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Abstract

We show that enforcing shift patterns significantly reduces
the cost to construct grids without monochromatic rectangles.
Additionally, we prove that all valid 3-colorings of a 10 by 10
grid are isomorphic.

Introduction
Ramsey Theory (Graham and Rothschild 1990) deals with
patterns that cannot be avoided indefinitely. In this paper we
focus on a pattern of coloring a n by m grid with k colors:
Consider all possible rectangles within the grid whose length
and width are at least 2. Try to color the grid using k colors
so that no such rectangle has the same color for its four cor-
ners. When this is possible, we say that the n by m grid is
k-colorable while avoiding monochromatic rectangles.

Many results regarding this problem have been derived by
pure combinatorial approach: for example, a generalization
of Van der Waerden’s Theorem can give an upper bound; it
was shown (Fenner et al. 2010) that for each prime power
k, a k2 + k by k2 grid is k-colorable but adding a row
makes it not k-colorable. However, these results are unable
to decide many grid sizes: whether an 18 by 18 grid is 4-
colorable is an example. This grid had been the last missing
piece of the question of 4-colorability, and a challenge prize
was raised to close the gap (Hayes 2009). Three years later,
a valid 4-coloring of that grid was found by encoding the
problem into propositional logic and applying SAT-solving
techniques (Steinbach and Posthoff 2012). That solution has
highly symmetric color assignments by construction: assign-
ments of red are obtained by rotating the assignments of
white around the center by 90 degrees, blue by 180 degrees,
and so on. By now, the k-colorability has been decided for
k ∈ {2, 3, 4} for all grids.

Therefore, it is natural to ask, what about 5 colors? Apply-
ing the aforementioned theorem (Fenner et al. 2010), the 25
by 30 grid is 5-colorable, but for other grids such as 26 by 26
the problem remains open. Like many combinatorial search
problems, the rectangle-free grid coloring problem is char-
acterized by enormous search space and rich symmetries.
Symmetry breaking is a common technique to trim down the
search space while preserving satisfiability. While breaking
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symmetries between different solutions is definitely helpful,
breaking the so-called “internal symmetries” that is within a
specific solution has also been proved to be effective (Heule
and Walsh 2010). Enforcing observed patterns is also known
as “streamlining” (Gomes and Sellmann 2004) and “reso-
lution tunnels” (Kouril and Franco 2005) and has been ef-
fective to improve lower bounds of various combinatorial
problems including Van der Waerden numbers (Kouril and
Franco 2005; Heule 2017), Latin squares (Gomes and Sell-
mann 2004), and graceful graphs (Heule and Walsh 2010).

However, the rotation internal symmetry that Steinbach
and Posthoff applied cannot translate to 5 colors. In finding
a 4-coloring of the 18 by 18 grid, Steinbach and Posthoff
generated a “cyclic reusable assignment” for one color, and
rotated the solution by 90, 180, and 270 degrees to assign to
the remaining three. Rotation by 90 degrees does not apply
naturally when the number of colors are not multiples of 4.

Thus, to find a 5-coloring of 26 by 26, or rather, to find
a valid coloring for any number of colors k in general, an
internal symmetry that is applicable to all k is very desirable.
We found a novel internal symmetry that is unrestricted by
the number of colors k. Further analysis on this symmetry
gives further constraints on the number of occurrences of
each color. Factoring in these constraints, the search time for
G24,24 and G25,25 can be reduced to a few minutes. We also
attempted to solve the 26 by 26 grid; many attempts came
down to only 2 or 3 unsatisfied clauses, but none succeeded.

The complete version of this article can be found at
https://arxiv.org/abs/2012.12582.

Classifying Colorings of Smaller Grids
We consider classifying colorings of simpler grids to be a
good starting point that enables us to gain insight into how
many “essentially different” solutions there are. As an ex-
ample, we will analyze G4,4 and G10,10, the maximal 2-
colorable and 3-colorable squares.

For square grids Gn,n and number of colors k, there are
3 kinds of symmetries that transform a valid coloring to an-
other: (i) permutation of colors (ii) permutation of rows or
columns (iii) transposition, i.e. a flip along the diagonal. We
define symmetries by sequences of these operations and de-
fine a natural equivalence relation between colorings.

