
How to Speed-Up the Automated Configuration of Optimization Algorithms

Marcelo de Souza
Santa Catarina State University, Brazil

Federal University of Rio Grande do Sul, Brazil
marcelo.desouza@udesc.br

Abstract

This paper presents a set of capping methods to speed-up the
automated configuration of optimization algorithms. These
methods use known previous executions to compute a per-
formance envelope, which is used to evaluate new executions
and early stop those with unsatisfactory performance. Pre-
liminary experiments on six scenarios show that the capping
methods save up to 78% of the configuration effort, while
finding configurations of the same quality.

Introduction
The algorithm configuration task is to find one or more
parameter configurations that optimize the algorithm’s ex-
pected performance on a given set of problem instances. The
performance of executing the algorithm on a particular in-
stance is given by a predefined performance metric, which
is usually the running time for decision algorithms, or the
cost of the best found solution for optimization algorithms.

Automated algorithm configuration techniques (e.g. Hut-
ter et al. (2009); Hutter, Hoos, and Leyton-Brown (2011);
Ansótegui, Sellmann, and Tierney (2009)) free researchers
from the time-consuming, tedious and often biased task of
manually testing several parameter configurations on differ-
ent instances to find the best ones. A widely used algorithm
configurator is irace (López-Ibáñez et al. 2016), which im-
plements an iterated method based on the Friedman-Race.
It iteratively samples a set of configurations and evaluates
them on a subset of the instances using a racing procedure.
During the racing, configurations that perform statistically
worse than others are eliminated. The surviving (elite) con-
figurations are used to update the probabilistic models and
guide the sampling of new configurations in subsequent it-
erations.

The automated configuration process is costly, since
irace executes many parameter configurations on several in-
stances. Capping methods can be used to reduce the con-
figuration time of decision algorithms (Pérez Cáceres et al.
2017; Hutter et al. 2009). These methods determine a bound
on the running time based on the best-performing configu-
ration found so far, and then discard configurations whose
execution reaches this running time bound. Unfortunately,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Previous executions
(performance profiles)

Aggregation
methods

Profile-based
envelope

Amax

Area-based
envelope

Figure 1: Overview of the capping methods.

these methods cannot be directly applied in the configura-
tion of optimization algorithms. Therefore, we propose a set
of capping methods for optimization scenarios, which com-
pute a performance envelope based on previous executions,
then use it to evaluate new executions and early stop poor
performers. The next sections detail the proposed methods
and present experimental results.

Capping Methods
The capping methods behave as follows. An execution
is represented by its performance profile, i.e. a function
P (t) = c that gives the cost c of the best solution found af-
ter running the algorithm for a time t (or any other measure
of computational effort). Before starting each execution, the
performance profiles of previous executions on the instance
at hand are aggregated into the performance envelope. First,
we aggregate different replications of a same configuration,
and then we aggregate the resulting performance profiles of
different configurations into the performance envelope. The
proposed capping methods differs from each other by their
inner aggregation strategies.

Figure 1 summarizes the idea behind the profile- and area-
based performance envelopes. In the profile-based approach,
the envelope is a performance profile that determines the
maximum allowed solution cost (considering a minimiza-
tion problem) for each value of time. On the other hand, in
the area-based approach the area below the performance pro-

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

216



Capping
method

ACOTSP HEACOL TSBPP HHBQP LKH SCIP

r. e. r. d. r. e. r. d. r. e. r. d. r. e. a. d. r. e. r. d. r. e. r. d.

No capping 100.0 0.33 100.0 4.14 100.0 1.31 100.0 49.72 100.0 0.04 100.0 0.04
PEWW 40.3 0.37 38.7 4.22 87.4 1.25 55.7 65.16 37.8 0.04 69.0 0.05
PEBB 22.3 0.52 25.2 4.48 61.9 1.27 25.1 58.38 24.3 0.08 21.7 0.11
PD.4 63.7 0.38 61.9 4.27 88.3 1.28 74.6 44.71 62.1 0.04 63.9 0.16

AEWW 73.2 0.35 72.8 4.18 87.6 1.28 82.7 46.97 52.5 0.04 94.0 0.04
AEBB 47.3 0.38 53.0 4.18 58.6 1.35 34.1 68.56 33.8 0.06 62.9 0.08
AD.4 77.9 0.35 81.8 4.16 71.5 1.26 72.9 37.48 72.4 0.04 80.3 0.06

Table 1: Average relative effort and average solution cost deviation for each capping method.

file of each previous execution is computed, and these area
values are aggregated into a maximum allowed area Amax
for new executions. Given a set of performance profiles to
be aggregated, the capping methods use the following ag-
gregation functions.

