average).

We used ten of such maps for grammar extension. To syn-
thesize the formulae we used a set of all possible problems
generated by combining three starts and three goals on the
maps for a total of nine problems. To evaluate the synthe-
sized formulae we used the problem set generated from se-
lecting 10 sets of starts and goals from the same maps. For
the grammar extension, once the formula for each map was
synthesized we broke it down into all possible subformulae
and evaluated each on the map used to generate them. If a
subformula suboptimality did not exceed the suboptimality
of the host formula by more than 10% we added the subfor-
mula to the grammar.

We then synthesized the formulae for the remaing ten
maps. We ran synthesis with the baseline grammar and with
the extended gramar. We ran three independent trials of the
synthesis process and plotted average solution suboptimality

234

3sf 7 30
30
25
=25 B
© ™
é _é 20 baseline grammar
g20p 2 -~ — — extended grammar
g 1 2
@ L 2]
15 15
L~
N Al
108 108 107
Agent moves Time (sec)
300 300
250 250
200 200
> b >
g 1 3
3
é 150 “ _é 150 baseline grammar
g | g - — — — extended grammar
g ! g
@ 100 ; © 100
]
I
1
t
o Ly

108 1010

Agent moves

Time (sec)

Figure 1: Top: experiments on 50 x 50 evolved maps. Bottom: ex-
periments on video-game maps. Both sets plot solution suboptimal-
ity as a function of synthesis progression expressed in agent moves
(left column) and wall-clock time (right column). The pink line
is the solution suboptimality with the standard human-designed
heuristic: Manhattan distance.

over all trials and all maps in Figure 1, top. Better heuristics
are synthesized over time, resulting in lower suboptimality.
However, the improvement is more substantial with the ex-
tended grammar than with the baseline grammar.

It is not surprising that adding subformulae synthesized
for a set of maps to the grammar accelerates the synthesis
process. In our next experiment we investigated if the ex-
tended grammar can accelerate synthesis on a substantially
different class of maps. To do so we used the grammar ex-
tended with formulae synthesized for 50 x 50 evolved maps
on larger, human-designed video-game maps from Dragon
Age: Origins (DAO) (Sturtevant 2012). The bottom graphs
in Figure 1 suggests that the extended grammar is indeed
portable and facilitates a faster synthesis on a novel set of
maps.

Conclusions

This work extended the recent line of research on automati-
cally synthesizing heuristic functions for real-time heuristic
search as compact, human-readable algebraic formulae. The
synthesis process conducts a search in the space of formulae
defined by a context-free grammar. In this paper we demon-
strated how adding high-performing synthesized formulae
and their parts back to the grammar accelerated subsequent
synthesis even when used on novel maps.

References

Bjornsson, Y.; and Halldérsson, K. 2006. Improved Heuris-
tics for Optimal Path-finding on Game Maps. In Proceed-
ings of Artificial Intelligence and Interactive Digital Enter-
tainment Conference, 9—14.

Botea, A.; Enzenberger, M.; Miiller, M.; and Schaeffer, J.
2005. Macro-FF: Improving Al planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24: 581-621.

Bulitko, V. 2020. Evolving Initial Heuristic Functions for
Agent-Centered Heuristic Search. In Proceedings of IEEE
Conference on Games, 534-541.

Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2-3): 189-211.

Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986.
Chunking in Soar: The anatomy of a general learning mech-
anism. Machine Learning 1(1): 11-46.

Sturtevant, N.; and Bulitko, V. 2016. Scrubbing During
Learning In Real-time Heuristic Search. Journal of Artifi-
cial Intelligence Research 57: 307-343.

Sturtevant, N. R. 2012. Benchmarks for Grid-Based
Pathfinding. Transactions on Computational Intelligence
and Al in Games 4(2): 144 — 148.

Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-Based Heuristics for Explicit State
Spaces. In Proceedings of International Joint Conference on
Artificial Intelligence, 609-614.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2): 181-211.

235

