
Iterative-deepening Bidirectional Heuristic Search with Restricted Memory*

Shahaf S. Shperberg1, Steven Danishevski1, Ariel Felner1, Nathan R. Sturtevant2

1 Ben-Gurion University, Be’er Sheva, Israel
2 University of Alberta, Edmonton, Canada

shperbsh@post.bgu.ac.il, stiven@post.bgu.ac.il, felner@bgu.ac.il, nathanst@ualberta.ca

Abstract
This extended abstract presents a bidirectional heuristic
search algorithm called IDBiHS that operates under restricted
memory. Several variants of this algorithm are introduced
for different types of memory restrictions, and are compared
against existing algorithms with similar restrictions.

Restricted Memory Search Algorithms
Search algorithms can be classified into three main cate-
gories with regards to the amount of memory they consume.

1. Unrestricted memory (UM). Such algorithms use mem-
ory proportional to the size of the search tree that they ex-
plored, which could grow polynomially or exponentially
with the search depth d. UM algorithm often fail to solve
hard problems due to memory exhaustion.

2. Linear memory (LM). An algorithm may only store a
single branch of the search tree (a path), and its mem-
ory consumption is O(d). IDA∗ (Korf 1985) is a promi-
nent example of an LM unidirectional heuristic search
(UniHS) algorithm, as well as it’s many enhancements.
In addition there are other UniHS LM algorithms such as
IBEX (Helmert et al. 2019), and an LM BiHS algorithm
which is a variant of the SFBDS algorithm (Felner et al.
2010; Lippi, Ernandes, and Felner 2016).

3. Fixed memory (FM). An algorithm is given a fixed
amount of memory M (on top of the memory required
for storing a single path) and must never exceed it. Cases 2
and 3 are denoted hereafter as Restricted Memory (RM).
Perimeter search (Dillenburg and Nelson 1994) is a class
of FM BiHS algorithms in which a perimeter around
start or around goal is constructed and a DFS is exe-
cuted from the opposite direction until the perimeter is
reached. Two notable variants of perimeter search are
BIDA* (Manzini 1995), and BAI (Kaindl et al. 1995).

Iterative-deepening BiHS
We now introduce our new admissible algorithm, iterative-
deepening bidirectional heuristic search, or IDBiHS. We
first present an LM variant and then proceed to FM variants.

*A full version of this paper appears in ICAPS-2021
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

LM Variant of IDBiHS
IDBiHS maintains a threshold on the current lower-bound
of solutions cost (initialized as h(start, goal)); this thresh-
old is used as a bound to the f -value of nodes searched,
thus it is called fT . In each iteration the task is to find a
solution of cost fT . If such a solution is not found, fT is
incremented, and a new iteration begins. IDBiHS uses fT to
bound the g-values of searched nodes from each direction
using a split function (similar to those used by the GBFHS
algorithm (Barley et al. 2018)). Specifically, the split func-
tion determines the meeting point by setting the forward g-
threshold gTF .

Once gTF is obtained, a forward DFS procedure (F DFS)
is called from start. When F DFS encounters a node nF , it
has three cases:

1. Expand. If fF (nF ) ≤ fT and gF (nF ) ≤ gTF , then ex-
pand nF and move to one of its children.

2. Prune. If fF (nF ) > fT , prune nF and backtrack.

3. Suspend and Match. If fF (nF ) ≤ fT and gF (nF ) >
gTF , suspend F DFS and call the backward DFS (B DFS)
attempting to match nF from the backward side. B DFS is
called for every forward frontier node nF until a solution
is found or all forward frontier nodes have been explored.

When calling B DFS on candidate nodes nF , the g-
threshold for the backward direction (gTB ) needs to be de-
fined. gTB is defined specifically for each node nF to be
matched as follows: gTB (nF ) = fT − gF (nF ) − ε, where
ε is the least-cost edge

Upon reaching a candidate meeting node nF in F DFS,
B DFS performs a DFS iteration from goal. When B DFS
encounters a node nB , it has three options:

1. Expand. If fB(nB) ≤ fT and gB(nB) ≤ gTB , then
expand nB and move to one of its children.

2. Prune. If fB(nB)> fT , prune nB and backtrack.

3. Match. If fB(nB) ≤ fT and gB(nB) > gTB , match nF
against nB . If they represent the same state, a solution has
been found. Otherwise, nB can be immediately pruned.