Worst (W ). Selects the worst solution cost for each value
of time (profile-based); or selects the worst area value (area-
based).

Best (B). Analogous to the worst function, selects the best
solution cost for each value of time (profile-based) or the
best area value (area-based).

The capping methods that use W and B aggregation func-
tions filter the previous executions and use only executions
of elite configurations, since they are the best configurations
found so far and should present good performance. There-
fore, they are named elitist capping methods. A second ap-
proach is called adaptive capping. It considers all previous
executions on the instance at hand, and computes the per-
formance envelope based on an aggressiveness goal param-
eter ag . In the beginning of the configuration process, the
method’s aggressiveness a is set to ag . Before starting each
execution, the adaptive capping method computes the exact
envelope (performance profile or maximum allowed area)
that would cap the d(1 − a)ke worst executions from all k
previous executions. When an iteration finishes, the value of
a is adapted for the next iteration. If the method capped less
than ag − ε, a is increased. If there was more capping than
ag + ε, a is decreased. The update procedure determines the
value of a that would be capped the desired amount of exe-
cutions in the previous iteration.

Experimental Results
The capping methods are implemented by the capopt pack-
age. The source code, instructions of use, examples and ad-
ditional details can be found in De Souza, Ritt, and López-
Ibáñez (2020). We applied the capping methods in the con-
figuration of the following algorithms: ACOTSP (Dorigo
and Stützle 2004), an ant colony optimization framework
for the traveling salesperson problem; HEACOL (Galinier
and Hao 1999; Lewis 2016), a hybrid evolutionary algo-
rithm for the graph coloring; TSBPP (Lodi, Martello, and
Vigo 1999, 2004), a tabu search for the bin packing problem;

HHBQP (De Souza and Ritt 2018), a hybrid heuristic for
the unconstrained binary quadratic programming; LKH (Lin
and Kernighan 1973; Helsgaun 2000, 2009, 2018), the Lin-
Kernighan-Helsgaun algorithm for the traveling salesperson
problem; and SCIP (Achterberg 2009), an open-source exact
solver for mixed integer programming applied for solving
the combinatorial auction winner determination problem.
We executed irace 20 times for each capping method and
computed the mean effort savings in comparison to config-
uring without capping. We also executed the resulting con-
figurations 5 times to compute the mean relative deviation
from the best known solutions (for HHBQP, we computed
the mean absolute deviation).

Table 1 shows the relative effort (columns “r. e.”) and the
deviation from the best known solutions (columns “r. d.” and
“a. d.”) for each capping method on each configuration sce-
nario. The method description presents the type of envelope
(P for profile-based and A for area-based), followed by the
elitist (E) or adaptive (D) strategies. For elitist methods, it
also shows the aggregation functions (W or B). The first one
is the function used for aggregating replications of the same
configuration, and the second one is the function used for
aggregating executions of different configurations. For the
adaptive methods, it also shows the aggressiveness goal (in
this case, we tested the adaptive methods with ag = 0.4 and
ε = 0.05 only). The three best values are presented in bold.

We observe that all capping methods reduce the con-
figuration effort. The reduction ranges from 6% (method
AEWW on SCIP) to about 78% (method PEBB on ACOTSP
and SCIP) of the effort required when configuring without
capping. At the same time, the configurations found when
using capping are competitive in comparison to those ob-
tained without capping. In some cases (see the results on
TSBPP and HHBQP), the use of capping led to better final
configurations. As expected, the more aggressive methods
(PEBB and AEBB) save more effort, but produces worse
configurations. Finally, we can recommend methods PEWW
and AD.4 for use, since they present satisfactory savings (av-
erages of 45% and 23%, respectively) and always produce
good configurations.

As future directions, we plan to extend our experiments
and analyze in detail the behavior of each capping method,
as well as apply their fundamental ideas on the configuration
of decision algorithms.

