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Abstract

We introduce the Cooperative Multi-Agent Path Finding (Co-
MAPF) problem, an extension to the classical MAPF prob-
lem, where cooperative behavior is incorporated. In this set-
ting, a group of autonomous agents operate in a shared envi-
ronment and have to complete cooperative tasks while avoid-
ing collisions with the other agents in the group. This exten-
sion naturally models many real-world applications, where
groups of agents are required to collaborate in order to com-
plete a given task. To this end, we formalize the Co-MAPF
problem and introduce Cooperative Conflict-Based Search
(Co-CBS), a CBS-based algorithm for solving the problem
optimally for a wide set of Co-MAPF problems. Co-CBS
uses a cooperation-planning module integrated into CBS
such that cooperation planning is decoupled from path plan-
ning. Finally, we present empirical results on several MAPF
benchmarks demonstrating our algorithm’s properties.

Introduction and Setting
While the classical MAPF problem is inherently coopera-
tive, we term the setting of Co-MAPF as truly cooeprative,
as we may want agents not just to “not interrupt” each other,
but also help each other achieve their goals. This exten-
sion naturally models many real-world applications, where
groups of heterogeneous agents are required to collaborate
in order to complete a given task.

Our motivating problem is taken from the warehouse-
automation domain (Wurman, D’Andrea, and Mountz
2008). In this problem, storage locations host inventory
pods that hold goods of different kinds. Robots operate au-
tonomously in the warehouse, picking up and carrying in-
ventory pods to designated drop-off locations, where goods
are manually taken off the pods for packaging. In this sce-
nario, the robot’s main task is to transport the pods around
the warehouse. Research in a different, yet closely-related
area, has studied the problem of autonomous robotic arms
capable of picking-up a specific item from an inventory
pod. This motivates the investigation of an improved ware-
house scenario, where robots of two types (namely, grasp
and transfer robots), can work together in coordination (for
example, by scheduling a meeting between them) to improve

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Two pairs of robots operate in a warehouse–two
grasp units and two transfer units. Grasp unit #1 arrived
at the task start location, i.e., next to the shelf. It will pick
up the box and then drive to the meeting location (marked
with a yellow square) to transfer the box to transfer unit #1.
The transfer unit has a path (marked with blue arrows) to the
meeting point, and from there to the task goal (the P square),
where the box will be picked by a human employee. The
second pair of robots (#2) are at their meeting location.

some optimization objective. This motivating example is de-
picted in Figure 1.

We now formalize the Co-MAPF problem and then in-
troduce Cooperative Conflict-Based Search (Co-CBS), a
CBS-based algorithm for solving the problem optimally for
a wide set of Co-MAPF problems. More details can be found
in our full paper (Greshler et al. 2021).

Based on the MAPF problem formulation, in
the Co-MAPF problem we are given an undirected
graph G = (V,E), and a set of agents A that consists of two
distinguishable sets, i.e., A = A ∪ B. Each set includes k
agents of a specific type, namely A = {α1, . . . , αk}
and B = {β1, . . . , βk}. The two types of agents may differ
in their traversal capabilities or possible actions in a location
(for instance, picking up an object). We are also given a
set of tasks T = {τ1, . . . , τk} s.t. each task τi is assigned
to a pair of agents (αi, βi). We refer to αi and βi as the
initiator and executor agents, respectively. Each task τi ∈ T
is defined by a start location si and a goal location gi.

The cooperation between agents is restricted to the
form of meetings, where agents have to schedule a meet-
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ing location and time to complete a task. Specifically, a
task τi = (si, gi) assigned to agents (αi, βi) is composed of
the following steps: (i) moving the initiator agent αi to the
task’s start location si, (ii) moving both agents to a so-called
meeting mi = (vmi , t

m
i ) where vmi ∈ V is the meeting lo-

cation and tmi is the meeting time step, both of which are
computed by the algorithm (and not specified by the task),
(iii) moving the executor agent to the task’s goal location gi.

Cooperative Conflict-Based Search
Co-CBS is an optimal three-level algorithm for solving the
introduced Co-MAPF problem, based on two previously-
suggested optimal algorithms: the well-known Conflict-
Based Search (CBS) (Sharon et al. 2015) for solving a clas-
sical MAPF problem and the Conflict-Based Search with
Optimal Task Assignment (CBS-TA) (Hönig et al. 2018) for
solving the anonymous MAPF problem, where we also need
to assign goals (or tasks) to each agent.