After B DFS finishes without matching nF , B DFS returns
false and F DFS resumes by backtracking from nF . Note
that in every iteration F DFS is called once, while B DFS
is called many times, once for each forward frontier node.

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

194



Domain H
Expanded Time(sec)

IDA* SFBDS IDBiHS IDBiHS IDA* SFBDS IDBiHS IDBiHS
JIL(1) 0.5 BW JIL(1) 0.5 BW

P[12]

G 95(76%) 169(79%) 85(76%) 83 (77%) 0.00 0.00 0.00 0.00
G-1 9,665(72%) 8,622(74%) 3,417(70%) 2,857 (72%) 0.01 0.01 0.00 0.00
G-2 383,488(68%) 205,469(71%) 75,205(70%) 72,939 (72%) 0.25 0.15 0.06 0.05

STP MD 242,460,834(50%) 139,225,772(46%) 174,414,968(40%) 137,331,587 (48%) 47.85 35.90 36.44 29.29
Grid Octile 47,060 (75%) 131,488(78%) 210,353(78%) 122,304(79%) 0.00 0.01 0.01 0.01

Table 1: Average node expansions and runtime of linear-memory algorithms

Once all forward paths have been explored by F DFS and
no solution has been found fT is incremented and a new
iteration begins.

When computing the f -value of nodes in B DFS a front-
to-front heuristic towards nF can be used (is available). In
addition, if the heuristic is known to be consistent then an-
other improvement is possible. Kaindl and Kainz (1997) de-
fined DiffF (nF ) = gF (nF ) − hB(nF ), and DiffB(nB) =
gB(nB) − hF (nB), corresponding to the error of hB(nF )
and hF (nB) respectively. When trying to connect a node
nB generated by B DFS to a given forward frontier node
nF , it holds that fB(nB) + DiffF (nF ) ≤ d(nB , start) and
that DiffB(nB) ≤ d(nB , goal). Therefore, the maximum of
fB(nB)+DiffF (nF ) and fF (nF )+DiffB(nB) can be used
instead of fB(nB) to improve the pruning.

FM Variants of IDBiHS
We now introduce two FM variants of IDBiHS.

A∗+IDBiHS is inspired by A∗+IDA* (Bu and Korf 2019).
Given a memory budget M , A∗+IDA* first runs A∗ un-
til either a solution is found, or the memory used by A∗

exceeds M . Then, it continues by running IDA∗ starting
from the OPEN nodes, denoted hereafter as NF . Similarly,
A∗+IDBiHS executes A∗ from start until it runs out of
memory. Then, IDBiHS is executed sequentially from the
nodes in NF as follows. fT is initialized to be the mini-
mal f -value in NF . Next, F DFS is executed on all nodes
n ∈ NF for which fF (n) = fT . For each execution of
F DFS starting from a node n ∈ NF . Then, once F DFS
fails to find an optimal solution from n, h(n) is incremented.

IDBiHS-Trans uses a transposition table to store nodes.
While A∗+IDA* stores nodes near start to minimize the
number of duplicate nodes on lower depths, IDBiHS-Trans
stores frontier nodes in order to match against multiple
nodes at once, and thus calling B DFS fewer times (from the
other frontier). In particular, if the available memory is suf-
ficient to store K frontier nodes, then the number of B DFS
calls will be reduced by a factor of K.

Empirical Evaluation
We performed experiments on three domains: the Pancake
Puzzle, 15 puzzle (STP), and 8-Grid-based pathfinding.
First, we compare the following LM algorithms: IDA∗, SF-
BDS with JIL(1) as a jumping policy, and IDBiHS. IDBiHS
was evaluated using two different split policies. The first pol-
icy, denoted as IDBiHS-0.5 splits each fT in the middle. The

second policy aims to balance the workload (BW) between
the two frontiers. IDBiHS-BW counts the number of nodes
expanded in the previous iteration in the forward search, and
those expanded in the backward search, and increments the
g-threshold of the direction that expanded fewer nodes.

