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Abstract

Multi-agent path finding with continuous movements and
time (denoted MAPFR) is addressed. The task is to navigate
agents that move smoothly between predefined positions to
their individual goals so that they do not collide. Recently a
novel solving approach for obtaining makespan optimal so-
lutions called SMT-CCBS based on satisfiability modulo the-
ories (SMT) has been introduced. We extend the approach
further towards the sum-of-costs objective which is a more
challenging case in the yes/no SMT environment due to more
complex calculation of the objective.

Introduction
In multi-agent path finding (MAPF) (Kornhauser, Miller,
and Spirakis 1984; Silver 2005; Ryan 2008; Surynek 2009;
Wang and Botea 2011; Sharon et al. 2013, 2015; Botea and
Surynek 2015) the task is to navigate agents from given
starting positions to given individual goals. The problem
takes place in undirected graph G = (V,E) where agents
from set A = {a1, a2, ..., ak} are placed in vertices with at
most one agent per vertex. The navigation task can be then
expressed formally as transforming an initial configuration
of agents α0 : A→ V to a goal configuration α+ : A→ V
using instantaneous movements across edges assuming no
collision occurs.

In this work, we are dealing with an extension of MAPF
introduced recently (Andreychuk et al. 2019; Surynek 2020)
that considers continuous movements and time (MAPFR).
Agents move smoothly along predefined curves intercon-
necting predefined positions placed arbitrarily in some con-
tinuous space. In contrast to MAPF, where the collision is
defined as the simultaneous occupation of a vertex or an
edge by two agents, collisions are defined as any spatial
overlap of agents’ bodies in MAPFR.

We use the definition of MAPF with continuous move-
ments and time denoted MAPFR from (Andreychuk et al.
2019). MAPFR shares components with the standard
MAPF: undirected graph G = (V,E), set of agents A =
{a1, a2, ..., ak}, and the initial and goal configuration of
agents: α0 : A → V and α+ : A → V . A simple 2D
variant of MAPFR is as follows:
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Definition 1 (MAPFR) Multi-agent path finding with con-
tinuous time and space is a 5-tuple ΣR = (G =
(V,E), A, α0, α+, ρ) whereG,A, α0, α+ are from the stan-
dard MAPF and ρ determines continuous extensions:
• ρ.x(v), ρ.y(v) for v ∈ V represent the position of v
• ρ.speed(a) for a ∈ A determines constant speed of a
• ρ.radius(a) for a ∈ A determines the radius of a; we

assume that agents are omni-directional discs

For simplicity we assume circular agents with constant
speed and instant acceleration. The major difference from
the standard MAPF where agents move instantly between
vertices (disappears in the source and appears in the target
instantly) is that smooth continuous movement between a
pair of vertices (positions) along the straight line intercon-
necting them takes place in MAPFR.

An example of MAPFR and makespan/sum-of-costs op-
timal solution is shown in Figure 1.

A Satisfiability Modulo Theory Approach
A recent algorithm called SMT-CBSR (Surynek 2020)
rephrases CCBS as problem solving in satisfiability mod-
ulo theories (SMT) (Bofill et al. 2012; Tinelli 2010). The
basic use of SMT divides the satisfiability problem in some
complex theory T into a propositional part that keeps the
Boolean structure of the problem and a simplified procedure
DECIDET that decides fragment of T restricted on con-
junctive formulae. T in our case is represented by MAPFR

movement rules.
The key question in the propositional logic-based ap-

proach is what will be the decision variables. In the standard
MAPF, time expansion of G for every time step can be done
resulting in a multi-value decision diagram (MDD) (Surynek
et al. 2016) representing possible positions of agents at any
time step. Since MAPFR is no longer discrete we cannot
afford to use a decision variable for every time moment.

Analogously to MDD, we introduce real decision dia-
gram (RDD). RDDi defines for agent ai its space-time po-
sitions and possible movements. Formally, RDDi is a di-
rected graph (Xi, Ei) where Xi consists of pairs (u, t) with
u ∈ V and t ∈ R+

0 is time and Ei consists of directed edges
of the form ((u, tu); (v, tv)). Edge ((u, tu); (v, tv)) corre-
spond to agent’s movement from u to v started at tu and
finished at tv . Waiting in u is possible by introducing edge
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α0(a1) = 1   α+(a1) = 4 
α0(a2) = 2   α+(a2) = 3 
  