Co-CBS considers the cooperative aspect of the prob-
lem and consists of three levels of search in three different
spaces: (i) the meetings space, (ii) the conflicts space and
(iii) the paths space. The meetings space contains all possi-
ble combinations of meetings, one for each task.

Co-CBS simultaneously searches over all possible meet-
ings and for each meeting, over all possible paths. To per-
form this search in a systematic and efficient manner, we
need to consider an ordering of the meetings. This is done
by defining a meeting’s cost which is dependent both on the
meeting’s location and time. To efficiently traverse the set
of possible meetings, we introduce the notion of a Meetings
Table which stores for each meeting location the currently-
best meeting time. This table will allow us to iterate over all
meetings in a best-first manner, thus guarantee the obtained
solution is optimal.

In contrast to CBS that constructs a single conflicts-tree
(CT), Co-CBS creates a forest of CTs, similar to (Hönig
et al. 2018). Each CT starts in a root node and corresponds to
a specific set of meetings (a specific meeting for each task).

Co-CBS starts with a single root node, with the optimal
set of meetings, while ignoring possible conflicts between
agents. In each iteration, a lowest-cost node is selected from
the OPEN list (either a root or regular node), in a best-first
approach similar to CBS. Whenever a root node is selected,
in addition to splitting the tree due to a conflict, Co-CBS
also expands it in the meetings space by generating the next
best sets of meetings. Namely, new root nodes are created
only on demand. For each expanded node, given its set of
meetings and constraints, Co-CBS computes a solution by
planning the different steps a task solution is composed of.

Experimental Evaluation
We evaluated Co-CBS on several 2D grid-based bench-
marks (Sturtevant 2012; Stern et al. 2019). Co-CBS is im-
plemented in Python1. All simulations were performed on
an Intel Xeon Platinum 8000 @ 3.1Ghz machine with 64.0
GB RAM.

1Our code is publicly available at: https://github.com/CRL-
Technion/Cooperative-MAPF.

Figure 2: Success rates for the sum-of-costs objective.

More specifically, we tested the algorithm on maps of
different types and sizes–empty grid (empty-48-48), dense
game map (DAO, den312d), a maze (maze-32-32-4), large
warehouse (warehouse-10-20-10-2-1) and custom small
(20×10) and medium (26×15) warehouses. We ran 25 ran-
dom scenarios for each benchmark both for the makepsan
and sum-of-costs objectives with the number of tasks rang-
ing from one task (two agents) to eight tasks (16 agents) and
with a timeout of ten minutes each.

We present empirical results with a sum-of-costs objec-
tive. The sum of costs is the sum of time steps required by
each agent, to complete all tasks. This objective is arguably
more natural for our setting—it implicitly minimizes both
the time it takes to complete a task, and the time the initiator
finishes its part in the task.

Figure 2 shows the success rates of Co-CBS, successfully
solving more than 80% of the instances (excluding the maze
benchmark) given four tasks. The success rates drops be-
low 80% for five tasks or more on smaller and denser maps
(maze, DAO, small warehouse). In large and sparse environ-
ments (large warehouse and empty map), a feasible solution
is quickly found, usually using the first set of meetings. The
search in these cases is equivalent to running CBS with the
first set of meetings. In smaller and denser maps, a more ex-
haustive meeting-space search is required to find an optimal
solution, causing the success rates to drop.

Discussion and Future Work
We introduced the Cooperative Multi-Agent Path Finding
(Co-MAPF) problem, an extension to the classical MAPF
problem that incorporates cooperative behavior to agents.
We introduced Co-CBS, a three-level search algorithm
that optimally solves Co-MAPF instances. Please refer to
(Greshler et al. 2021) for the full paper.

Many possible improvements for Co-CBS exist, such as
improving the search in the meetings space, reusing infor-
mation between conflict trees and applying existing CBS
enhancements to Co-CBS. The Co-MAPF framework can
also be extended to other forms of cooperative interaction
and varying number of collaborating agents. Co-MAPF also
presents a challenging task-assignment problem, that may
be further investigated in this context.
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