Table 1 presents the averages number of node expansions
before finding an optimal solution and the runtime for the
LM algorithms. We also report (in parenthesis) what per-
centage of the overall expansions was performed in the last
C-layer. IDBiHS-BW is the best algorithm across all expo-
nential domains. It outperforms IDA∗, both in node expan-
sions and time, by up to a factor of 5.3 and SFBDS by up to a
factor of 4. The improvement is more significant for weaker
heuristics. The runtime of IDBiHS-0.5 is slightly higher than
that of IDBiHS-BW, but is still competitive, inferior only
to SFBDS in STP. However, IDBiHS is outperformed by
IDA∗ in the polynomial domain (Grid). Finally, the percent-
age of nodes expanded in the last C-layer is proportional to
the heuristic strength. While for the UM algorithms most of
the node expansions are usually performed before the last C-
layer, for the LM algorithms most of the node expansions are
performed in the last layer. Nonetheless, there is no signifi-
cant different between the different LM algorithms in terms
of the relative effort invested in the last C-layer.

We have also compared the baseline FM algorithms,
Max-BAI, BIDA* and A∗+IDA*, to our new algorithms,
A∗+IDBiHSand IDBiHS-Trans. In order to consider mean-
ingful amounts of memory, we used a memory budget pro-
portional to the number of states (denoted by S) stored by
the best among the UM algorithms MM, A∗, and reverse-A∗.
Specifically, we used C ·S, where C ∈ {50%, 10%, 1%}. In
most cases, IDBiHS-Trans requires the fewest expansions.
However, it has a large runtime overhead per node. Nonethe-
less, IDBiHS-Trans achieved the fastest runtime in STP.
Max-BAI performed well, however, its performance deterio-
rated the most when less memory was available. By contrast,
A∗+IDBiHS uses less overhead per node, and therefore is
often the fastest algorithm.

All fixed memory algorithms experience a trade-off. Hav-
ing more memory often results in fewer node expansions.
However, more memory results in a larger overhead per node
due to the cost of maintaining the required data-structures.
Nonetheless, in most cases, it is more beneficial to use avail-
able memory (FM) than to not use memory at all (LM).

195



References
Barley, M. W.; Riddle, P. J.; López, C. L.; Dobson, S.; and
Pohl, I. 2018. GBFHS: A Generalized Breadth-First Heuris-
tic Search Algorithm. In SoCS, 28–36. AAAI Press.
Bu, Z.; and Korf, R. E. 2019. A*+IDA*: A Simple Hybrid
Search Algorithm. In IJCAI, 1206–1212. ijcai.org.
Dillenburg, J. F.; and Nelson, P. C. 1994. Perimeter Search.
Artificial Intelligence 65(1): 165–178.
Felner, A.; Moldenhauer, C.; Sturtevant, N. R.; and Schaef-
fer, J. 2010. Single-Frontier Bidirectional Search. In AAAI,
59–64. AAAI Press.
Helmert, M.; Lattimore, T.; Lelis, L. H. S.; Orseau, L.;
and Sturtevant, N. R. 2019. Iterative Budgeted Exponential
Search. In IJCAI, 1249–1257. ijcai.org.
Kaindl, H.; and Kainz, G. 1997. Bidirectional Heuristic
Search Reconsidered. J. Artif. Intell. Res. 7: 283–317.
Kaindl, H.; Kainz, G.; Leeb, A.; and Smetana, H. 1995. How
to Use Limited Memory in Heuristic Search. In IJCAI, 236–
242. Morgan Kaufmann.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artif. Intell. 27(1): 97–109.
Lippi, M.; Ernandes, M.; and Felner, A. 2016. Optimally
solving permutation sorting problems with efficient partial
expansion bidirectional heuristic search. AI Commun. 29(4):
513–536.
Manzini, G. 1995. BIDA*: An Improved Perimeter Search
Algorithm. Artif. Intell. 75(2): 347–360.

196