217



References
Achterberg, T. 2009. SCIP: Solving constraint integer pro-
grams. Mathematical Programming Computation 1(1): 1–
41.
Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
Gender-Based Genetic Algorithm for the Automatic Con-
figuration of Algorithms. In Gent, I. P., ed., Principles
and Practice of Constraint Programming, CP 2009, vol-
ume 5732 of Lecture Notes in Computer Science, 142–157.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-
04244-7 14.
De Souza, M.; and Ritt, M. 2018. Automatic Grammar-
Based Design of Heuristic Algorithms for Unconstrained
Binary Quadratic Programming. In Evolutionary Compu-
tation in Combinatorial Optimization, 67–84. Springer In-
ternational Publishing. doi:10.1007/978-3-319-77449-7 5.
De Souza, M.; Ritt, M.; and López-Ibáñez, M. 2020.
CAPOPT: Capping Methods for the Automatic Config-
uration of Optimization Algorithms. https://github.com/
souzamarcelo/capopt. Date: Apr, 2021.
Dorigo, M.; and Stützle, T. 2004. Ant Colony Optimization.
Cambridge, MA: MIT Press.
Galinier, P.; and Hao, J.-K. 1999. Hybrid evolutionary algo-
rithms for graph coloring. Journal of Combinatorial Opti-
mization 3(4): 379–397. doi:10.1023/A:1009823419804.
Helsgaun, K. 2000. An Effective Implementation of the Lin-
Kernighan Traveling Salesman Heuristic. European Journal
of Operational Research 126: 106–130.
Helsgaun, K. 2009. General k-opt Submoves for the Lin-
Kernighan TSP Heuristic. Mathematical Programming
Computation 1(2–3): 119–163.
Helsgaun, K. 2018. Efficient Recombination in the Lin-
Kernighan-Helsgaun Traveling Salesman Heuristic. In
Auger, A.; Fonseca, C. M.; Lourenço, N.; Machado, P.;
Paquete, L.; and Whitley, D., eds., Parallel Problem Solv-
ing from Nature - PPSN XV, volume 11101 of Lecture
Notes in Computer Science, 95–107. Springer, Cham. doi:
10.1007/978-3-319-99253-2 8.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential Model-Based Optimization for General Algorithm
Configuration. In Coello Coello, C. A., ed., Learning and In-
telligent Optimization, 5th International Conference, LION
5, volume 6683 of Lecture Notes in Computer Science, 507–
523. Springer, Heidelberg, Germany. doi:10.1007/978-3-
642-25566-3 40.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle, T.
2009. ParamILS: An Automatic Algorithm Configuration
Framework. Journal of Artificial Intelligence Research 36:
267–306. doi:10.1613/jair.2861.
Lewis, R. M. R. 2016. A Guide to Graph Colouring: Algo-
rithms and Applications. Springer, Cham. doi:10.1007/978-
3-319-25730-3.
Lin, S.; and Kernighan, B. W. 1973. An Effective Heuristic
Algorithm for the Traveling Salesman Problem. Operations
Research 21(2): 498–516.

Lodi, A.; Martello, S.; and Vigo, D. 1999. Heuristic and
metaheuristic approaches for a class of two-dimensional bin
packing problems. INFORMS Journal on Computing 11(4):
345–357. doi:10.1287/ijoc.11.4.345.
Lodi, A.; Martello, S.; and Vigo, D. 2004. TSpack: a unified
tabu search code for multi-dimensional bin packing prob-
lems. Annals of Operations Research 131(1-4): 203–213.
doi:10.1023/B:ANOR.0000039519.03572.08.
López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.;
Stützle, T.; and Birattari, M. 2016. The irace package: It-
erated Racing for Automatic Algorithm Configuration. Op-
erations Research Perspectives 3: 43–58.
Pérez Cáceres, L.; López-Ibáñez, M.; Hoos, H. H.; and
Stützle, T. 2017. An experimental study of adaptive cap-
ping in irace. In Battiti, R.; Kvasov, D. E.; and Sergeyev,
Y. D., eds., Learning and Intelligent Optimization, 11th In-
ternational Conference, LION 11, volume 10556 of Lecture
Notes in Computer Science, 235–250. Cham, Switzerland:
Springer.

218