ρ.radius(a1)=0.3  
ρ.speed(a1)=1.0 
 
ρ.radius(a2)=0.1  
ρ.speed(a2)=1.0 

π(a1): 
1 → 3 [0.000, 1.000) 
3 → 4 [1.000, 2.000) 
π(a2): 
2 → 1 [1.000, 1.000) 
1 → 3 [1.000, 2.000) 
 
μ(π) = 2.000  

π*(a1): 
1 → 1 [0.000, 0.566) 
1 → 4 [0.566, 1.980) 
π*(a2): 
2 → 3 [0.000, 1.414) 
3 → 3 [1.414, 1.980) 
 
μ(π*) = 1.980  
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Figure 1: An example of MAPFR instance with two agents.
A feasible makespan sub-optimal solution π (makespan
µ(π) = 2.0) and makespan optimal solution π∗ (makespan
µ(π∗) = 1.980) are shown.

((u, tu); (v, t′u)). Pair (α0(ai), 0) ∈ Xi indicates start and
(α+(ai), t) for some t corresponds to reaching the goal po-
sition.

RDDs for individual agents are constructed with respect
to collision avoidance constraints. If there is no collision
avoidance constraint then RDDi simply corresponds to a
shortest temporal plan for agent ai. But if a collision avoid-
ance constraint is present, say (ai, (u, v), [τ0, τ+)), and we
are considering movement starting in u at t that interferes
with the constraint, then we need to generate a node into
RDDi that allows agent to wait until the unsafe interval
passes by, that is node (u, τ+) and edge ((u, τ+); (u, τ+))
are added.

We introduce a decision variable for each node and edge
[RDD1, ..., RDDk]; RDDi = (Xi, Ei): we have variable
X t

u(ai) for each (u, t) ∈ Xi and Etu,tvu,v (ai) for each directed
edge ((u, tu); (v, tv)) ∈ Ei. The meaning of variables is that
X t

u(ai) is TRUE if and only if agent ai appears in u at time
t and similarly for edges: Etu,tvu,v (ai) is TRUE if and only if
ai moves from u to v starting at time tu and finishing at tv .

From the perspective of SMT, the propositional level
does not understand geometric properties of agents so can-
not know what simultaneous variable assignments are in-
valid. This information is only available at the level of
theory T = MAPFR through DECIDEMAPFR . We also
leave the bounding of the sum-of-costs at the level of
DECIDEMAPFR .
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Figure 2: Real decision diagrams (RDDs) for agents a1 and
a2 from MAPFR from Figure 1. Decisions corresponding
to shortest paths for agents a1 and a2 moving diagonally
towards their goals are shown: a1 : 1→ 4, a2 : 2→ 3 (left).
This leads to a collision whose resolution is either waiting
for agent a1 in vertex 1 from 0.000 until 0.566 or waiting
for agent a2 in vertex 2 from 0.000 until 0.566 (right).

Lazy Encoding of Sum-of-Costs Bounds
The SMT-based algorithm similarly as CCBS resolves col-
lisions between agents (Surynek 2020). After resolving all
collisions we check whether the sum-of-costs bound is satis-
fied by the resulting plan. This can be done easily by check-
ing if X tu

u (ai) variables across all agents together yield
higher cost than the cost bound ξ or not. If cost bound ξ is ex-
ceeded then corresponding nogood is recorded and added to
the encoding and the algorithm continues by searching for a
new truth-value satisfying assignment. The nogood says that
X tu

u (ai) variables that jointly exceed ξ cannot be simultane-
ously set to TRUE .

Formally, the nogood constraint can be represented as a
set of variables {X t1

u1
(a1), X t2

u2
(a2), ... X tk

uk
(ak)}. We say

the nogood to be dominated by another nogood {X t′1
u1(a1),

X t′2
u2(a2), ... X t′k

uk(ak)} if and only if t′i ≤ ti for i = 1, 2, ...k
and ∃i ∈ {1, 2, ..., k} such that t′i < ti. To make the nogood
reasoning more efficient we do not need to store nogoods
that are dominated by some previously discovered nogood.
In such case however, the single nogood does not forbid one
particular assignment but all assignments that could lead to
dominated nogoods.

Conclusion
We extended the approach based on satisfiability modulo
theories (SMT) for solving MAPFR from the makespan
objective towards the sum-of-costs objective. Bounding the
sum-of-costs is done in a lazy way through introducing no-
goods incrementally. The work on MAPFR could be further
developed into multi-robot motion planning in continuous
configuration spaces (LaValle 2006).
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