Let Grid(n, n, k) be the set of all valid k-colorings of
Gn,n. We are interested in counting the equivalence classes
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Figure 1: Rectangle-free colorings with shift patterns. Top-left: canonical 2-colorings of G4,4; bottom-left: 3-coloring of G10,10

with 4-subgrids; middle: 4-coloring of G18,18 with 3-subgrids and 9-midgrids; right: 5-coloring of G25,25 with 8-subgrids

of Grid(10, 10, 3). Our approach is to convert grid color-
ings to graph colorings, and use Bliss (Junttila and Kaski
2007) graph isomorphism tool to assign to each graph a
canonical labeling. In particular, we identify each member
of Grid(n, n, k) with a graph on n2 vertices, where each
vertex corresponds to a cell in the grid and has the same la-
bel and color. Two distinct vertices (a, b), (c, d) are joined
by an edge if and only if a = c or b = d (but not both).

For Grid(4, 4, 2), we generated all 840 solutions and
compared the canonical labelings of their graphs up to color
permutations. There are three non-isomorphic solutions as
shown in Figure 1 (upper-left).

For Grid(10, 10, 3), the CNF formula yielded 35 solu-
tions after adding symmetry breaking clauses by Shatter
(Aloul, Sakallah, and Markov 2006). Comparison of graph
representatives output by Bliss showed that all 35 solu-
tions are isomorphic. That is, there is only one equivalence
class in Grid(10, 10, 3) shown in Figure 1 (lower-left).

Generalizable Pattern and New Results
The representative of Grid(10, 10, 3) in Figure 1 (left) ad-
mits a shift pattern: within each 4 by 4 subgrid, the second
row is a copy of the first row except shifted right (or left) by
1; the third row shifted by 2; the last row shifted by 3. All
the shifts wrap around on the edge of the subgrid.

The shift pattern greatly reduces search space, as only the
first row in each subgrid needs to be chosen. This pattern can
be iterated for one more layer: by adding “midgrids” that are
made up of smaller subgrids and enforcing that subgrids on
subsequent rows are shifted copies of those on the first row
in a similar fashion, the search space can be further reduced.
This is extremely helpful to solving larger grids, and signifi-
cantly reduces the running time. Figure 1 shows a 4-coloring
of G18,18 with 3-subgrids and 9-midgrids. CaDiCaL found
this solution in under 1 second; previously (Steinbach and
Posthoff 2012), it took the SAT solver clasp roughly 7

hours to find a cyclic-reusable assignment of G18,18. For a
fair comparison, we ran the same formula on CadiCaL and
it terminated in 4 hours and 40 minutes.

In addition, the 4-coloring of G18,18 in Figure 1 is a “new”
solution, in the sense that it is not isomorphic to the previous
solution (Steinbach and Posthoff 2012).

Infeasible Case: Shift Pattern on 26 by 26 If there are no
remaining columns and rows, the only choices for subgrid
size are 2, 13 and 26. The subgrid size cannot be 26 by the
Pigeonhole Principle. If a 5-coloring of subgrid size 2 or 13
exists, then it must satisfy certain necessary conditions. For
the case of size 2 and 13, integer constraints can be placed on
number of each color in each subgrid. Z3 Theorem Prover
(De Moura and Bjørner 2008) reported unsatisfiable for both
cases. Therefore, no 5-colorings of such shift pattern exist.

Thus, we turn our attention to finding solutions that have
shift pattern for the upper-left 25 by 25 or 24 by 24 part, and
constrain the remaining column(s) and row(s) appropriately.

Shift Pattern on 25 by 25 We attempted to find a coloring
of G26,26 which has 5 cells of each color in each size-5 sub-
grid on the 25 by 25 part and left the last row and column
without additional constraints. PalSAT was unable to find a
satisfying assignment in 24 hours, with only one unsatisfied
clause. This instance is unlikely to be satisfiable because of
the cell at the bottom-right corner.

Shift Pattern on 24 by 24 Directly solving G24,24 for sub-
grid sizes ranging from 3 to 10 shows that subgrid sizes
{3, 4, 5, 6, 8, 10} are satisfiable. However, PalSAT was un-
able to solve G26,26 with the similar patterns in 24 hours.

Therefore, we constrained G26,26 with a “partial shift pat-
tern”: e.g., take the upper-left 26 by 26 part of a 32 by 32
grid, for subgrid size 8. Now, the 25th row under each sub-
grid is a shifted copy of the 24th row. However, this was not
enough: PalSAT could not get under 2 unsatisfied clauses.
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